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Abstract— Within the finite element framework, non-linear
magnetic problems are often solved by an iterative line search
strategy. The efforts to achieve convergence concentrate on the
selection of an adequate relaxation factor. The line search is
performed along a direction obtained by solving a linear system
of equations. However, it is not required to compute this interme-
diate solution with a high accuracy, to ensure convergence. This
paper shows how the accuracy of the solver can be modified
at each non-linear iteration, in order to minimize the overall
computation time.

I. INTRODUCTION

NON-LINEAR problems are common in computational
magnetics. When formulated in the finite element frame-

work, they give rise to non-linear systems of equations, of
which the solution is often obtained by an iterative line search
procedure. Each individual cycle essentially consists of two
phases: the solution of a linear system of equations in order
to determine the Newton direction and the line search along
that direction for a better approximation of the solution of
the non-linear problem. For reducing computation time, one
usually considers the second phase [1], [2], [3]. However, it
is not necessary to compute the exact solution of the linear
system to obtain convergence. It is rather recommended to
modify the accuracy of the iterative linear solver at each non-
linear step. This paper discusses how this can be done at best.

II. TEST PROBLEM

The approach to minimize the computational efforts by an
adaptive system tolerance is applied to the simulation of the
short-circuit operation of a 400 kW four-pole induction motor.
The geometry and the computed flux lines are shown in Fig. 1.
The triangular finite element mesh contains 1419 nodes and
2772 elements. The magnetic vector potential is discretized
by first order nodal elements. The non-linear time-harmonic
problem is solved by the Picard-method (successive substitu-
tion). The ILU-preconditioned COCG-algorithm is applied to
solve the associated complex symmetric system of equations
[4]. At each non-linear iteration, the relaxation parameter
is determined by the cubic line search method [3]. For the
analysis, the mathematical software library PETSc (Portable
Extensible Toolkit for Scientific Computing) has been used
[5].
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Fig. 1. The magnetic flux lines in a 400 kW induction motor under short-
circuit operation.

III. FIXED LINEAR SYSTEM TOLERANCE

The solution �� of the linear system at the ��� non-linear
iteration is a direction for the line search algorithm. For
achieving convergence, it is only required that this direction
is descent. This means that a relaxation parameter �� � ��� ��
can be determined such that ����� � ������ � �������,
with �� the ��� non-linear approximation and � theresidual.
The exact solution ��� of the linear system is a quasi-Newton-
direction here, as the Picard approach is used. Reducing the
accuracy of the linear system solver causes a deviation of the
computed direction �� towards the steepest descent direction
[3]. As long as this deviation remains small, the non-linear
convergence rate is hardly affected.

Fig. 2 shows the overall computation time as a function of
the linear system solver relative tolerance �, at two different
saturation levels. The lower curve corresponds to the case with
the smallest current and requires no relaxation, whereas the
upper curve requires a significant relaxation. Irrespective of the
observed oscillations, it is obvious that an optimal tolerance
exists. Moreover, it has a rather high value (� ���).

IV. ADAPTIVE LINEAR SYSTEM TOLERANCE

The norm of the residual, for two different values of �

is plotted in Fig. 3, as a function of the iteration number.
Between � and Æ the system matrix is updated. Hence, the
circles indicate the non-linear residuals �� of the iteration



2

Relative tolerance of the linear system solver

C
om

pu
ta

tio
n

tim
e

[s
]

���� ���� ���� ���� ���
0

15

30

45

60

Fig. 2. The computation time as a function of the relative tolerance of the
linear system solver, at two different saturation levels.

process, whereas the crosses indicate the last residual � �	
���

obtained when solving the system. The upper part of the figure,
which counts for a tolerance � 	 ����, illustrates that the
effort for solving the linear system is high, when compared
to the decrease it yields for the non-linear residual. As a
consequence, the ratio
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������	
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is low. The lower part of the figure, obtained with � 	 ��,
yields a much higher value of this ratio. As the latter converges
faster, it is suggested to increase � if �� is low. However,
if �� is too high, the linear system solver is terminated at a
moment that the non-linear residual could be further decreased.
Therefore, high values of �� suggest a reduction of �.

Next to these observations, the lower part of Fig. 3 reveals
that initially many short non-linear steps are performed. This
increases the ratio of the time for building the linear system
of equations to the time for solving it. Besides the fact that
increasing � gradually transforms the quasi-Newton method in
a steepest descent method having slower convergence rates, it
explains why the computation time increases at even higher
values of � in Fig. 2. As a consequence, it is recommended to
decrease � in an appropriate way if this situation occurs.

V. RESULTS

The computations have been repeated taking the previous
considerations into account. If �� � ���, � is divided by a
factor between 1.0 and 2.0 . If �� � ���, � is multiplied by a
factor such that � cannot exceed 0.9 . The multiplication factors
depend on the value of ������, which will be more thoroughly
discussed in the full paper. Short non-linear steps are penalized
by dividing � by a factor between 1.0 and 2.0 . When initiating
the computations with the same relative tolerances as in Fig. 2,
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Fig. 3. The norm of the linear residual while iterating with a fixed linear
system solver relative tolerance of 0.01 (top) and 0.5 (down) .

the averages of the computation time become 17.0 s and 32.4 s,
with a standard deviation of 0.8 s and 3.0 s respectively.
Compared to these, the minimal computation times in Fig. 2
are 14.1 s and 25.2 s, but their average value is much higher.
This obviously shows the improvement that can be obtained
by modifying the relative tolerance of the linear system solver
at each non-linear iteration.

VI. CONCLUSIONS

The computation time of a non-linear line search strategy
is decreased by modifying the linear system solver relative
tolerance at each new non-linear step. It is discussed which
considerations should be taken into account. By the simulation
of the short-ciruit test of an induction motor, it is illustrated
that this technique yields computation times, which only
slightly depend on the initial linear system solver tolerance.
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