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a b s t r a c t

In order to achieve ecological driving without pollutant emissions on non-electrified rail tracks, the focus
is on the development of railway vehicles powered by fuel cell and battery systems. A key issue is to
reduce hydrogen consumption while maintaining the battery’s state of charge (SoC). In that context, this
paper proposes a new casual energy management strategy based on Pontryagin’s Minimum Principle
(PMP) within the framework of Model Predictive Control (MPC). The entire energy management problem
is formulated by solving a cost function in the prediction horizon, different from the typical one found in
other work using model predictive control to realize energy management. The main advantage of this
strategy is that by introducing the PMP’s co-state, which is adaptively evaluated using average power
estimation and actual SoC, into the cost function, a predicted optimal SoC trajectory is no longer required
within the framework of MPC. Therefore, the strategy does not require complete information on the rail
track and behaves casually. In addition, the dynamic of the fuel cell power is considered by introducing a
tuning factor into the cost function, which benefits the service life of fuel cells. The proposed strategy is
tested and validated in a realistic driving cycle by a hardware-in-the-loop (HiL) test bench at the Center
for Mobile Propulsion (CMP) of RWTH Aachen University. The simulation results show an optimum close
to the offline PMP results and up to 12.1% hydrogen savings compared to a typical MPC strategy using
constant SoC reference. The HiL results demonstrate the real-time capability of the proposed strategy and
show the excellent fuel economy with merely 2.7% more hydrogen consumption than the global opti-
mum result.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

1.1. Background

In response to climate change and the need for rapid and
continuous decarbonization of the railway transportation system,
new technologies are taken into consideration. The use of electric
istry of Transport and Digital
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multiple units (EMU) with hydrogen-powered fuel cells is an
exciting and promising alternative. As a zero-emission technology
in railway transportation, fuel cells using hydrogen energy are fully
capable of achieving goals of reducing greenhouse gases, air
pollution, and noises. Especially in long-distance and high-power
use cases, it is expected that fuel cell technology can play an
increasingly important role in the railway sector [1]. For multiple
units in Europe, fuel cell rail vehicles could potentially replace 30%
of diesel vehicles by 2030 [2]. In particular, around 40% of the
German rail network is not electrified [3]. The overhead catenary
construction is cost-intensive, uneconomic, and inefficient on sec-
tions of the rail track with low traffic e.g. in rural areas. So far, many
efforts have been devoted to research, manufacture, and commer-
cialization of fuel cell trains. A milestone was set in September
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2018, the world’s first commercial fuel cell regional train was put
into service in Lower Saxony, Germany by Alstom S.A [4]. In
collaboration with RWTH Aachen University, Siemens and Ballard
are developing a Fuel Cell Electric Multiple Unit (FC-EMU) with
highly dynamic battery systems based on the Mireo platform,
which is planned to go into operation in 2021 [5]. This paper fo-
cuses on the energy management strategy of Siemens FC-EMU.

1.2. Literature review

Fuel cell hybrid railway vehicles are complex electromechanical
systems. The power flow of a hybrid system ties to the configura-
tion and power distribution in the driveline. Accordingly, the core
issue is to formulate energy management strategies to achieve
long-term stable driving for regional rail transport without external
charging, while improving potential fuel economy and component
lifetime. Various energy management strategies have been inves-
tigated in the last decades and can be classified into two categories:
rule-based strategies and optimization-based strategies [6,7].

Rule-based strategies, including deterministic and fuzzy logic,
are usually based on rules derived from human expertise, heuristic,
or mathematical models without former information on the driving
cycle [8,9]. This type of method is not sensitive to driving condi-
tions, requires a low computational effort, and is simple to imple-
ment. However, the rules are challenging to define, and there is no
guarantee that they are optimal [6]. To improve the rule-based
strategy’s performance, many optimization methods such as dy-
namic programming (DP) are devoted to finding the proper
thresholds and parameters [10,11]. Nevertheless, these optimized
thresholds and parameters rely on specific driving cycles, which
restrict the casualness.

As for the optimization-based strategies, the whole energy
management problem is formulated to minimize operating costs
over a considered time period. Two types of strategies can be
subdivided: global optimization and real-time optimization [7].
Concerning the global optimization methods, DP and Pontryagin’s
Minimum Principle (PMP) are commonly used. Based on the Bell-
man’s optimal principle [12], DP simplifies a complex problem by
recursively decomposing it into many small sub-problems. Some
methods like two-dimensional dynamic programming are investi-
gated to improve the computing efficiency [13]. However, the
knowledge of the driving cycle must be given in advance to obtain
the global optimum. Furthermore, DP is troubled by the “explosion
of dimensions”, and because of its computational consumption and
the need for a large amount of memory, it can only be implemented
offline and used as a benchmark reference. In contrast, the PMP-
based method does not require a lot of computational effort. It
determines the optimal power flow by obtaining the instantaneous
minimum value of the Hamiltonian function at every instant.
Thereby, an often-used method is the shooting method, which
searches the initial values to fulfill the problem’s boundary condi-
tions [14]. Thus, the global optimization of PMP is also bounded to
driving cycles and is used as offline optimization.

