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Abstract: In electric drivetrains, the traction machines are often coupled to a gear transmission. For
the noise and vibration analysis of such systems, linearised system models in the frequency domain
are commonly used. In this paper, a system approach in the time domain is introduced, which gives
the advantage of analysing the transient behaviour of an electric drivetrain. The focus in this paper is
on the dynamic gear model. Finally, the modelling approach is applied to an exemplary drivetrain,
and the results are discussed.

Keywords: system model; structural dynamics; multibody simulation; transient electrical machine
model; permanent magnet synchronous machine; induction machine; dynamic gear forces; plane-
tary gear

1. Introduction

For the consideration of local loads and acoustics in electric vehicle drivetrains, it is
not sufficient to consider the components, such as the motor and gearbox, separately. Due
to the interactions of the individual components on the system level, structural dynamic
load peaks can occur in combination with the natural oscillation behaviour. Furthermore,
the natural frequencies of the coupled system can change when compared to a separate
analysis of the components. Consequently, a system approach is essential for mechanical
load and noise, vibration, and harshness (NVH) analyses of such systems.

In recent studies, system models for NVH analysis have been frequently discussed,
e.g., in [1–3]. Due to the complexity of such system models, simplifications are usually
made. In [1], a linearised system approach around a particular operating point was pre-
sented in the frequency domain. The electromagnetic forces of a machine were calculated
using analytic equations, and the gear excitations were modelled by a load-dependent
transmission error formulation [1]. The system model described in [3] used an interpolation
approach in the electromagnetic force calculation to reduce the model size. By using this
model, a stationary linear interpolation of the resulting force harmonics between different
rotational speeds was performed, which was then mapped to a structural dynamic finite
element model (FEM) in the frequency domain. In [2], a system model was introduced,
where an electromagnetic force model was coupled in the frequency domain to an elastic
multi-body simulation (MBS) of a drivetrain. The MBS was solved in the time domain,
thus allowing, for instance, the modelling of the non-linear gear dynamics and non-linear
bearing characteristics.

The purpose of the models described above is an efficient noise prediction and vibra-
tion analysis of the drivetrain. However, possible interactions due to the coupling in the
frequency domain of the electric machine with the mechanical system are neglected. In all
model descriptions, the feedback of the structural dynamics to the electrical machine and
its control is not considered.
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In this paper, a system model in the time domain is proposed, which allows the
analysis of not only the steady-state operating points, but also transient load changes,
which can occur, e.g., in situations of driving a vehicle. Therefore, the transient behaviour
of an electric machine with an electrical supply system and digital control is modelled using
an extended two-axis (dq) model according to [4]. This approach considers, for instance,
slotting effects, non-ideal sinusoidal currents due to power electronics and digital control,
and non-linearities of the electric machines. For transmission gears, different excitation
mechanisms, such as parametric, impulse, and geometric excitations, are described in the
literature [5,6]. The models for describing those mechanisms’ operational point dependence
yield non-linear differential equations [5]. The suggested system model in the time domain
allows a consideration of these effects without any operating point linearisation, and
therefore, the dynamic gear mesh interaction with the electric machine can be analysed.

The paper is structured as follows. First, a general overview of structural dynamic
modelling approaches is given and a particular approach is chosen. In the second step, the
excitation mechanisms of transmission gears are summarised and a dynamic gear model is
selected. Then, the transient electric machine model used is briefly described. Finally, the
modelling domains are coupled to a system model, which is then applied to an exemplary
drivetrain, and the results are discussed.

2. Modelling the Structural Dynamics of Electric Drivetrains

The structural dynamic behaviour of drivetrains can be described with various mathe-
matical models. According to [7], these models can be divided into their typical fields of
application, as shown in Figure 1. The classification criteria are the system expansion, the
complexity, and the frequency range.

For simple systems consisting of basic geometries, the component loads and vibrations
can be described with analytical formulas, independently of the frequency range and
the system extension. For more complicated geometries, these analytical formulas are
not available.

