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An Algorithm to Construct the Discrete Cohomology
Basis Functions Required for Magnetic Scalar
Potential Formulations Without Cuts

Francois Henrotte and Kay Hameyer

Abstract—Magnetic scalar potential formulations without cuts In the nonconducting region, one has to solve @i~ 0,
require the definition of a set of basis functions for the cohomology curl h = 0, andb = ok with b andh belonging, respectively,

structure of the magnetic field function space. This paper presents q the setB(Q — C) andH (2 — C) defined by
an algorithm to construct such a basis in the general case thanks

to a properly chosen spanning tree. The algorithm is based onthe  B(Q2 — C) = {b € W*(Q - C), (b—1b")-n =0o0nT,}
topological properties of the discrete Whitney complex. It applies HQ-C) = {h c Wl(Q _0), curlh-n = 00ndC,

to static and dynamic problems.

Index Terms—Algorithms, circuits, differential geometry, (h - ho) An=0 oth} : @)
duality, electromagnetic coupling, software design/development, \Whereas divw = 0 can be satisfied without any restriction by
spanning tree, topology. defining the vector potential andb = curl a, the situation is

more complicated for cuk = 0. Inside a small region like a
|. INTRODUCTION ball or a cube, indeed, a curl-free field is always the gradient of

) o a scalar potential, i.eh, = grad w. This is the Poincaré lemma.
I N ORDER to reduce computational costs, many finite-eley; 5 |arger scale however, this might cease to be the general

ment formulations seek to take advantage of the curl-fregpresentation of. In order to characterize what happens when
nature of the field in some region. In particular, magnetic potepassing from the local to the global level, one has to focus on the
tial formulations are very appealing for three-dimensional (3-jomology structuref the functional space’* (2 C) (Fig. 1).
eddy current problems. In the classi¢al w formulation, cuts  Let B! be the set of the gradients defined@n- C and Z*
have to be defined in order to make the potential single-valubd the set of the curl-free fields defined en— C. Both are
in the nonconducting regions. However, the definition of cutgctor spaces. Since curl grdid= 0 Vf, one hasB' c Z" but
can be avoided if special fields are introduced, which formB' # Z' as there might exist fields that areZf but notinB*,
basis for the cohomology structure of the magnetic field funé&®- curl-free ort2 — C' that are not gradient fields. Those fields

tion space, for the geometry under consideration. This pajiF @ssociated with loopsir—C', which link a nonzero current
demonstrates how to do so. flowing in C'. Algebraic topology tells that the vector space con-

taining such fields is defined by the quotigiit = Z'/B!. This
quotient space is also a vector space, but it is of finite dimension
whereasB! andZ' can be of infinite dimension. If the conduc-

Let Q be a connected (two-dimensional (2-D) or 3-D) mest®rs of the problem under consideration form an electrical circuit
andI', andI';, the complementary parts of the boundafy of ~With N linearly independent loops, and if the sections of the
Q, where the field, - n andhg A n, respectively, are known. conductors in which the curren{d, k = 0,..., Nx} can be

LetC' C © be the domain occupied by all the conductors of tH‘g]p%sed inﬁepﬁn?entlyggre Ca,”@éﬁ]? =0,... 7I Nﬁ}' it cag
problem, and)C be the boundary of. Let W?(Q2), p — 0, 1, D€ Shownthat the finite dimension 4! is precisely the number

2, 3 be the set of differential forms of degreelefined on the Ny, of independent loops formed by the conductors. This is the
domainQ De Rham theorem.

The magnetic field in the nonconducting region can then be
In the classicat — w formulation, the fieldt is defined in 9 greg

" ) Sl h represented in the most general manner by
the conducting regiof’ only and the potentiab is defined ev-
erywheret is arbitrarily gauged and cuts have to be adequately
defined in2 — C' in order to make the potential single-valued.
The aim of this paper is to introduceta- w formulation that
does not require the cumbersome definition of cuts.

Il. TOPOLOGICAL STRUCTURE

Ny,
h= Z Ipt* + gradw (2)

k=0

where the so-calletbop fieldst* € H' are computed by im-
posing a unity current in sectioi, and a zero current in all
other sections.

In order to fulfill the boundary conditions, the loop fieltfs
and the scalar potential field must belong, respectively, to the
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1) Ltemp = Qv Ltree = w:

2) Pick any initial noden; in Ly (D) and remove it from
grad ﬂ that list;
— 3) Putall the edges dfig(n;, D) in Liemp;
4) If the list Liemp is Not empty, pick one edgg in Liemp
we W W’ and remove it from that list:
— Ifthe end node:; of ¢; is notin Ly (D):
Fig. 1. Topological structure dfi’t. e add the edgej iN Liree;

* removen; from Ly (D);
* put all the edges ok g(nj, D) iN Liemp;
There i involved here since tHefield b " repeat step 4.

