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ABSTRACT. To retain small models, electrostatic and electrokinetic finite element 
formulations are linked with several field-circuit couplings and floating potential constraints. 
The approaches enable convenient simulations of a condenser bushing and a dielectric heating 
device. 
 
INTRODUCTION  

Finite element discretisations are beneficial for models with complicated geometries, non-
linearities and eddy current effects. Full size finite element models of technical devices, 
however, often suffer from unacceptably large simulation times. In this paper, only 
subdomains in which important local effects occur, are discretised by finite elements. Other 
parts of the device can be modelled up to a sufficient accuracy by appropriate boundary 
conditions and circuits coupled to the finite element formulation. The resulting hybrid 
approach is particularly suited for technical modelling and yields small discrete models. The 
shorter computation times allow the models to be embedded in iterative design procedures 
and optimisation routines that inevitably incorporate a large number of finite element 
evaluations. 

 
FLOATING POTENTIAL CONSTRAINTS 

The idea of floating potential constraints is developed for the electrostatic case. The partial 
differential equation ( ) qV =∇ε⋅∇−  with ε  the permittivity, V  the voltage and q  the charge 
density, is discretised on the computational domain Ω  using nodal shape functions 

. The corresponding system of equations is written in tensor notation as )z,y,x(Ni
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with  unknown and  known voltages associated with the mesh vertices. The coefficients 
are 
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The boundary of a perfectly electrically conducting region is under static or quasi-static 

conditions an equipotential surface. The charge is concentrated at the conductor surface. 
Conductors to which a prescribed voltage is assigned, are explicitly described by Dirichlet 
boundary conditions by the -terms. The effect of perfect redistribution of the charge qiquk



within conductors at a floating potential, however, is not satisfactorily represented by the 
finite element model so far. 

A perfectly conducting surface vΓ  can be modelled by a floating potential constraint [2]. 
The shape functions associated with the nodes s z,,1K=  at the conductor surface are 
arranged together into one macro-element [4] (Figure 1): 
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and all individual  are removed from the original set of shape functions. Single 

voltage unknowns  are assigned to the degrees of freedom associated with the macro-
elements. Within the Galerkin approach, each macro-element serves as a test function as well. 
The associated equation k
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qvqvwvw ukfuk −=+  with the coefficients defined as in 
Eq. 2, relates the accumulated charge at the conductor surface to its voltage [1]. Because the 
floating potential unknown is coupled to the unknowns associated with all nodes adjacent to 
the conductor surface, this equation is relatively dense. The coupled system of equations is 
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Dirichlet boundary conditions can be interpreted as a floating potential boundary conditions 
with fixed voltages. Impedance boundary conditions [3] are more general than floating 
potential boundary conditions in that sense that they relax the perfect conducting property. 
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Figure 1. Conductor surface shape function  built by adding all finite element 
shape functions defined for the nodes at the conductor surface 

)z,y,x(Nw
wΓ . The surface shape 

function is 1 at nodes at the surface and vanishes at all other nodes. 
 
APPLICATION OF FLOATING POTENTIAL CONSTRAINTS 

An example of applying floating potential constraints deals with insulators of high-voltage 
conductors for penetrating grounded walls, floors and metal tanks, called bushings [5] 
(Figure 2). They consist of an insulator, mainly porcelain filled with oil, around the high-
voltage conductor. This configuration suffers from locally high electric field strengths that are 
particularly harmful at the triple junction area. This difficulty is reduced by the conductor 
bushing principle. A number of concentric conducting cylinders form a series connection of 
capacitors and redistribute the electric field towards the top of the bushing. Two identical 
bushings, without and with conducting cylinders (Figure 2), are modelled accounting for their 
cylinder symmetric geometry. A voltage of 75 kV is applied to the vertical conductor. The 
bushing is fixed on a transformer tank being at ground potential. 



Floating potential boundary conditions are applied to model the equipotential surfaces of 
the conducting cylinders. To each of the cylinder surfaces, one finite element degree of 
freedom is assigned. The rather big supports of both macro-elements give rise to two dense 
equations in the coupled system of equations. The conducting cylinders push the electric field 
towards the top of the bushing. As a result, the electric field strength diminishes at the 
junction points. Break-through at this crucial zone is prevented. 
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Figure 2. Equipotentials of the voltage in (a) a non-condenser and (b) a condenser bushing. 
 