In the lower-frequency range, simulations with multi-body systems (MBSs) offer the
opportunity to analyse the vibrational behaviour of large and complicated systems. Here,
individual components of the system are modelled by rigid bodies that can be linked with
each other and the environment using so-called joint and force elements. Information
is obtained about the joint and coupling forces as well as the motion quantities of the
individual bodies. For higher frequencies, the assumption that bodies behave rigidly is
no longer permissible, since the elastic deformation and the inherent behaviour of the
individual bodies are essential.
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Figure 1. Common simulation approaches and their typical areas of application according to [7].
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The methods of flexible multi-body systems extend the valid frequency range of MBSs
by considering these elastic deformations of individual bodies [8]. In order to map all of
the elastic properties of the system, the finite element method (FEM) is used.

The number of degrees of freedom in the FEM is larger compared to MBSs, which
leads to a higher computational effort and limits the applicability with regard to the system
size [7]. If one is only interested in the acoustic radiation behaviour of a structure, the
model of the boundary element theory (BEM) offers an efficient approach.

In the high-frequency range, the mode density increases, i.e., the number of natural
oscillations per frequency interval, which makes the calculation of the individual natural
oscillations increasingly difficult [7]. Statistical energy analysis (SEA) is an approach for
efficiently generating statements about the structural dynamic behaviour in this area. For
use in a system model that considers the structural dynamic interactions, in this paper, the
multi-body system approach is chosen. As described later, it can model the non-linearities
of a dynamic gear transmission within a force element. The relatively low number of
degrees of freedom and, consequently, the lower computational effort allow an analysis
and coupling in the time domain. This makes the method suitable for complex systems,
such as electric drivetrains.

2.1. Gear Excitations

The dynamic forces in gearboxes that lead to vibrations are decisively determined by
the tooth engagement of the gears. According to [5], excitation mechanisms in gears can be
divided according to their excitation characteristics into the groups of parameter excitation,
impulse excitation, and geometric excitation.

The parameter excitation model describes the force that arises through temporal
changes in the system parameters for damping and stiffness. Such changes are mainly
caused by the stiffness of the teeth, which depends on the angle of engagement.

According to [5], under certain conditions and under load, the meshing teeth can
come in contact with the next unloaded tooth, resulting in an impulsive force. Furthermore,
it has been pointed out that these non-ideal contact conditions during meshing can cause
tooth flank damage during operation and should, therefore, not occur if a gear unit is
carefully designed [5].

The geometric excitation model describes the force when rolling on a surface that is
not ideally flat. If a simple single-mass oscillator is considered, this excitation describes a
time-varying path s(t) at the base of an oscillator, through which a force is generated. In
gear meshing, this results from manufacturing deviations and tooth flank modifications
when the involute is rolled off [5].

When considering a gearbox under load, the geometrical excitation can be neglected
when compared to the parameter excitation [5]. In addition to the excitation mechanisms
presented, the authors of [5] described the frictional force excitation and the excitation due
to tilting moments. These can be modelled as additional force excitations. The frictional
force excitation in tooth contact has a significantly lower amplitude than the normal tooth
force due to the friction coefficient and will, therefore, not be regarded in this paper.
The tilting moments are automatically considered if the tooth contact is modelled by a
three-dimensional simulation model with all six degrees of freedom [5].

Due to the circumstances described above, the parameter excitation is identified as
the main vibration source of a gear under load and is, therefore, considered in more detail
in the next section.

2.2. Dynamic Gear Transmission

In order to model the vibration behaviour and the excitations of a gearbox, various
model approaches have been described in the literature [5,6]. In [6], a simple torsional
vibration model of an unbounded cylindrical gear pair with the two rotational angles of
the gear wheels as the degrees of freedom, ϕ1 and ϕ2, was described. This model is shown
in Figure 2. The parameter excitation of the gear mesh is represented by the force elements
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of the variable spring c(ϕ(t)) and damper k(ϕ(t)), which are oriented in the direction of
the line of contact. The geometric excitation can be modelled using a path source s(ϕ(t)).

c(ϕ(t))

k(ϕ(t))

s(ϕ(t))

rb2

rb1

M2(t)

M1(t)

ϕ2

J1 J2

ϕ1

Figure 2. Torsional vibration model with two degrees of freedom [6].

