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Solving Nonlinear Magnetic Problems Using Newton
Trust Region Methods

H. Vande Sande, H. De Gersem, F. Henrotte, and K. Hameyer

Abstract—In this paper, a Newton trust region method is
presented as an alternative to the Newton–Raphson method for
solving nonlinear magnetic problems. Instead of underrelaxing
the Newton step in a line search algorithm, the step is determined
by minimizing a local quadratic model of the functional within a
trust region. If the Newton step lies outside the trust region, a step
with a smaller norm and different direction is computed. The size
of the trust region plays a similar role as the relaxation factor in
the line search approach. To ensure that the method converges,
the trust region size is automatically adjusted from one iteration
to the next one, depending on the local accuracy of the quadratic
model. The trust region approach is applied for the simulation of
an 8/6 switched reluctance motor.

Index Terms—Magnetostatics, Newton–Raphson method, non-
linear magnetics, optimization methods.

I. INTRODUCTION

NONLINEAR magnetostatic systems are described by

(1)

with being the vector potential (Vs/m), is the reluctivity
tensor (Am/Vs), and is the applied current density vector
A/m . Equation (1) must be complemented with an appro-

priate gauge and appropriate boundary conditions in order to
determine a unique solution [1].

A magnetostatic problem can be solved by considering its
equivalent variational formulation

(2)

with the functional

(3)

The functional returns a scalar quantity, which is analogous
to the enthalpy in thermodynamics. The first term represents the
magnetic energy in the system. The second term represents the
work done by the exciting currents imposed to the system. By
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discretizing the problem and interpolating the solution over all
elements, (3) transforms into

(4)

with being the vector of unknown nodal or edge values of the
vector potential, is the magnetic energy densityJ/m , and

is the source vector (A) [1]. For magnetic systems with non-
hysteretic ferromagnetic materials,is a nonlinear function of

. This paper discusses methods for minimizing (4) and espe-
cially focuses on the trust region method.

II. UNCONSTRAINEDMINIMIZATION

The direct minimization of (4) is an unconstrained min-
imization problem [2]. Among the gradient-based methods
for solving such problems, two strategies are distinguished
here: the line search methodand the trust region method.
Both start from an initial solution . At each subsequent
nonlinear iteration , a step is determined, for which

. The actual solution is updated from
to .

For the computation of the step , line search and trust
region methods both use alocal quadratic model of
around the nonlinear iterate . The model is defined by
the second-order Taylor series expansion ofaround

with an increment for . Analytical formulas for the gra-
dient and the Hessian of magnetostatic problems are
given in [1]. They are also often referred to as the residual and
the Jacobian, respectively. Line search and trust region methods
basically differ in the way they exploit this quadratic model.

III. L INE SEARCH METHODS

A. Line Search Directions

At the beginning of a new iteration, line search algorithms
compute adescent direction . This is a direction for which
the functional value decreases close to the working point

(6)

A graphical interpretation of the quadratic model (5) of a
function of two independent variables illustrates this condition
(Fig. 1). If the Hessian is positive definite, exhibits
ellipsoidal isolines in a multidimensional parameter space.
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Fig. 1. Graphical interpretation of the local quadratic model, the steepest
descent direction, the Newton direction, the Cauchy step, and the trust region
step for a functionF with two variables.

The steepest descent directionis perpendicular to the isoline
through and is defined by

(7)

On the other hand, theNewton directionis a descent direction
pointing toward the minimum of the quadratic model (Fig. 1)

(8)

Alternatively, the exact Hessian can be replaced by a positive
definite approximation . In magnetostatics, this can be
achieved, e.g., by omitting the nonlinear contribution to the
Jacobian [1]. In that case

(9)

is a descent direction pointing toward the minimum of a mod-
ified quadratic model. This direction is called aquasi-Newton
direction.

B. Newton Line Search Step

The descent condition (6) is a local property. However, if the
quadratic model accurately describes the functional in a suffi-
ciently large neighborhood of , it is expected that

also holds. As this cannot be ensureda priori,
Newton (and quasi-Newton) line search methods proceed by
determining an underrelaxation factor , such that

is true. The new iterate is
then

(10)

with the line search step.

