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An Algorithm to Construct the Discrete Cohomology
Basis Functions Required for Magnetic Scalar

Potential Formulations Without Cuts
François Henrotte and Kay Hameyer

Abstract—Magnetic scalar potential formulations without cuts
require the definition of a set of basis functions for the cohomology
structure of the magnetic field function space. This paper presents
an algorithm to construct such a basis in the general case thanks
to a properly chosen spanning tree. The algorithm is based on the
topological properties of the discrete Whitney complex. It applies
to static and dynamic problems.

Index Terms—Algorithms, circuits, differential geometry,
duality, electromagnetic coupling, software design/development,
spanning tree, topology.

I. INTRODUCTION

I N ORDER to reduce computational costs, many finite-ele-
ment formulations seek to take advantage of the curl-free

nature of the field in some region. In particular, magnetic poten-
tial formulations are very appealing for three-dimensional (3-D)
eddy current problems. In the classical formulation, cuts
have to be defined in order to make the potential single-valued
in the nonconducting regions. However, the definition of cuts
can be avoided if special fields are introduced, which form a
basis for the cohomology structure of the magnetic field func-
tion space, for the geometry under consideration. This paper
demonstrates how to do so.

II. TOPOLOGICAL STRUCTURE

Let be a connected (two-dimensional (2-D) or 3-D) mesh
and and the complementary parts of the boundary of

, where the fields and , respectively, are known.
Let be the domain occupied by all the conductors of the
problem, and be the boundary of . Let , , 1,
2, 3 be the set of differential forms of degreedefined on the
domain .

In the classical formulation, the field is defined in
the conducting region only and the potential is defined ev-
erywhere; is arbitrarily gauged and cuts have to be adequately
defined in in order to make the potential single-valued.
The aim of this paper is to introduce a formulation that
does not require the cumbersome definition of cuts.
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In the nonconducting region, one has to solve div ,
curl , and with and belonging, respectively,
to the sets and defined by

on

curl on

on (1)

Whereas div can be satisfied without any restriction by
defining the vector potential and curl , the situation is
more complicated for curl . Inside a small region like a
ball or a cube, indeed, a curl-free field is always the gradient of
a scalar potential, i.e., . This is the Poincaré lemma.
At a larger scale however, this might cease to be the general
representation of. In order to characterize what happens when
passing from the local to the global level, one has to focus on the
homology structureof the functional space (Fig. 1).

Let be the set of the gradients defined on and
be the set of the curl-free fields defined on . Both are
vector spaces. Since curl grad , one has but

as there might exist fields that are in but not in ,
i.e., curl-free on that are not gradient fields. Those fields
are associated with loops in , which link a nonzero current
flowing in . Algebraic topology tells that the vector space con-
taining such fields is defined by the quotient . This
quotient space is also a vector space, but it is of finite dimension
whereas and can be of infinite dimension. If the conduc-
tors of the problem under consideration form an electrical circuit
with linearly independent loops, and if the sections of the
conductors in which the currents can be
imposed independently are called , it can
be shown that the finite dimension of is precisely the number

of independent loops formed by the conductors. This is the
De Rham theorem.

The magnetic field in the nonconducting region can then be
represented in the most general manner by

(2)

where the so-calledloop fields are computed by im-
posing a unity current in section and a zero current in all
other sections.

In order to fulfill the boundary conditions, the loop fields
and the scalar potential fieldmust belong, respectively, to the
sets and defined by (1) and

on
(3)
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Fig. 1. Topological structure ofW .

There is no cut involved here since thefields are able to
represent the nongradient part of the magnetic field in air. The
potential field is then a simple continuous scalar field. The
problem of an overall formulation without cuts has now
reduced the computation of the’s, simply noted in the fol-
lowing. The difficulty arises from the fact that the condition curl

on in (1) does not imply that on if
is not loop-free, which is generally the case. So, a true

boundary condition on itself is lacking. Moreover, the loop
field is not unique; it is determined up to the gradient of any
scalar field.

III. SPANNING TREE: UNCONSTRAINEDCASE

There exists a large mathematical literature about algebraic
topology, which is however quite far away from the preoccu-
pations of the engineers, and somewhat unaccessible to them,
even though several attempts has been made to make the essen-
tial theoretical background available to a larger audience, e.g.,
[1]–[4].