ere is no cut INvolved here since thefie IS aré able to The algorithm stops wheBemp iS empty. The liStL .. con-
represent the nongradient part of the magnetic field in air. T%ns thenVp, — 1 edges ofD that form a spanning tree
potential fieldw is then a simple cqntinu.ous scalar field. The There are two degrees of freedom in this algorithm: tﬁe choice
problem of an overall v forméulatlpn without cu_ts has now of the initial node at step 2 and the choice of the edgkin,,
redyced the computation of the's, simply notedt in th_e_ fol- t step 4. The choice of the initial node does not influence the
lowing. The difficulty arises from the fact that the condition Cur@haracteristics of the spanning tree. If the domain is multiply

;2' " ; i()s%gﬁgoln-grle?edc\fr?igr? Es'nget;?:t /\tr?e:caosgngg g tru%onnected, the algorithm is simply run in each connected part
- P ' 's generally N With each time a new initial node. On the other hand, the choice
boundary condition ort itself is lacking. Moreover, the loop

fied is not unique; it is determined up to the gradient of an | EC08 B SRS B 8 e ee, e e orke
scalar field. like z;ﬁrst in last out (FILO) stack (Fig. 2) and is comparable to a
recursive algorithm. If it is the most formerly inserted edge that
1. SPANNING TREE UNCONSTRAINED CASE is picked out, the algorithm works rather like a first in first out
There exists a large mathematical literature about algebrat@ck (FIFO). With recursive algorithms, one branch of the tree
topology, which is however quite far away from the preoccl@ows as long as possible which results in spanning trees with
pations of the engineers, and somewhat unaccessible to thi&g branches of unequal length. With FIFO stack algorithms,
even though several attempts has been made to make the eg§€rbranches grow together with the same speed. This results in
tial theoretical background available to a larger audience, e letter balanced trees.
[1]-[4].
Like [5] and [6], we wish however, in this paper, to choos8. Algorithm to Compute the Loop Fields
an easier and more pragmatic approach by considering then the unconstrained case, the loop field in the nonconducting
problem directly at the discrete level, in a mesh of Whitneyagion verifies curt = 0. When edge-based Whitney elements
edge elements. As already mentioned, the difficulties appege used, the connectors that describe the interpolated fetl
when paSSing from the local to the gIObaI level. If one nOtiCQﬁe circulations ot a|0ng the edgesb of the mesh’ Sayei- The

that all finite elements are indeed loop-freéhe point is then gitferential property curk = 0 can then be expressed by the
to make the algorithm we are about to describe able, along thgebraic relation

way, to retrieve the topological characteristics of the compute
regions. We will show that the needed information is simply a Z t., =0, Vf; € Lp(D) (4)
few lists of edges. e;€Of,;

As in [7], the method is based on the construction of a span-
ning tree. Le) be a connecteg-mesh (that meansyadimen- whereLg(D) is the list of the facets ab andd is the boundary
sional meshp = 1, 2 or 3). Ap-tree on ap-mesh is a set of operator. The algorithm to compute the loop field is as follows.
edges of th@-mesh that provides a unique path from one node 1) Put all the facets ob in the list Lp(D).
to any other node of thg-mesh. There is no closed loop ina 2) Fix to zero all the circulations along the edges L.ce

tree. (gauge).
3) Choose any facef; in Lr(D).
A. Algorithm to Build a Spanning Tree 4) If all the edges of the facgt are fixed but one, fix the last

Let D be ag-mesh on which a spanning tree is to be built; one in order to verify (4) and remoyg from Ly (D).
can be a part of a bigggrmeshp > q. Firstly, the listZ y (D) 5) Ifthe list Lp(D) is not empty, go to step 3).
of the Np nodes ofD and, for each node € Ly (D), the  The list Lp(D) must usually be run through several times
list of the connected edgdsz (1, D) have to be made out. Thebefore_ making it empty. The. num'ber of iterations is generally
algorithm, wherel;...,, and L. are auxiliary sets of edges, islower if the FIFO stack algorithm is used.
then as follows:

) . ) IV. MINIMIZATION OF THE SUPPORT OF THELOOPFIELD
1A simply connectedegion is a region where any closed path can be con-

tracted to a point without leaving the region. This is a notion floomotopy ~ Generally, the loop field will not extend as far as the external

analysis. Aloop-free regiorf2] is a region where any closed path links zero-cUryyqndaries of the problem. It can be more or less confined in the
rent. This is a notion frorhomologyanalysis, which is, by the way, less restric-

tive than the former [3]. A loop-free region is then by definition a region wherBOI€S t_)etween_the |00p_S that form _the conductors. MorEOVer,_the
scalar potentials are single-valued. It is therefore the notion we need. spanning tree is not unique, even in the presence of constraints.
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Fig. 2. Multiple stack.

Fig. 3. Constrained surfaces.