Using the moment of inertia J around the individual rotational axis of the gear wheels
and the base circle rb, the equation of motion for the first gear wheel can be set up [6]:

M1(t) = J1
d2

dt2 ϕ1 + k(ϕ1(t))[r2
b1

d
dt

ϕ1 + rb1rb2
d
dt

ϕ2 + rb1
d
dt

s(ϕ1(t))]

+ c(ϕ1(t))[r2
b1 ϕ1 + rb1rb2 ϕ2 + rb1s(ϕ1(t))].

(1)

The equation of motion for the second gear wheel follows in the same way [6]. For
a helical gear, the torque Mi(t) acting on the two gear wheels can be expressed by the
tangential force Ft on the base circle rb or by the normal tooth force FN, as shown in
Figure 3:

Mi(t) = Fti(t) · rbi
= FNi cos(β) cos(αn) · rbi, i = {1, 2}. (2)

transverse
section

normal section

0z

0x 0y

1x 1z

2x

2y
β

β

αn

Ft

Fa Fn

FnFr

FN

1x 1y

Figure 3. Tooth forces with extension of the coordinate systems used.

Considering the geometrical relations of the gear forces shown in Figure 3, it can be
seen that the normal tooth force FN is composed of the tangential force Ft, the axial force Fa,
and the radial force Fr with helix angle β and normal contact angle αn. Mathematically, the
connection of the forces can be described by a coordinate transformation from the global
coordinate system Index 0 of the gear wheel to the coordinate system Index 2 in the normal
section [6].

0~F = 01S · 12S · 2~F (3)
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In (3) the rotation matrix 01S results from the elementary rotation matrix by rotating
−β around the 0y axis. Furthermore, 12S is obtained from the elementary rotation matrix
by rotating +αn around the 1z axis.

The tangential, radial, and axial force can also be determined from the tooth normal
force by inversion of (3):

2~F = 01S
−1 · 12S

−1 · 0~F = 01S
T · 12S

T · 0~F. (4)

As described in the previous section, the gear excitation forces due to friction are ne-
glected. Therefore, the three-dimensional tooth force vector 0~F = [Ft Fr Fa]T in the global
coordinate system can be represented in the local coordinate system by an one-dimensional
force, the normal tooth force FN, with 2~F = [FN 0 0]T . This force description in (4) en-
ables an implementation in a multi-body system environment by a one-dimensional force
element using a standard variable spring and damper in this local coordinate system [6].
This modular implementation, as suggested in [6], is used for the gear modelling in the
following. It allows the development of complicated dynamic gear models with different
gear stages within an MBS environment.

3. Modelling the Transient Behaviour of Electric Machines

In order to analyse the interactions between a machine, the power electronics, the
digital control, and the mechanical system, a transient machine model approach was used,
as suggested in [4]. As described in [4], a voltage-driven machine model was used to
model the dynamic behaviour of the machine. This model approach gives the opportunity
to consider any voltage source u(t). Thereby, non-ideal sinusoidal voltages of the power
electronics and the digital control strategy can be considered. Figure 4 gives an overview
of the schematic model structure.

operating point
dependent

electric parameters

operating point
dependent

electromagnetic forces

transient
machine model

(edq-model)

power electronics
and digital control

structual dynamic drive
train model

E(id, iq, γ)

u(t)

i(t)

M(t)

F(t)

γ(t)

F(id, iq, γ)

Figure 4. Schematic structure of the extended dq-model (edq-model) according to [4].

The central component of the model is an extended formulation of the voltage equation
in the dq axis coordinate system of an electric machine, which allows the inclusion of
saturation, cross-coupling, and slotting effects [4]. The interactions between the electric
machine model and a mechanical model can be considered through the feedback of the
actual rotor angle γ(t). The fundamental voltage equation of a three-phase electric machine
serves as a starting point:

~u = R~i +
d
dt

ψ, (5)

where ~u describes the vector of the three phase voltages, R is the ohmic resistance matrix,~i
is the vector of the three phase currents, and ψ is the matrix of the magnetic flux linkage.
Using the commonly known dq-transformation from, e.g., [9], the stationary reference
frame of the three phase quantities is transformed into a rotating reference frame of
two phase quantities. From this follows the the fundamental voltage equation in dq axis
coordinates in tensor notation [10]:

~udq0 =Rdq0~idq0 + ωel ALdq0~idq0 + (
d
dt

Ldq0)~idq0 + Ldq0(
d
dt
~idq0) + ωel Aψf,dq0 +

d
dt

ψf,dq0, (6)
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with

A =

0 −1 0
1 0 0
0 0 0

. (7)

Rdq0 is the ohmic resistance matrix,~idq0 is the vector of the phase currents, ωel is the
electrical frequency, Ldq0 is the operating-point-dependent inductance matrix, and ψf,dq0 is
the operating-point-dependent excitation flux linkage.