 
EXTERNAL CIRCUITS 

Electrokinetic formulations are beneficial for finite element models of induction furnaces 
and dielectric heating devices. Here, a time-harmonic formulation based on the electric vector 
potential and the magnetic scalar potential is applied: 
 

( ) ψ∇ωµ=ωµ+×∇ρ×∇ jj TT . (5) 
 
The electric vector potential  is defined by T JT =×∇  with  the current density. The 
magnetic scalar potential  is related to  by 

J
ψ T HT −=ψ∇  with  the magnetic field 

strength.  is the resistivity, µ  the permeability and 
H

ρ ω  the pulsation. In 3D, Eq. 5 is 
preferably discretised by edge elements. Full 3D models, however, are often unnecessarily 
large. The geometry of many devices features a translational or cylindrical symmetry. A finite 
element discretisation of the corresponding cross-section Ω  may be sufficient to accurately 
resolve the current paths in the device. In the cartesian case, ( ) ( z/,0,00,0 l )zT, γ==T  with 

 the length of the model. For cylinder symmetry, the coordinate system (  is used and 
the electric vector potential is 

zl )z,,r θ
( ) ( )0,r/,0,T,0 0 αγ== θT . α  denotes the angular length of the 

cylinder symmetric model and equals in most cases π2 . Where both situations differ from 
each other, this is indicated by superscripts (cart) or (cyll). In both cases, γ  denotes the 
current between a point ( ) or z,y,x ( )z,,r θ  and a reference point at which the constraint 

 is applied. The edge elements 0=T ziw iN e=  or θ= eiw  are introduced. The magnetic 
voltage drop perpendicular to the subdomain 

i N
sΩ  is defined by ψ∇−=Θ zs l  or 

. The discrete form of Eq. 5 reads ψα− r∇=Θs
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The 2D model assumes all Θ  to be known and does not account for more general 

magnetic coupling of the currents. Moreover, the electrical connections of the model are only 
represented by the 

s

qiqk~ γ− -boundary conditions being inconvenient if complicated supply 
schemes are involved. In this paper, the flux closing paths and external flux sources are 
modelled by a magnetic circuit external to the finite element model and an additional electric 
circuit is applied to account for the electrical supply. For numerical reasons, it is 
recommended to couple the finite element model and both circuit models in one system 
matrix. 
 
Magnetic circuit coupling 

For the 2D electrokinetic model, the magnetic flux is perpendicular to the computational 
domain, in the -direction for cartesian, in the z θ -direction for cylinder symmetric models 
(Figure 3). The flux linked with the subdomain sΩ  is 
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sG  denotes the DC conductance of the magnetic path through the finite element model: 
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The last term in Eq. 9 represents the electromagnetic coupling between currents and fluxes. 

The external magnetic equivalent circuit may consist of flux sources , magnetic 
voltage sources , reluctances  and magnetic inductances  (Figure 3). Magnetic 
inductances are lumped parameters modelling lossy effects that may exist outside the finite 
element model, e.g., eddy current losses in ferromagnetic material, electromagnetic shielding 
or mechanical supports. The circuit model is arranged into a system of equations by choosing 
an appropriate set of unknowns and deriving their corresponding equations. If no magnetic 
voltage sources are present in the magnetic circuits, a common modified nodal analysis of the 
circuit part would be sufficient to obtain a coupled system preserving symmetry and sparsity 
of the original finite element system matrix. To allow for arbitrary couplings, a more general 
approach is chosen. The formulation ends up with a mixed description in terms of both 
unknown magnetic voltages and unknown fluxes. 
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Figure 3. Scheme of the electrokinetic field to magnetic circuit coupling (thin lines indicate 

links, thick lines tree branches). 
 
A tree is a set of branches connecting all circuit nodes without forming loops. Participating 

branches are selected in order of priority: magnetic voltage sources, branches coupled to the 
electrokinetic field, reluctances, magnetic inductances and flux sources. The non-selected 
branches are called links and form the co-tree. A cut-set is a set of branches that by removal 
would give rise to two distinct circuit parts. Each tree branch can be completed to a 
fundamental cut-set by selecting a number of links. A loop is a closed path through the circuit. 
A fundamental loop consists of one link and a set of tree branches. All magnetic voltage and 
flux sources are supposed to belong to the tree and co-tree respectively. If not, Kirchhoff’s 
voltage law has to be checked for each fundamental loop associated with a magnetic voltage 
source link and Kirchhoff’s current law has to be verified for each fundamental cut-set 
associated with a flux source tree branch. If the tests fail, the circuit is not solvable, otherwise, 
the superfluous sources are discarded. 