Like [5] and [6], we wish however, in this paper, to choose
an easier and more pragmatic approach by considering the
problem directly at the discrete level, in a mesh of Whitney
edge elements. As already mentioned, the difficulties appear
when passing from the local to the global level. If one notices
that all finite elements are indeed loop-free,1 the point is then
to make the algorithm we are about to describe able, along the
way, to retrieve the topological characteristics of the computed
regions. We will show that the needed information is simply a
few lists of edges.

As in [7], the method is based on the construction of a span-
ning tree. Let be a connected-mesh (that means a-dimen-
sional mesh, , 2 or 3). A -tree on a -mesh is a set of
edges of the -mesh that provides a unique path from one node
to any other node of the-mesh. There is no closed loop in a
tree.

A. Algorithm to Build a Spanning Tree

Let be a -mesh on which a spanning tree is to be built;
can be a part of a bigger-mesh, . Firstly, the list
of the nodes of and, for each node , the
list of the connected edges have to be made out. The
algorithm, where and are auxiliary sets of edges, is
then as follows:

1A simply connectedregion is a region where any closed path can be con-
tracted to a point without leaving the region. This is a notion fromhomotopy
analysis. Aloop-free region[2] is a region where any closed path links zero-cur-
rent. This is a notion fromhomologyanalysis, which is, by the way, less restric-
tive than the former [3]. A loop-free region is then by definition a region where
scalar potentials are single-valued. It is therefore the notion we need.

1) , ;
2) Pick any initial node in and remove it from

that list;
3) Put all the edges of in ;
4) If the list is not empty, pick one edge in

and remove it from that list:
— If the end node of is not in :

• add the edge in ;
• remove from ;
• put all the edges of in ;
• repeat step 4.

The algorithm stops when is empty. The list con-
tains then edges of that form a spanning tree.

There are two degrees of freedom in this algorithm: the choice
of the initial node at step 2 and the choice of the edge in
at step 4. The choice of the initial node does not influence the
characteristics of the spanning tree. If the domain is multiply
connected, the algorithm is simply run in each connected part
with each time a new initial node. On the other hand, the choice
of the edge at step 4 is of importance. If the edge picked out in

is the last one that has been inserted, the algorithm works
like a first in last out (FILO) stack (Fig. 2) and is comparable to a
recursive algorithm. If it is the most formerly inserted edge that
is picked out, the algorithm works rather like a first in first out
stack (FIFO). With recursive algorithms, one branch of the tree
grows as long as possible which results in spanning trees with
long branches of unequal length. With FIFO stack algorithms,
the branches grow together with the same speed. This results in
better balanced trees.

B. Algorithm to Compute the Loop Fields

In the unconstrained case, the loop field in the nonconducting
region verifies curl . When edge-based Whitney elements
are used, the connectors that describe the interpolated fieldare
the circulations of along the edges of the mesh, say . The
differential property curl can then be expressed by the
algebraic relation

(4)

where is the list of the facets of and is the boundary
operator. The algorithm to compute the loop field is as follows.

1) Put all the facets of in the list .
2) Fix to zero all the circulations along the edges

(gauge).
3) Choose any facet in .
4) If all the edges of the facet are fixed but one, fix the last

one in order to verify (4) and remove from .
5) If the list is not empty, go to step 3).
The list must usually be run through several times

before making it empty. The number of iterations is generally
lower if the FIFO stack algorithm is used.

IV. M INIMIZATION OF THE SUPPORT OF THELOOPFIELD

Generally, the loop field will not extend as far as the external
boundaries of the problem. It can be more or less confined in the
holes between the loops that form the conductors. Moreover, the
spanning tree is not unique, even in the presence of constraints.
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Fig. 2. Multiple stack.

This freedom can be turned to good account to reduce the sup-
port of the loop field to a minimum. If a loop-free region that
contains entirely is defined, the loop field can be set to zero
on the surface of that region and need not be computed out-
side it. This minimization may lead to a substantial saving in
the number of degrees of freedom needed to represent the loop
fields.

V. SPANNING TREE: CONSTRAINED CASE

In summary, the loop field must obey the following con-
straints:

curl in
on

on
curl on

(5)

The first one is a volume constraint; the second, third, and
fourth are surface constraints and the fifth one is a set of global
curve constraints, which bring into the nonconducting region
the information needed about the currents flowing in. In order
to ensure that all those constraints are properly considered, the
spanning tree must obey some related constraints which can be
deduced from the rule:

“ If one wishes to build a loop field
on a -mesh and if the loop field
must obey some constraint on a -submesh

, , the spanning tree built on
must include a spanning tree on .”