C. Inexact Newton Line Search

Ideally, the underrelaxation factor is such that the new iterate
minimizes along . However, this generally requires

too many evaluations of . Moreover, the convergence of the
line search method can be guaranteed without computing the

exact minimizer. By imposing a sufficient decrease on the func-
tional value and its directional derivative, the so-calledWolfe
conditions, convergence is obtained as well [2]

(11)

(12)

with . Practical values are and
. The sufficient decrease condition(11) ensures that

the functional value decreases from one iteration to the next one.
Thecurvature condition(12) prevents that too small underrelax-
ation factors are selected. Efficient algorithms for determining

employ interpolating polynomials between successive esti-
mates, in order to obtain a maximum decrease with a minimum
number of functional evaluations [3].

D. Practical Newton Line Search Methods

In computational electromagnetics, an underrelaxation factor
is often applied to the Newton step, yielding a so-calledun-

derrelaxed Newton–Raphson method[4]–[6]. Next to the nu-
merical method itself, there are however several user-dependent
factors influencing the convergence of the Newton–Raphson
method, like the geometric description of the model and the
mathematical representation of the data [7].

The Newton direction (8) is only guaranteed to be a descent
direction if the Hessian is positive definite. If the Hessian is not
positive definite, the Newton direction may not be defined or
may not satisfy the descent condition (6). Practical Newton line
search methods can be designed to ensure the descent condition
without losing the second-order information in the Hessian (e.g.,
truncated Newton line search, modified Newton line search) [2].

IV. TRUST REGION METHODS

A. Trust Region Step

In contrast to line search methods, trust region methods
compute the search direction and the underrelaxation factor
simultaneously. Trust region methods define a region around
the iterate within which the quadratic model (5) is assumed
to be an adequate representation of. The quadratic model
may be constructed from the exact Hessian or from a positive
definite approximation of it. In its simplest form, thetrust
region stepis the step which minimizes the quadratic model
in a hypersphere of radius centered at (Fig. 1)

(13)

Fig. 1 illustrates that, with this approach, the decrease of the
functional may be larger than is possible along the Newton di-
rection. Obviously, this depends on the trust region radius.
Methods for solving (13), also known as thetrust region sub-
problem, are discussed later.

B. Controlling the Trust Region Radius

If the trust region radius is sufficiently large, it encloses the
minimum of the quadratic model (5). Hence, the computed step
equals the Newton step (8) or the quasi-Newton step (9). On the
other hand, for small , the trust region step can only realize
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Fig. 2. Basic trust region algorithm.

a limited progress toward the optimal solution. In order to im-
prove the performance of the algorithm, it is therefore necessary
to adjust the trust region radius at each iteration. The adjustment
is based on the ratio of the actual reduction ofto the reduction
predicted by the quadratic model

(14)

There are several strategies for updating the trust region ra-
dius. They all try to keep close to unity while keeping
relatively large [2], [8]. If is small or negative, the local
quadratic model (5) does not accurately approximate the func-
tional within the trust region. In that case, is decreased and
the previously computed step is rejected.

If is close to 1, the local quadratic model seems to be
a reliable representation of the functional. Two cases are then
distinguished. If the computed trust region step lies on the trust
region boundary, i.e., , the trust region prevents a
longer step to be computed and should be increased for the
next iteration. On the other hand, if , the minimum of
the quadratic model lies within the trust region. In that case,
should be pulled toward the Newton step (8) in order to avoid
subsequent rejections in the next iterations.

If the similarity between the quadratic model and the func-
tional is acceptable, e.g., if with typically 0.25
and typically 0.75, the computed step is retained but the trust
region radius is not modified. The basic trust region method de-
scribed here is summarized in the algorithm of Fig. 2.

V. TRUST REGION SUBPROBLEM

A. Cauchy Step

The trust region algorithm has to solve a constrained mini-
mization problem at the beginning of each iteration. It is de-
noted by the trust region subproblem. Similarly to line search
methods, it is not required to compute the exact minimizer of
this problem to ensure convergence. It can be proven [2] that the
reduction of must be at least equal to the reduction obtained
by the Cauchy step, which is the minimizer of the quadratic

Fig. 3. Magnetostatic solution of an 8/6 switched reluctance motor.

model along the steepest descent direction within the trust re-
gion around the current iterate (Fig. 1). The Cauchy stepis
inexpensive to compute as only matrix-vector multiplications
are required [2].