As real-time optimization, instantaneous optimization strate-
gies, including equivalent consumption minimization strategy
(ECMS) and the model predictive control strategy (MPC), are
prominent. Generally for ECMS, as a form of PMP strategy [15], an
equivalent cost function is set to transform a global optimization
problem to a local one. The core issue is to find the proper equiv-
alent factor, which can in the best way transfer the electric power
consumption into fuel consumption. One basic method is to obtain
a fixed equivalent factor by DPwith the known driving cycle [16]. In
order to make ECMS not sensitive to the driving cycle, different
adaptive ECMS can be found in the literature. In Ref. [17], the au-
thors use feedback control to apply the correction term to the
2

offline optimized factor. In Ref. [15], the calculation for the value
range of the optimal equivalent factor is improved. In Ref. [18], a
driving style recognition is offline trained and implemented in
ECMS. However, they still need one optimized reference like the
battery’s state of charge (SoC), which is derived offline or requires a
significant effort to train a tool for driving style recognition.

Moreover, taking future information into consideration, MPC is
another powerful method for real-time optimization. It takes the
current state as the initial state, predicts the states and model
outputs over the predicted horizon, optimizes each sampling
moment and finally applies the first optimal control sequence [19].
The success of MPC is mainly due to its capability to manage strict
constraints on control and state directly and effectively. Further-
more, it solves optimization problems at every time step, which
allows the controller to adapt to actual operating conditions. In
Ref. [20], a stochastic MPC based on the PMP is proposed, which
uses a shooting method to determine the co-state according to a
dynamically tuned reference SoC, and realizes the power distribu-
tion by minimizing the Hamiltonian function. In Ref. [21], a high-
level MPC controller provides a battery energy target for a lower
layer that uses DP and PMP to calculate the optimal power distri-
bution. In Ref. [22], a multi-level MPC is proposed, based on a
method that suggests a reference SoC trajectory. In Ref. [23], an
adaptive SoC reference generator is built and quadratic program-
ming is used to solve MPC-based energy management. For the
application of fuel cell hybrid systems in Ref. [24,25], the objective
functions include the degradation costs of fuel cells, and a SoC
reference is used to achieve battery’s charge-sustaining. Overall,
the performance of the MPC depends highly on the predicted
reference values such as SoC, which should be well designed.

In recent years, data-driven approaches, such as neural net-
works and machine learning [26,27], have been used in energy
management system. With the help of environmental information
interaction, these methods can be utilized to predict future condi-
tions, which are involved in MPC to achieve better performance
[28]. Alternatively, control strategies can be trained offline based on
the collected data [29]. However, data-driven methods rely on the
collected data and require high training effort.

1.3. Motivation

Due to the long-distance, regional railway transport without an
overhead catenary charging system, the studied fuel cell railway
vehicle is designed to drive in a battery’s charge-sustaining mode.
As a buffer unit, the traction battery provides dynamic power, while
the fuel cell system covers the demand of average power. The en-
ergy management has to consider the current state constraints and
adjust the optimum control in real-time. Among the literature [19],
MPC is a promising approach to handle this issue. Nevertheless, to
reach the control goals for charge-sustaining of battery, the devi-
ation of SoC from the reference value is often weighted in the cost
function [30e32]. A fixed reference value can guarantee casualness
yet no optimality [24,25]. However, an offline obtained reference
restricts the control strategy to the driving cycle. Furthermore, an
online estimated reference depends on the estimation accuracy,
which is also challenging to ensure optimality [20e23].

1.4. Main contributions

In order to overcome the shortcomings mentioned above, this
paper proposes a novel PMP-based MPC to solve the problem of
optimum energy management for fuel cell railway vehicles. The
main contributions are highlighted as follows: (1) Unlike other
MPC-based strategies, the proposed method does not require a
preview of the complete driving cycle or the generation of SoC



Table 1
Parameters for vehicle dynamics.