As described in [10], Equation (6) is transformed into partial differential equations
through the use of the total derivative, and the equations are solved according to the
respective current derivations. Hence, the partial derivatives can be calculated in advance
and do not have to be solved in the system simulation itself. The machine parameters Ldq0

and ψf,dq0 are modelled in this paper as a function of the machine currents~idq0 and the rotor
angle γ. In order to determine these parameter dependencies, a series of electromagnetic
finite element simulations are performed, which extract the described parameters for each
possible operating point by varying id, iq, and the rotor angle γ.

The same approach is used to extract the electromagnetic forces F(id, iq, γ). Together
with the supply voltage u(t) from a power electronics model, the extended machine model
calculates the resulting transient currents, i(t) and forces F(t), and the torque M(t).

4. The Coupled Transient System Model Approach

In order to analyse the transient behaviour of a drivetrain system, the model domains
described above must be coupled to an overall system model. This is done on an exemplary
drivetrain, the “KinelectricDrive”, which will be presented in the following section.

4.1. The Exemplary Drivetrain

The “KinelectricDrive” is a kinetic–electric power train concept for small vehicles [11].
The name “KineletricDrive” stands for a kinetic–electric drive system that combines the
potential of kinetic and electrical energy storage systems on a 48 V basis in one system
for automotive applications. The power train and its integration into the vehicle drive are
shown schematically in Figure 5.

The central component of the drive system is a high-speed induction machine (IM)
with a coupled flywheel. The IM is operated in a technical vacuum to reduce drag losses.
In order to realise a maximum short-term mechanical power of the motor of 15 kW in
combination with the kinetic energy storage of the flywheel inertia, a maximum speed of
up to 45,000 rpm is achieved.
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Figure 5. Schematic layout of the “KinelectricDrive” according to [11].

In order to decouple the flywheel speed from the powertrain output speed, an electric
infinite variable transmission (eIVT) is employed. It consists of a helical planetary gear
set where the ring is powered by a permanent magnet synchronous machine (PMSM).
By controlling the ring torque of the planetary gear set together with a speed-controlled
machine on the sun gear, the output power at the carrier can be controlled independently
of the flywheel speed and its kinetic energy.
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4.2. System Model of the “KinelectricDrive”

For the development of a multi-physical transient system model of the “Kinelec-
tricDrive”, the modelling environment of MATLAB Simulink with the extension toolbox
Simscape Multibody was chosen. The focus of this model is on analysing the interactions
of the two electrical machines with the rotor dynamics of the drivetrain. Therefore, both
machines, the gearbox with the machines’ rotors, and the output shaft were modelled in
Simulink. The model structure is shown in Figure 6.

transient PMSM-Model

transient
edq-model

power
electronics

digital
control

electromagnetic
forces

MIM(t) ϕIM(t)

MPMSM(t) ϕPMSN(t)

transient IM-Model

fundamental
wave model

flux
model

power
electronics

digital
control

Multi-Body Simulation

Mtarget(t)

ϕCarrier(t)

MCarrier(t)

ntarget(t)

Figure 6. Schematic structure of the proposed system model.

The central component of the system model was the MBS of all rotating components
of the “KinelectricDrive”. The rotor of the PMSM at the ring, the drive at the planet
carrier with the supported planets, the sun wheel with the flywheel, and the rotor of the
high-speed IM were modelled as rigid bodies. All bearings were assumed to be ideally
rigid and, thus, offered only one rotational degree of freedom. For the consideration of the
dynamic gearing forces, as described in Section 2.2, the force element was implemented
and extended for use in a planetary gear, as described in the next section.