B. Improving on the Cauchy Step

A trust region method using the Cauchy step for updating the
iterates is slowly converging, as the Hessian does not play a role
in the determination of the steepest descent direction. Therefore,
it is imperative to improve on the Cauchy step. A very efficient
method for achieving this is based on the conjugate gradient
(CG) algorithm for solving linear positive definite systems of
equations. It has been developed by Steihaug [9]. The Cauchy
step is computed in the first linear CG iteration. All subsequent
CG iterations result in a trust region step with a larger norm, for
which the quadratic model has a smaller value. Next to the usual
stopping criteria of the CG algorithm, two additional conditions
are built in. The CG algorithm is terminated in the linear
iteration

• if a search direction with a negative or zero curvature
along the Hessian is encountered, i.e.,
, which may occur if the Hessian is not positive definite,

or
• if the step lies outside the trust region boundary, i.e.,

.

VI. I MPLEMENTATION

For the analysis of the trust region method, the mathemat-
ical software libraries PETSc (Portable Extensible Toolkit for
Scientific Computing) and TAO (Toolkit for Advanced Op-
timization) have been used [10], [11]. These packages are
freeware and written in C/C++. They provide a rich envi-
ronment for developing scientific applications in a single or
multiprocessor environment.

VII. A PPLICATION

The trust region method is applied for computing the magne-
tostatic solution of an 8/6 switched reluctance motor (Fig. 3).
For this specific rotor position, two coils are simultaneously ex-
cited by the same current. The trust region method is compared
with the unrelaxed and the relaxed Newton–Raphson method, in
order to demonstrate the functionality of the trust region radius.
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Fig. 4. The 2-norm of the gradient during the nonlinear iterations with the trust
region method (solid), the unrelaxed Newton–Raphson method (dashed) and the
relaxed Newton–Raphson method (dashed-dotted), for the switched reluctance
motor in Fig. 3.

The underrelaxation factor of the relaxed Newton–Raphson
method is computed by successively dividing the Newton
step by two, until the norm of the gradient is smaller than its
predecessor. For the computation of the Newton step, the CG
algorithm with ILU-preconditioning is applied. This allows for
a fair comparison with the trust region method. The stopping
criteria for the linear system solvers have been set to the same
level.

For the three methods, Fig. 4 shows the Euclidean norm
of the gradient as a function of the number of floating point
operations. The trust region radius and the norm of the trust
region step during the iterations are plotted in Fig. 5. Obviously,
except for the first iteration, the unrelaxed Newton method
converges smoothly. The relaxed Newton–Raphson method only
requires underrelaxation in the first two iterations (
and ) and converges smoothly. On the other hand,
the trust region method initially performs many short nonlinear
iterations, before a smooth convergence is observed. The initial
behavior is a direct consequence of the additional stopping
criteria in the algorithm for solving the trust region subproblem.

Fig. 5 illustrates the update algorithm of the trust region
radius, as presented in Fig. 2. The trust region radius starts
decreasing smoothly once the Newton step is located within
the trust region bound. It can be shown that the asymptotic
convergence of the presented Newton trust region method is
quadratic [2].

VIII. C ONCLUSION

The trust region method is an alternative to the relaxed
Newton–Raphson method. The optimal trust region step is
defined as a constrained minimization problem and is ap-
proximately computed by a variant of the conjugate gradient
method. At the end of each nonlinear iteration, the trust region

Fig. 5. The trust region radius (solid) and the 2-norm of the trust region step
(dashed) during the nonlinear iterations, for the switched reluctance motor in
Fig. 3.

radius is automatically adjusted, depending on the accuracy of
the quadratic model. The trust region radius initially controls
the size of the step. Close to the solution, the computed step
is located within the trust region boundary. The trust region
method then behaves like the unrelaxed Newton method,
featuring quadratic asymptotic convergence. The method is
applied for the simulation of an 8/6 switched reluctance motor.
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