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Abstract 

In general, if measurements can be repeated several times assuming the same conditions, the measurement 

error can significantly be decreased by statistically evaluating the measurements. However, an uncertainty 

band always remains. Non-linear numerical simulations based on e.g. the Newton-Raphson method may 

establish a poor convergence if they are provided directly with measured data. Therefore, data pre-

processing is required. Here, a neural network approach is employed. A two-layer perceptron is fitted on a 

measured magnetisation curve, thereby restricting the solution to be technically feasible while accepting the 

statistical nature of the data. By using a perceptron, an analytical expression of the magnetisation curve is 

obtained and expressions for its derivatives can easily be computed. 



1. Introduction 

The standard Newton iteration scheme to solve a non-linear system of equations obtained from the finite 

element method is based on the updating of the field dependent element reluctivity and its derivative. 

Usually, the manufacturer of the ferromagnetic material provides a BH-characteristic as diagram or in the 

form of a table of data samples. The influence of the material properties, in particular their accurate 

numerical representation, is significant for the rate of convergence during the Newton iterations. Here, a 

numerical optimization aiming at a technically smooth non-linear characteristic is performed to obtain a 

higher rate of convergence of the Newton iteration scheme. The neural network approach is adopted for 

representing the magnetisation curve. 

 

2. Measurement data 

Fig. 1 shows the measured magnetisation curve of iron with a carbon content of 0.55 %. The high field 

behaviour reveals a differential permeability which is almost zero, although in practice it cannot be smaller 

than the permeability of air. Obviously, this is caused by measurement errors. Here, the relative error εrel 

introduced by the measurement equals  0.05, both for the magnetic induction B (in T) and the magnetic field 

strength H (in A/m). The measured magnetisation curve is used in a particular finite element model, in 

which it is more appropriate to search for a characteristic in terms of the magnetic reluctivity ν (in Am/Vs) 

and the square of the magnetic induction B2 (in T2) (Fig. 2) [1]. However, by this transformation the 

relative error on ν and B2 becomes 2εrel , thus 0.10 . These errors are considered below, in order to find a 

suitable representation of the measured data. 

 

3. Neural network approach 

It can be proven that any feed-forward neural network with two layers of adaptive weights is capable of 

modelling any continuous functional mapping. Perceptrons form a special class of feed-forward neural 

networks [2]. Here, a biased one-input one-output two-layer perceptron with sigmoidal activation functions 

and linear output units is chosen to approximate the measured magnetisation curve. The mathematical 

representation of this perceptron is  
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with ( )1
0jw  the first layer bias weights to neuron j, ( )1

1jw  the first layer weights from input B2 to neuron j, 

ja the activation of neuron j, )( jj aφ  the activation function of neuron j, ( )2
0w  the second layer bias weight 

to output ν, ( )2
0≠jw  the second layer weights from neuron j to output ν and M the number of neurons 

(Fig. 3). Each circle corresponds to a single neuron, which transforms its input into an output by means of a 

sigmoidal activation function (Fig. 4): 
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Once the weights have been determined, their values are fixed. The first and second derivative of the 

output with respect to the input are then given by: 
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respectively. The derivatives (3) and (5) are used during the optimisation process. 

 



4. Sum-of-squares error 

In order to optimise the weights of the perceptron, a sum-of-squares error E is defined: 
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with ( )n
pν  the reluctivity computed by the perceptron for the nth of N measurements and ( )n

mν  the measured 

reluctivity. This sum-of-squares error only depends on the weights and is therefore denoted by E(w). The 

weights are then determined by minimising this sum-of-squares error in an iterative algorithm. 

To improve the convergence rate of the optimisation algorithm, the gradient ∇E(w) must be provided. 

This gradient can also be obtained analytically. The partial derivative of E with respect to the second layer 

weights is  
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The partial derivatives of E with respect to the first layer weights are more expensive to compute: 
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5. Optimisation of the weights 

The output of the optimised perceptron must be within the uncertainty band of the measurements. It is 

observed that this is not always the case when simply minimising the sum-of-squares error. Therefore, the 

optimisation problem is extended with function constraints on the output of the perceptron. However, the 

result may still not be suitable for use in a non-linear finite element model, because it may hamper the 

convergence rate of the Newton-Raphson iteration [1,5]. As a result, to make the magnetisation curve 

technically feasible, constraints need also to be added on the derivatives of the perceptron output [4]. 



The optimisation process of the perceptron weights may not converge when directly starting the 

optimisation considering all required constraints on the perceptron output and its derivatives. Therefore, the 

optimisation process is performed in three successive steps: 

 

1. An unconstrained minimisation of E(w); 

2. A constrained minimisation of E(w), requiring the output of the perceptron to be within the uncertainty 

band of the measurement; 

3. A constrained optimisation of E(w) as in the previous step, but with the additional restriction that the 

output of the perceptron must be technically feasible. 

