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Finite Element Modeling of an
Electrostatic Painting Device

G. Deliége, F. Henrotte, and K. Hameyer

Abstract—The system of coupled equations describing an elec-
trostatic painting device is solved. The design of an efficient reso-
lution strategy is discussed, and time integration schemes for the
steady-state solution of the convection equation are compared.

Index Terms—Convection, coupled problem, electrostatic
painting, upwinding.

I. INTRODUCTION

A N electrostatic painting device is presented. Its behavior
is modeled by a system of one static elliptic equation for

the electric potential and three transient convection equations
of the charge density due to ions, the concentration of particles,
and the charge density due to painting particles, respectively.
The convection equations require a particular treatment in order
to avoid the oscillations resulting from an inadequate discretiza-
tion of advective terms. These nonlinear relations are strongly
coupled with each other.

In this paper, we leave out the introduction of painting parti-
cles and concentrate on the creation of ions at the cathode and
their drift toward the anode. The system then reduces to one
static elliptic equation and one transient convection equation.
This approach allows us to determine the resolution strategy that
could be applied to the complete system at a lesser computation
cost. In particular, we discuss the choice of a time integration
scheme able to compute the steady-state solution with a limited
number of time steps but, nevertheless, with sufficient accuracy.
We try to demonstrate that although the conservation of charge
is satisfied only in a weak sense, our finite element formulation
is perfectly suited for the resolution of the system as far as the
space and time discretizations are sufficiently fine.

II. DESCRIPTION OF THESYSTEM

The device consists of a set of thin wires parallel to a
grounded iron plate. The wires are brought to a high negative
potential. The resulting electric field, particularly strong around
the wires, causes the acceleration of free electrons that collide
with neutral atoms [1]. If an electron has enough kinetic energy,
the collision leads to the creation of a positive ion and a new
electron that can in its turn interact with another atom. Free
electrons are repelled by the cathode up to a point where the
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strength of the electric field is no longer sufficient to induce
ionization. The electrons then combine with atoms to form
negative ions that drift toward the anode, i.e. the grounded
plate, due to Coulomb forces.

If coating particles are sprayed in the interval between the
wires and the plate, which is filled with negative ions, they pro-
gressively acquire a negative charge and move toward the plate.

III. M ATHEMATICAL MODEL

A. Geometry

We limit the model to a box extending from the middle of a
wire to half the distance between two consecutive wires (see
Fig. 1). This model corresponds to a device with an infinite
number of wires and does not take end effects into account. The
main parameters of the system are given in Table I.

B. Equations

To obtain the distribution of ions and particles, the following
system must be solved [2], [3]:

(1)

(2)

(3)

(4)

(5)

(6)

along with [2]

(7)

(8)

(9)

where and are the ion and particle velocity, respectively,
the ion mobility, the viscosity of air, the charge density

due to the particles, the particle concentration, and, ,
and are, respectively, the charge, the mass, and the radius of
one particle.

In [4], an analysis based on the comparison of one-dimen-
sional solutions and experimental results yields an analytical
expression of the flux of ions created around the cathode as a
function of the electric field and the charge density. Thanks to
this relation, the microscopic air ionization phenomenon, which
occurs in a very thin region around the wire, is removed from
the macroscopic model and replaced by a boundary condition.
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Fig. 1. Schematic representation of the geometry;� and� correspond
to one half of a wire and the plate respectively.

TABLE I
PARAMETERS OF THESYSTEM

IV. FINITE ELEMENT FORMULATION

In the absence of coating particles,and equal zero, and
(1)–(9) reduce to

(10)

(11)

in which a static elliptic equation is coupled to a transient con-
vection equation. We solve (11) for using a time integration
scheme and update thanks to (10) every time step or after a
few steps if the variation of is slow enough.

Equation (10) is easily solved with the finite element method.
Its weak formulation is

(12)

with

(13)

We fix on the wire and the plate according to the values in
Table I and set on the other boundaries.

The convection equation, on the other hand, must be han-
dled more carefully. If the advective term is not discretised ap-
propriately, serious accuracy problems might appear, leading in
some cases to the appearance of nonphysical oscillations. Re-
fining the mesh overcomes the problem at the cost of a higher
number of unknowns. Upwinding techniques are an interesting
alternative: The Galerkin formulation is replaced with, for in-
stance, a streamline upwind Petrov–Galerkin (SUPG) formula-
tion, leaving the number of unknowns constant [5].

Another difficulty comes from the fact that (11), which ex-
presses the conservation of the electric charge, is satisfied only
in a weak sense due to the finite element approach. The total
electric charge of the system is thus not conserved, depending
on the accuracy of the resolution. The error on the total charge

will be used as a global error estimator and as a criterion to com-
pare the accuracy of the time integration schemes.

A. Time Integration Scheme

It is well known that explicit time integration schemes are
only conditionally stable when applied to convection equations,
i.e., they are stable if the Courant number
does not exceed a constant depending on the scheme. The first-
order explicit Euler scheme is unconditionally unstable, but the
condition for the second order Lax–Wendroff scheme combined
with first order finite elements is . This condition
can severely limit the time step and, therefore, considerably
increase the computation time. Ifis evaluated in the vicinity of
the wire, knowing the value of the electric fieldand supposing
that the circumference is discretized with at least 10 elements,
we obtain . This forces us to make several thousands
of iterations, even though we are interested only in the steady
state.