The tree defines a partitioning of the circuit allowing for a convenient formulation of the 
field-circuit coupled problem. The tree branches and links are indicated by the subscripts “tr” 
and “ln” respectively. The formulation associates magnetic voltages trΘ  to the tree branches 
and fluxes φ  to the links. For the independent sources, denoted by an additional subscript 
“&”, the values Θ  and φ  are known in advance. The application of Kirchhoff’s laws 
to the fundamental cut-sets and loops leads to 

ln
&tr ln&

 
0DD ln&ln&,trlnln,trtr =φ+φ+φ  ; (11) 

0BB &tr&trln,trtrln,ln =Θ+Θ+Θ  . (12) 
 
D  and  are fundamental cut-set and loop matrices. They collect the incidences 0, 1 and –1 
between the branches of the fundamental cut-sets and loops. It is assumed that all coupled 
branches are part of the tree. If not, the more elaborated version of this approach described in 
[7] has to be applied. The priorities applied while tracing the tree ensure that the relations 
between the magnetic voltages and the fluxes of the individual branches can be written as 

B

 
jj,trtrtrtr gG γ+Θ=φ  (13) 

lnlnlnlnln Lj φω+φΛ=Θ  (14) 
 



Here,  denotes the conductances of the reluctance tree branches and the branches coupled 
to the electrokinetic finite element model. 

trG
lnΛ  and lnL  represent the reluctances and 

magnetic inductances of the links. The coupled system of equations is 
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The property  of circuit theory and the application of an appropriate scaling 

by  symmetrises the external circuit equations with respect to the finite element equations. 
Also, the coupling mechanism preserves the sparsity of the original finite element system. 

T
trln,ln,tr BD −=

ωj

 
Electric circuit coupling 

For many technical devices, the supply and the load can not be simulated independently 
from each other. For some parts of the electric model, e.g. the electric supply and the 
resonating circuit, a circuit model is suffiently accurate whereas, in most cases, the load 
requires a much finer discretisation. The boundary of the electrokinetic finite element model 
in Figure 4a consists of three current walls, 0Γ , 1Γ  and 2Γ , and three current gates 0Ξ , 1Ξ  
and . The uniqueness of the electric vector potential solution is ensured by setting the 
potential zero at one reference current wall per connected finite element domain (

2Ξ
0Γ  in 

Figure 4a). 
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Figure 4. Electrokinetic finite element model coupled to an electrical circuit (thin lines 
indicate links, thick lines tree branches). 

 
The current leaving the finite element domain Ω  through the current gate  is vΞ

 
v1vvI γ−γ= +  (16) 

 
Each of the current walls except the reference current wall, is represented by an electric 
conductor in the external magnetic circuit (Figure 4b). To each electric conductor, the current 

vvI γ=  is assigned. Eq. 16 is then automatically satisfied by circuit topology. A surface 
shape function is associated with each current wall (Figure 1). Hence, each current wall vΓ  



behaves as a floating potential boundary with the unknown potential vγ . Within the Galerkin 
weighted residual approach, the flux wall shape functions except the one associated with the 
reference wall, are added to the set of test functions. The weak formulation of Eq. 5 
corresponding to the test function  is vN
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The boundary integral term satisfies 
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with  the voltage drop between two successive current gates vV∆ vΞ  and Ξ . v

The currents through the current gates are related to the electric vector potentials at the 
current walls. The treatment of the remaining part of the circuit is similar as in the previous 
section. The fundamental loop and cut-set matrices 

 
trln,B~ , &trln,B~ , ln,tr  and D ln&,tr

~  are 
built. Unknown voltage drops  are assigned to the independent tree branches and 
unknown currents I  to the independent links. The Kirchhoff current and voltage laws are 
expressed for the corresponding fundamental cut-sets and loops. The coupled system of 
equations is  

ln
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with  and  the admittances and impedances of the tree branches and the links. trY lnZ
 
APPLICATION OF EXTERNAL CIRCUIT COUPLING 

A dielectric heating device is considered as an example [9] (Figure 5). A cylindrical 
dielectricum is placed between two circular electrodes. Both dielectric and conductive heating 
effects are considered. The combination of conductive and dielectric effects involves a 
complex-valued resistivity 

 

ωε+σ
=ρ

j
1  (20) 

 
in Eq. 5. If the geometrical dimensions exceed the wave length, wave phenomena are 
observed. Geometry and excitation allow for an axisymmetric model. The magnetic circuit 
applies the short-circuit connection of all magnetic paths. The heating device is excited by an 
electric circuit containing a voltage source, a resistor and a resonant circuit. 
 
CONCLUSIONS 

Floating potential constraints and field-circuit couplings enable efficient finite element 
models for electrotechnical devices. The models of a condenser bushing and a dielectric 
heater focus on the application of these techniques to electrostatic and electrokinetic 
formulations. 



electrode 

R 
L   

 

~ C U magnetic
short-circuit
connection

external electric circuit 

dielectricum 
line of symmetry 

 

Figure 5. Cylinder symmetric electrokinetic finite element model of a dielectric heating 
device coupled to an external magnetic and electric circuit. 
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