The algorithm that builds the spanning tree must therefore be
able to ensure that the restrictions of the spanning tree to the
surfaces , , and and to the curves are also span-
ning trees themselves for those surfaces and curves. However,
the union of two spanning trees defined independently on two
meshes is not, in general, a spanning tree on the union of the
two meshes. A global approach is needed which can be worked
out thanks to the rule:

“ The spanning tree built on the union
of two meshes includes a spanning
tree on and a spanning tree on if
it includes a spanning tree on .”

Fig. 3. Constrained surfaces.

A. Algorithm to Build the Constrained Spanning Tree

One now has the elements to establish the algorithm for
building the constrained spanning tree in the general case. The
user has to define, for the problem under consideration (Fig. 3),
the volumes in which the spanning tree
must be built, and the constrained surfaces, which are

(6)
Among all the edges connected to any node, the edges belonging
to the intersection of some of those sets must be put into the
tree before any edge of the intersecting sets. For that purpose,
the algorithm works by organizing the edges of the mesh into a
hierarchy. A level of priority calledlevelis attributed beforehand
to each edge by the following algorithm where stands for
the set of the edges that belong to, for the set of the edges
that belong to and where , and and are auxiliary
lists of edges.

1) , , .
2) For each volume :

• Attribute the level of prioritylevel to the edges of
,

• ,
• ,
• ,
• .

3) Attribute the level of prioritylevelto the edges of .
4) , , .
5) For each surface :

• Attribute the level of prioritylevel to the edges of
;

• ;
• ;
• ;
• .

6) Attribute the level of prioritylevelto the edges of .

When this prior operation is achieved, the algorithm to build
the spanning tree can be run. It is mainly unchanged in com-
parison with the unconstrained case. The only difference is that
the edge that is picked out in the list must be one with
the highest level of priority. For that purpose, the stack structure
of must be adapted as shown in Fig. 2. The simple FIFO
stack is replaced by a multiple stack. Each individual stack is
associated with one particular level of priority and they are con-
nected end to end with increasing priority. The multiple stack
works differently for pushing edges into the stack and for pulling
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Fig. 4. Spanning tree and loop fields in the stator of a permanent magnet motor.

Fig. 5. Constrained surfaces.

them out. The edges are pushed into the individual stacks in ac-
cordance with their own level of priority but they are pulled out
as if the whole stack were one single stack. This particular stack
structure ensures that the edge pulled out of the stack at any time
is one with the highest level of priority and therefore that all the
intersections are considered before the intersecting sets.

VI. EXAMPLES

The first example shows the loop fields associated with the
three stator phase currents in a permanent magnet motor, as-
suming a uniform current density in the slots. Because of the
symmetries, only one tenth of the machine has to be represented
in the model and the moving band technique is used.

The second example is a simple axisymmetrical coil. In this
case, the surfaces and are identical. Fig. 5 shows the dif-
ferent surfaces that have been indicated to the algorithm.
Several choices of the surfaceare considered in order to show
the minimization of the support of the loop field. Note that the
surface appears as an open surface but it is actually a closed
surface if the symmetries are unfolded.

Fig. 6. Loop field in an elasticity problem.

The third example (Fig. 6) comes from a formulation of elas-
ticity with Whitney forms. In 2-D, the stress can be represented
by a scalar potential. There is no volume load in this case but a
surface load, i.e., a nonhomogeneous Dirichlet boundary condi-
tion, on the upper part of the structure. The loop field prop-
agates the surface load throughout the structure, which is not
loop-free due to the presence of the hole.

VII. CONCLUSION

The magnetic scalar potential formulations require the defi-
nition of loop fields in the static case as well as in the dynamic
case. This paper has presented a general algorithm to compute
automatically such loop fields thanks to a constrained spanning
tree. Two fundamental rules governing the construction of the
loop fields have been given as well as an algorithm that follows
those rules. The algorithm works without any restriction, pro-
vided the geometry is known. The user just has to indicate the
surfaces on which the loop field is subjected to some constraints.
The algorithm does not require the solution of any system of
equations. Although it may seem complicated, it considers the
problem in the most general case and it can be implemented
once and for all.
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