 

Before starting the unconstrained minimisation of E(w), all perceptron weights are initialised to zero. 

The unconstrained minimisation problem is then solved using a Broyden-Fletcher-Goldfarb-Shanno 

(BFGS) Quasi-Newton Line-Search method [3]. The algorithm is terminated when the sum-of-squares error 

varies less than 0.5 % during five successive iterations.  A sufficiently accurate initial approximation for 

the first constrained optimisation step is now determined. 

The function constraints are then added to the minimisation process. These constraints can be computed 

from the relative error on the measurements. This error defines an uncertainty band in the ν - B2 plane 

around each measurement. If this band is defined by the intervals [ ]2
max

2
min BB  and [ ]maxmin νν  , the 

constraints to be supplied are (Fig. 5): 
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This constrained minimisation problem is solved by Sequential Quadratic Programming, in which the 

Hessian of the Lagrangian is updated at each iteration using the BFGS formula. The quadratic subproblem 

at each iteration is solved by the active set method [3]. Like in the previous step, the algorithm is 

terminated when the sum-of-squares error varies less than 0.5 % during five successive iterations. Some 

constraints may still be violated and are transferred to the last optimisation step. 



Now, the perceptron output is within the uncertainty band of the majority of measurements. However, 

directly applying this result in a finite element package can reduce the convergence rate of the Newton-

Raphson algorithm significantly, due to small oscillations in the first derivative. Therefore, some extra 

constraints are added, such that the resulting magnetisation curve is technically feasible [1]. For the 

example studied here, with no data provided in the Rayleigh region of the magnetisation curve, it is at first 

suggested to impose monoticity to the reluctivity. It is also supposed that the low field behaviour is linear, 

although this is only true for a limited class of ferromagnetic materials. For that, the first derivative with 

respect to B2 is set to zero if B equals zero. Moreover, monoticity is imposed to the first derivative with 

respect to B2 over the whole range of the data. The latter is not true for very high field strengths, as the 

reluctivity cannot exceed the reluctivity of air. However, this extra constraint is justified as these high fields 

seldomly occur in practical applications and as this modification significantly improves the convergence 

rate of the Newton-Raphson algorithm. Mathematically, these constraints can be applied by imposing: 
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If the Rayleigh region is known, the first constraint in (11) can be omitted. As it is impossible to impose the 

inequality constraint over the whole domain, a number of uniformly distributed points is chosen in which 

this constraint must be satisfied. The same constrained optimisation method is used as in the previous case. 

However, the algorithm is now terminated once all second derivative constraints and most function 

constraints are satisfied. The latter, because it may happen that some measurements are outliers. 

 

6. Remarks 

The reluctivity varies in magnitude over two decades, which hampers the training of the neural 

networks. The optimisation algorithm converges slowly. To avoid this, the measured data must be pre-

processed. The simplest way to perform this, is normalising the data by subtracting the average value and 

dividing by the deviation. A more sophisticated method is called 'whitening' and takes correlations between 

the data into account [2].  



Here, the data normalisation is combined with a preceding logarithmic transformation of the reluctivity: 
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with µ and σ the average and the standard deviation of the quantity between brackets respectively. The 

network is then trained on the normalised data X** and Y**. Hence, the constraints must also be transformed. 

This is done by applying the chain rule: 
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Due to this transformation, five extra floating point operations have to be performed in order to compute a 

reluctivity for a given squared flux density. However, this is not a disadvantage, as less neurons are 

required for accurately modelling the characteristic.  

The input data are not uniformly distributed over the interval of interest. As a consequence, the 

minimisation of the sum-of-squares error concentrates on intervals in which the density of data points is 

large. This can be avoided by weighting the sum-of-squares error, considering the distribution of the data in 

a histogram. The modified sum-of-squares error then becomes: 
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with ( )nP  the probability of the nth measurement input. 

The neural network approach presented here, provides an alternative to the commonly applied cubic 

splines for modelling magnetisation curves. A comparison of both approaches from a computational point 



of view is presented in [6]. Cubic splines should also be smoothed in order to improve the convergence rate 

of the non-linear iterations. This can e.g. be achieved by the stochastic optimisation method proposed in 

[1]. 

 

7. Network training results 

Fig. 6 compares the optimal solution with the measurements and the solution obtained after the 

unconstrained minimisation, for a perceptron with five neurons. Obviously, the unconstrained minimisation 

converges to the conditional average of the measured reluctivities [2], whereas the constrained 

minimisation also must satisfy the constraints. This is illustrated for higher values of B2. 