Table 1 shows selected resulting mechanical parameters of rigid bodies modelled in
the MBS. When comparing the mass and inertia characteristics of the rotor of the high-
speed IM to those of the rotor of the PMSM in Table 1, it can be seen that the high-speed
machine has approximately twice the inertia of the PMSM due to the coupled flywheel.
Furthermore, due to the larger ratio of the planetary gearbox of i12 = −5, the PMSM is
designed for a nominal torque that is approximately five times greater than the torque of
the IM. Due to these two facts, it is assumed in this paper that the harmonic torques of the
induction machine do not contribute significantly to the structural dynamic response of the
system. Therefore, a fundamental wave model of the IM was employed as described in [9].
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This model was set up together with a field-oriented control and an associated flux model,
super-ordinated speed control, and power electronics model.

Table 1. Mechanical parameters of modelled bodies.

Component Mass m in kg Moment of Inertia Jz around the
Main Axis of Rotation in kgm2

Rotor of high-speed induction
machine (IM) with coupled flywheel 10.3 32.80 × 10−3

Planet gear wheel 0.1 0.03 × 10−3

Planet carrier with outputshaft 1.0 1.03 × 10−3

Rotor of permanent magnet
synchronous machine (PMSM) 5.0 16.79 × 10−3

The PMSM at the ring gear was modelled by using the previously described extended
transient dq model, which was parametrised by an electromagnetic FEM. The FEM was
solved for a total of 30 id, 30 iq current combinations, and 60 rotor positions with a me-
chanical resolution of 0.1 degrees. Figure 7a shows the absolute value of the resulting
normalised torque for a current in the q-axis of 10% of the maximum value versus the
normalised current in the d-axis and the mechanical rotor angle. The slotting effects and
saturation of the machines are visible. Figure 7b shows the Fourier decomposition of the
resultant torque versus one mechanical revolution for the same q-current component of
10% of the maximum value and a d-current component of 1% of the maximum value.

(a)
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Figure 7. Results of the electromagnetic finite element model: (a) Synchronous machine torque as a function of the d-current
component and rotor angle; (b) Fourier decomposition of the synchronous machine torque for one mechanical rotation.

According to [12], the fundamental ordinal number of the stator slot cogging torque
for a three-phase machine with a fractional winding can be determined in a simplified
manner according to νc = N · nq from the truncated denominator nq of the number of slots
per pole per phase q and the number of stator slots N. In the case of the machine under
consideration, the number of slots per pole per phase is q = 0.4, and therefore, the truncated
denominator of nq = 5. With the number of stator slots of N = 24, the fundamental ordinal
number of the stator slot cogging torque is νc = 24 × 5 = 120. This ordinal number is visible
in the Fourier decomposition of the results, which confirms the results of the finite element
model used. The power electronics and the influence of non-ideal sinusoidal currents are
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not considered in this work. A standard digital control structure is modelled in the form of
a torque control.

As the input variables for the MBS model, the transient torques M(t) of the two
machines are transferred. By solving the non-linear equations of motion within the model,
the resulting movements ϕ(t) are transferred back to the two machine models. This
particular model structure enables the consideration of the transient dynamic behaviour
on a system level. The output shaft is modelled in the context of this paper by means of a
motion target, whereby the resulting torque at the output can be determined within the
MBS model.

4.3. Dynamic Planetary Gear Model

In order to model the dynamic gear forces of the planetary gear, a force element in
Simscape Multibody was developed according to the approach described in Section 2.2.
Within the element, the resulting bearing forces of the planet wheels were calculated so
that the resulting torque at the carrier could be evaluated.

Within the tooth transformation inside the force element, the coordinate transforma-
tion in (3) is used to transform the three-dimensional forces in the global system of the
planet wheel to the normal section of the gear tooth contact. The reaction forces due to
the parameter excitation are transformed back to the global system of the planet wheel
according to (4). The coupling is then realised in the normal section of the gear tooth
contact using a one-dimensional variable string and a viscous damper.

For the parametrisation of the model, the torque and angle-dependent gear stiffness of
the gear pair are required. Such data can be obtained through a gear mesh contact analysis.

The resulting relative contact stiffness, e.g., between the sun and planet gear, for the
“KinelectricDrive” is shown in Figure 8. The resulting load and position dependence of
the stiffness due to the changing meshing conditions in the tooth contact is visible. This
dependency is considered using a two-dimensional look-up table, which is interpolated
linearly between the calculated stiffness curves.