_ A. Algorithm to Build the Constrained Spanning Tree
This freedom can be turned to good account to reduce the sup-

port of the loop field to a minimum. If a loop-free region tha 9"!6 now has th? elements_ o esta_bhsh the algorithm for
containsC entirely is defined, the loop field can be set to zer uilding the constrained spanning tree in the general case. The

on the surface of that region and need not be computed outSer has to define, for the problem under consideration (Fig. 3),

side it. This minimization may lead to a substantial saving i€ volumes{Vi,i = 1,..., Ny} in which the spanning tree
the number of degrees of freedom needed to represent the |§3st be built, and the constrained surfaces, which are

fields.
{S;,i=1,....,Ns} ={I'y,5,0C, 2,k =1,...,Nxg.}
(6)
Among all the edges connected to any node, the edges belonging
In summary, the loop field must obey the following conto the intersection of some of those sets must be put into the

straints: tree before any edge of the intersecting sets. For that purpose,

curlt =0inQ — C the algorithm works by organizing the edges of the mesh into a

(t—h%) An=0onT, hierarchy. A level of priority calletevelis attributed beforehand

tAn=0o0nS ' to each edge by the following algorithm whefg;, stands for

curlt-n=00ondC : (®)  the set of the edges that belongtg Ls, for the set of the _e_dges

f t=1Iy, k=1,..., Ny that belong t&5; and wherel;, andL andLiem;, are auxiliary
a5, lists of edges.
i . ) . 1) level :== 0, L, := 0, Ln := .
The first one is a volume constraint; the second, third, and 2) For each volumd’;:
: : : i
fourth are surface constraints and the fifth one is a set of global - Attribute the level of prioritylevelto the edges of
curve constraints, which bring into the nonconducting region Lo
the information needed about the currents flowing'irin order L‘j ' I
: ; ® Ltemp ‘= Ly N Ly,,

to ensure that all those constraints are properly considered, the eI I UL i
spanning tree must obey some related constraints which can be . LU o LU n LVJ"
deduced from the rule: n-= &N temp»

V. SPANNING TREE CONSTRAINED CASE

e level + +.
3) Attribute the level of priorityevelto the edges of..
“If one wishes to build a loop field 4) level ++, Ly == 0, L = 0.
on a p-mesh D and if the loop field 5) For each surfac§;:
must obey some constraint on a q-submesh « Attribute the level of prioritylevelto the edges of
D' ¢ D, q < p, the spanning tree built on Ls;;
D must include a spanning tree on D' * Liemp := Lu N Lg;;

* Ly := LyULs,;

* L := La N Liemp;

e level + +.

e6) Attribute the level of prioritylevelto the edges of. .

The algorithm that builds the spanning tree must therefore be
able to ensure that the restrictions of the spanning tree to th
surfaced’,, S, anddC and to the curve®y, are also span-

ning trees themselves for those surfaces and curves. Howeve\r)vh this ori tion | hieved. the algorithm to build
the union of two spanning trees defined independently on two en this prior operation IS achieved, the algorithm to bul

meshes is not, in general, a spanning tree on the union of {Hg_spannmg tree can be run. Itis mainly unchanged in com-

two meshes. A global approach is needed which can be Worl%EH'Szn Witr? th_e uncl?ndstrain_ed ﬁaslg The only dti,fference_iithat
out thanks to the rule: the edge that is picked out in the liBterm, must be one wit

the highest level of priority. For that purpose, the stack structure

of Liemp Must be adapted as shown in Fig. 2. The simple FIFO

“ The spanning tree built on the union stack is replaced by a multiple stack. Each individual stack is
of two meshes D U D' includes a spanning associated with one particular level of priority and they are con-
tree on D and a spanning tree on D" if nected end to end with increasing priority. The multiple stack
it includes a spanning tree on DnD'. works differently for pushing edges into the stack and for pulling
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Fig. 4.

Fig. 5. Constrained surfaces.

them out. The edges are pushed into the individual stacks in

Spanning tree and loop fields in the stator of a permanent magnet mo‘
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Fig. 6. Loop field in an elasticity problem.

The third example (Fig. 6) comes from a formulation of elas-
g;@ty with Whitney forms. In 2-D, the stress can be represented
by a scalar potential. There is no volume load in this case but a
surface load, i.e., a nonhomogeneous Dirichlet boundary condi-
tion, on the upper part of the structurg. The loop field prop-
agates the surface load throughout the structure, which is not
loop-free due to the presence of the hole.

VII. CONCLUSION

The magnetic scalar potential formulations require the defi-
nition of loop fields in the static case as well as in the dynamic
case. This paper has presented a general algorithm to compute
automatically such loop fields thanks to a constrained spanning
tree. Two fundamental rules governing the construction of the
loop fields have been given as well as an algorithm that follows
those rules. The algorithm works without any restriction, pro-
vided the geometry is known. The user just has to indicate the
surfaces on which the loop field is subjected to some constraints.
The algorithm does not require the solution of any system of
8Quations. Although it may seem complicated, it considers the

cordance with their own level of priority but they are pulled ousroblem in the most general case and it can be implemented
as if the whole stack were one single stack. This particular stagkce and for all.

structure ensures that the edge pulled out of the stack at any time

is one with the highest level of priority and therefore that all the

intersections are considered before the intersecting sets.

VI. EXAMPLES

The first example shows the loop fields associated with the

three stator phase currents in a permanent magnet motor,

suming a uniform current density in the slots. Because of the
symmetries, only one tenth of the machine has to be represented

in the model and the moving band technique is used.
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