The derivative and the second derivative of the output with respect to the input are normalised and 

plotted in Fig. 7. These characteristics prove that the first derivative and the second derivative are always 

positive, as was imposed by the constraints. The smoothness of both curves may be improved by adding 

more constraints to the problem. This slows down the optimisation procedure, but this is a minor problem, 

since it only has to be done once. 

The error evolution of the (normalised) network is plotted in Fig. 8. The constraints increase the 

minimum error slightly. When switching to the second constrained minimisation step, the error almost 

remains the same and the weights are only slightly altered. 

 

8. Influence  of  network  size 

The sum-of-squares error obtained after the unconstrained optimisation phase can be decreased by 

increasing the number of neurons, because more degrees of freedom are involved. However, the better a 

perceptron fits to the exact data, the more curvature it features. One of the easiest ways to avoid those 

overfitted solutions is the permanent monitoring of the sum-of-squares error during training on a 

completely independent data set, called the validation set [2]. The training process is stopped when the 

error on the validation set starts to increase. For perceptrons with less than six neurons, it is observed that 

other stopping criteria determine the end of the unconstrained optimisation phase.  

The influence of the number of neurons on the sum-of-squares error after the constrained optimisation 

phases is plotted in Fig. 9. Overfitted solutions cannot be obtained here, because curvature constraints are 



applied. For a fixed network size, four networks have been separately optimised, each network having a 

different random initial set of weights. A trendline is drawn through the averaged value. It is obvious that 

the error decreases for an increasing number of neurons. Further increasing the network size may lower the 

error slightly. A compromise must be made between this error and the time to compute a network output, as 

eventually the network must be implemented in a numerical simulation package. 

 

9. Computation of an electromagnet 

As an example, the computation of an electromagnet using a perceptron approximation for the BH-

characteristic of the armature is given. The armature is driven into saturation by applying a sufficiently high 

current to the coil. The static non-linear problem is solved by the finite element method.  

Fig. 10a shows the expected solution, for the fully optimised five-neuron perceptron of Fig. 6. In Fig. 

11, the convergence behaviour of the Newton method is plotted for the optimised perceptron and for the 

partially optimised perceptron obtained by replacing the second derivative constraint in (11) by a first 

derivative constraint which must be positive. Obviously, the latter converges slower, because the 

smoothness of the resulting characteristic is smaller in that case. If no constraints are applied, it is possible 

that the Newton method gets trapped in a local minimum, yielding erroneous solutions.   

 

11. Conclusions  

 

A method is described which optimises the weights of a perceptron in order to obtain a technically 

feasible magnetisation curve which approximates the measured data. It is shown that a perceptron with five 

neurons is sufficient to reach this aim. An advantage of using a perceptron is the fact that all its derivatives 

can be calculated analytically. The data are normalised by a logarithmic transformation of the reluctivity. 

Although this implies a few extra floating point operations, it yields a decrease of the required number of 

neurons and it improves the convergence rate of the optimisation algorithm. When the number of neurons is 

small, it is not necessary to monitor the model on an independent validation set. The sum-of-squares error 

of the optimised perceptron decreases for an increasing network size. A compromise has to be made 



between the network size and the time to compute the network output. An example is given to illustrate the 

feasibility of the neural network approximation.  
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Fig.1:  

Measured magnetisation curve of a ferromagnetic material with a carbon content of 0.55 %, in terms of the 

flux density B and the field strength H. 

 

 

 

Fig. 2: 

Measured magnetisation curve of the ferromagnetic material in Fig. 1, in terms of the reluctivity ν and the 

square of the flux density B2. 

 



 

 

Fig. 3: 

Schematic view of a biased one-input one-output two-layer perceptron. 

 

 

 

Fig. 4: 

The sigmoidal activation function. 

 



 

 

Fig. 5: 

Interpretation of the function constraints. 

 

 

 

Fig. 6: 

Comparison of the optimal solution with the measurements and the unconstrained solution. 

 

 

Fig. 7: 

Normalized value of the first and second derivative of the solution. 



 

Fig. 8: 

Evolution of the sum-of-squares error. 

 

Fig. 9: 

Influence of the number of neurons on the sum-of-squares error, for some networks with random initial 

guesses for the weights. 

 

Fig. 10: 

Magnetic field distribution in an electro-magnet, obtained by using a five-neuron (a) optimised and (b) non-

optimised perceptron for the BH-characteristic of the armature. 

 



 

Fig. 11: 

Convergence of the Newton-method, obtained by using a five-neuron partially -optimised fully-optimised 

perceptron for the BH-characteristic of the armature. 

 