0 1 2 3 4
1

2

3

4

5

6

Figure 8. Gear mesh stiffness of the sun and planet wheels.

In addition to the tooth contact stiffness, the damping constant k is required to describe
the dynamics of the tooth contact. In this paper, the damping factor, which allows a calcula-
tion of the damping constant, was chosen to be D = 0.05. It is recommended to parametrise
the developed model, particularly the damping factor, using measurement data.

Modelling all three planets as single bodies enables the analysis of the influences of
an unequal load distribution between the planets on the excitation behaviour.
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5. Results

In this section, selected results of the system model of the “KinelectricDrive” are
discussed. Since the entire drivetrain is not modelled in the developed model, but only the
“KinelectricDrive” itself, the output speed is set to zero for the following analysis. Thus,
only one power flow between the two machines is considered in the following analysis.

A speed-controlled start-up of the IM under load was performed. The target speed
value of the IM was ramped up using a constant slope of 2300 rpm/s. The target speed of
the IM was 12,000 rpm. The target of the torque load of the PMSM was controlled by an
s-function. During the start-up, a maximum torque of the IM of 10.5 Nm was reached. The
stationary torque of 10 Nm of the PMSM was obtained after a time of 0.2 s.

The implementation and solution of the modelling approach proposed in the paper
led to a stiff numerical problem. For the solution of the model, a variable step solver,
ode23tb from MATLAB Simulink, was selected. For a convenient evaluation of the results,
the numerical values were sampled using a constant sampling frequency of fs = 80 kHz.
To reduce aliasing effects, an anti-aliasing filter in the form of a lowpass Butterworth filter
was employed.

In the first step, the system was modelled with the standard common gear constraint
from the Simscape Multibody library with a stationary gear ratio of i12 = −5. Thereafter,
the results were compared to those of the developed dynamic gear model.

Figure 9a shows that the target speed ntarget,IM = 12,000 rpm of the IM is reached at a
time of t = 7 s after an overshoot of 4% around the target value. Considering the stationary
gear ratio of the planetary gear of i12 = −5, the speed of the PMSM at the time t = 7 s is
nPMSM = nIM

i12
= −2400 rpm. This result is confirmed by the model, which confirms the

appropriateness of the implementation. In Figure 9b, the reaction torques calculated from
the MBS of the drive are shown. In the reaction torque of the PMSM, the cogging torque
modelled by the edq model is visible through a slight superimposed oscillation of around
0.5% of the target value. Due to the ideal rigid gear coupling, the cogging torque of the
PMSM acts on the output shaft of the carrier in a similar magnitude of around 0.5% of the
mean value.

0 1 2 3 4 5 6 7
−5000

0

5000

10,000

15,000

(a)

0 1 2 3 4 5 6 7
−15

−10

−5

0

5

10

15

(b)

Figure 9. Results of the transient system model using an ideal gear constraint: (a) Speeds of the different shafts; (b) Reaction
torques of the different shafts.

Figure 10 shows the results using the dynamic gear model. The basic course and the
steady-state value of the resulting speeds and the reaction torques of the two models are
comparable, which speaks for the correct implementation of the force element presented
here. When comparing the resulting reaction torque at the carrier output shaft, significantly
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increased torque oscillations can be determined. In order to analyse the origin of these in
more detail, a spectrogram of the torque at the PMSM and at the carrier is calculated in the
following.

0 1 2 3 4 5 6 7
−5000

0

5000

10,000

15,000

(a)

0 1 2 3 4 5 6 7
−40

−30

−20

−10

0

10
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(b)

Figure 10. Results of the transient system model using the developed force element: (a) Speeds of the different shafts; (b)
Reaction torques of the different shafts.

Figure 11a shows the spectrogram of the resulting PMSM torque for the studied start-
up operation. The significant frequency orders of the cogging torque with the ordinal
numbers ν = 60; 120; 180; 240 are highlighted, which correspond to the results from the
electromagnetic FEM simulation in Figure 7.

(a) (b)

Figure 11. Results of the transient system model using the developed force element: (a) Spectrogram of the transient torque
of the PMSM; (b) Spectrogram of the reaction torque at the carrier shaft.