Actually, it has been shown in [6] and [7] that Lax–Wendroff
does not optimally combine with finite elements and that the
third-order Taylor–Galerkin scheme gives more accurate results
with a less severe condition but at the cost of
additional implicit terms in the mass matrix. Therefore, although
Taylor–Galerkin provides very accurate solutions of transient
problems, the limitation on and the fact that the main
advantage of explicit schemes is lost due to the consistent mass
matrix make it ill suited for the computation of steady-state
solutions.

In our case, it is thus preferable to use unconditionally stable
schemes, such as implicit Euler or Crank–Nicolson. To obtain
the corresponding formulations, we start from the Taylor expan-
sion

(14)

and substitute the time derivatives ofthanks to (11). We pre-
multiply by the SUPG weighting functions and integrate by
parts to obtain the weak formulation

(15)
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Fig. 2. Ion current flowing through the wire (in) and the plate (out); the “”
marks the point where the current has reached 99% of its steady-state value.

with

(16)

Concerning the above formulation, we must add the following.

• is the SUPG parameter, depending on the characteristic
size of the element and the velocity according to the
formula

(17)

The formulation without upwinding is obtained by setting
in (15).

• The velocity is equal to . It is thus always
computed with the electric potential at time step, even
when the time scheme is implicit. This simplification is
justified by the fact that varies much more slowly than

.
• The parameter determines the type of the

scheme. The implicit Euler and Crank–Nicolson schemes,
corresponding, respectively, to and , are
stable, whatever the time step.

However, the stability does not ensure the accuracy of the
solution, which depends on the discretization of space and time.
We are therefore going to investigate the influence of the time
step and the mesh on the solution of (12)–(15) and make on basis
thereof a comparison of the schemes corresponding to ,

, and an intermediate value . We pay particular
attention to the conservation of the total charge. Let us define,
therefore, the residual at time

(18)

which quantifies the difference between the charge that has been
gained or lost by the system through its boundaries during the
time interval and the effective variation of the total charge.
We define the relative error as the residual divided by the
total charge at steady state.

Fig. 3. Evolution of the total charge of the system.

Fig. 4. Repartition of the charge density� at steady state, ranging from
�510 Cb=m (black) to0 Cb=m (white).

Fig. 5. Evolution of the relative error of the implicit Euler scheme(� = 1)
when�t ranges from 10�s to 100�s.

V. RESULTS

A. Behavior of the System

We made a first series of computations in order to evaluate
the characteristic time scale of the system as well as to outline
its overall behavior. It appears that the ionization phenomenon
reaches a steady state after 1 ms (see Fig. 2), and after 1.4 ms,
the flux of ions reaching the plate compensates the flux of ions
leaving the wire to within 1%. From that moment on, the total
charge of the system must be constant, as confirmed by Fig. 3.
The charge density at ms is drawn on Fig. 4. In view of
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Fig. 6. Comparison of the relatives error of the time schemes.

Fig. 7. Ion current through the wire for the Crank–Nicolson and the implicit
schemes. The solution for� = 1=2 oscillates strongly around the exact solution.

these results, we have decided to perform all computations up
to 2 ms.

B. Comparison of the Time Schemes

The dependence of the input current on the unknownsand
does not induce strong linearities, and in accordance with our

expectations, the first-order implicit scheme is stable
and converges to the same solution, whatever the time step.
However, the influence of on the conservation of charge is
illustrated on Fig. 5, where the relative error is plotted as a
function of time. The error is maximum for the first steps and
decreases regularly until steady state, where it is close to zero.
Its maximum varies linearly with , meaning we can easily

bring it down to an arbitrary value by choosing the appropriate
time step.

The comparison of the time schemes corresponding to ,
, and is based on the same relative error in-

tegrated in time (see Fig. 6). From the point of view of charge
conservation, the second-order Crank–Nicolson scheme seems
to be more accurate than the other two. However, oscillations
appear in the solution close to the wire when Crank–Nicolson
is used and at a lower level with the scheme (see
Fig. 7). These oscillations remain bounded but propagate to the
whole solution, even if they have little influence on the total
output current and almost no influence at all on the evolution
of the total charge. Actually, it has already been noticed in [6]
that, in spite of its unconditional stability, the Crank–Nicolson
scheme should not be used with a Courant–Friedrichs–Levy
(CFL) number greater than one.

VI. CONCLUSIONS

An electrostatic painting device has been presented. Time
integration schemes have been discussed, and implicit time
schemes have been compared. It appears that the first-order
implicit Euler scheme provides a solution free of oscillations
and satisfactorily accurate: The error on the total charge related
to the weak formulation of the conservation equation is easily
controllable by an appropriate choice of the time step. The
additional computation cost arising from the terms added in the
mass matrix are compensated by the reduction of the number
of steps by a factor of 100.
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