In Figure 11b, the first orders in the torque with reference to the speed nPMSM of the
PMSM at the carrier are highlighted in the spectrum. Among others, the torque orders
with the ordinal numbers ν = 60; 120 occur with reference to the PMSM speed. These
can be assigned to the cogging torque of the PMSM. Furthermore, orders with the ordinal
numbers ν = 95; 190 occur, for instance. These can be related to the gear meshing frequency,
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which is the frequency of the parameter excitation of the gear. For the considered gearbox,
the gear mesh frequency is obtained from the speed of the PMSM through the number of
teeth of the ring gear of zh = −95 or from the speed of the IM through the number of teeth
of the sun gear, zs = 19:

fmesh = zh ·
nPMSM

60
= zs ·

nIM

60
. (8)

As the torque orders cross the modelled system’s first and only natural frequency
f0,gear (see Figure 11b), a distinct torque oscillation results due to the resonance. This
resonance amplification is particularly evident when the fundamental order of the gear
mesh excitation itself is at the natural resonant frequency at time t ≈ 1.1 s (see Figure 10b
and Figure 11b). Due to the load-dependent stiffness of the gearing contact (see Figure 8),
the resonance frequency of the system is not constant, but load dependent. This load
dependency can be seen in the spectrogram in Figure 11b, for example, during the start-
up process, and when the target speed is reached during the load change as the natural
frequency changes. With increasing torque, the gear stiffness increases (see Figure 8). Since
the inertia of the system is constant, according to the simplified relation for a one-mass

oscillator ω0 =
√

c
m , the natural frequency of the system will increase. For example,

linearising the system around the operating point, e.g., for the time t = 0.2 s for the starting
phase of the system, gives the natural frequency with the inertias and the current effective
stiffness as f0(0.2 s) = 468 Hz. For the time t = 2 s, the torque of the IM has reached the
steady state (see Figure 10b), and the linearised eigenfrequency around this operating point
results in f0(2 s) = 559 Hz.

The proposed model allows the study of load changes, which frequently occur in
drive cycles. The transient behaviours of the machines and the controllers are considered.
This allows, for example, the study of a controller’s parameters for their interaction with
the rotor dynamics of a drivetrain. Furthermore, the nonlinearities of the gear mesh contact
were included in the simulation. Therefore, the load-dependent changes in the system’s
natural frequencies and the parameter excitation were taken into account. This overall
system model serves as a starting point for analysing the structural dynamic interactions of
a drivetrain in detail and for gaining a deeper understanding of the influences on complex
drivetrains. A comparison with measured data should be carried out due to the assumption
of the damping ratio made here, and this is planned. Finally, this modelling approach
gives the possibility of calculating the resulting excitation forces, e.g., the resulting bearing
and electromagnetic forces. These can be inputs for a more detailed acoustic and vibration
simulation of a drivetrain.

6. Conclusions

In this work, a transient system model for the analysis of structural dynamic inter-
actions in electric drivetrains with gearboxes was developed. The multi-body simulation
(MBS) approach was selected. In order to model the dynamic gear forces, a force element
in the MBS was implemented and a transient electric machine model was selected. Within
this model, the machine controllers were considered. The structural dynamic model was
finally coupled to the electric machine model in the time domain.

Compared to commonly used system approaches for noise and vibration analyses
of electric drivetrains, in which the coupling is performed in the frequency domain, the
presented methodology allows the consideration and analysis of the interactions of the
controllers, the electric machine dynamics, and the non-linear structural dynamic response
of gears, which are commonly used in electric drivetrains. This particular modelling
approach gives the ability to analyse not only steady-state operating points, but also
transient load changes and their impact on the system.

The proposed modelling approach was applied to an exemplary drivetrain. Using
this drivetrain, a comparison of a controlled start-up of the system with a common gear
constraint was made. It was shown that the model provides plausible results. Furthermore,
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the calculated transient cogging torque of the synchronous machine used and the resulting
output torque of the drivetrain were analysed in a spectrum, and excitation orders were
assigned to the modelled effects. Finally, the influence of the load dependence of the
gear tooth contact on the vibration parameter of the natural frequency of the system
was described.

The proposed model can be used as a starting point for a deeper analysis of system
interactions and their influences on machine controllers, as well as for detailed vibration
and acoustic analyses. A comparison of the results with measurements is planned.
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