Parameters Symbols Values Units

Vehicle mass (including 120 passengers) m 60,000 kg
Gravitational acceleration g 9.81 m/s2

Rolling resistance coefficient mr 0.0015 e

Density of air rair 1.4 kg/m3
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reference trajectory. An online adaptively estimated co-state, as
defined in the PMP method, is introduced in MPC’s cost function to
ensure optimum power distribution and charge-sustaining mode.
(2) A dynamic battery model with three ReC elements is integrated
into MPC. (3) The proposed method is tested and validated by a
hardware-in-the-loop (HiL) test with high power fuel cell and
battery systems.
Aerodynamic coefficient Cd 0.15 e

Front area Af 10 m2
1.5. Organization of the paper

In Section 2, the modeling of the driveline for investigating
energy management is presented. In Section 3, the framework of
PMP-based MPC is introduced and the adaptive estimation of co-
state is given. Section 4 approves the fuel economy of the pro-
posed strategy, as compared to the results of offline PMP-based
strategies and typical MPC strategies. Meanwhile, the analyses of
the parameters in the cost function are discussed. Then in Section 5,
the setup of HiL test bench at the Center for Mobile Propulsion
(CMP) of RWTH Aachen University and the test results are given.
Finally, Section 6 summarizes the conclusions.
2. Modeling of the driveline

The modeling of the fuel cell railway vehicle considers the half
train due to the symmetrical vehicle configuration. For analyzing
the energy efficiency of the powertrain, the vehicle dynamics and
battery dynamics are considered, and the power losses in the
drivetrain, electric motor, DC/DC converters, and the power con-
sumption of auxiliaries are determined based on look-up tables.
Fig. 1 shows the topology of the powertrain. In the following sub-
sections, the modeling of vehicle dynamics, fuel cell system, and
battery system are briefly introduced. Other detailed component
models can be found in our previous work [33].
2.1. Vehicle dynamics

A forward-simulated longitudinal dynamic railway vehicle
model is set up in this work. A proportionaleintegral (PI) controller
models the driver behavior and controls the speed tracking.
Considering the traction forces and all the resistance forces, the
longitudinal dynamics are described by the following equation (1):
Fig. 1. System configuration of the
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m,
dv
dt

¼ Fx � mrmgcosð4Þ � 1
2
rairCdAfv

2 �mgsinð4Þ � Fb; (1)

where m is the vehicle mass, v is the speed, Fx is the traction force
on wheels, mr is the coefficient of rolling resistance, rair is the
density of air, Cd is the aerodynamic coefficient, g is the gravita-
tional acceleration, Af is the front area, 4 is the angle of slope, and Fb
is the mechanical brake force. The related parameters are shown in
Table 1 [34].

2.2. Fuel cell system

As an energy source providing average power, a high power
polymer electrolyte membrane (PEM) fuel cell system is used in
this railway vehicle. The fuel cell system with 200 kW rated net
power has an internal DC/DC converter to control the power
output. For the study of energy management, the fuel cell system is
modeled stationarily without considering dynamic electrochemical
mechanisms or degradation processes. The hydrogen consumption
curve is shown in Fig. 2, which is fitted by a 5th order polynomial
function related to fuel cell power:

mH2
¼ f ðPfcÞ: (2)

2.3. Battery system

The battery has a total capacity of 200 kWh and a rated voltage
of 850 V, where real measurement data from pulse tests and
electrochemical impedance spectroscopy (EIS) are used to param-
eterize the model. This battery system has three branches and is
modeled based on cell modeling. According to the measurement
results, three ReC elements can accurately approximate the real
studied fuel cell hybrid train.



Fig. 2. Fuel cell system: (a) Specific consumption curve, (b) Efficiency of system.

Fig. 3. Battery’s equivalent circuit with three ReC elements.
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dynamic performance of the battery. Fig. 3 shows the battery’s
equivalent circuit, where the parameters of open circuit voltage Voc
and resistances are shown in Fig. 4. Because of a well adjusted
Fig. 4. Parameters of the battery’s equivalent circuit at 25 �C: (a) Voc in V, (b) R0 in U, (c) R1 in
in second, (h) Time constant R3 , C3 in second.

4

active cooling, the battery is assumed to be ideally controlled at
25 �C. Considered the three ReC elements, following equations
describe the battery dynamics:

SoC ¼ � Ibat
Qbat

; (3)

Ibat ¼
Voc �

P3
i¼1Vi

2R0
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
Voc �

P3
i¼1Vi

2R0

!2

� Pbat
R0

vuut ; (4)
U, (d) R2 in U, (e) R3 in U, (f) Time constant R1 , C1 in second, (g) Time constant R2 , C2
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Vi ¼
Ibat
Ci

� Vi

Ri,Ci
; i ¼ 1;2;3; (5)

where Qbat is the battery capacity, Ibat is the battery current, R0 is
the internal ohmic resistance, R1, R2 and R3 are the polarization
resistances, C1, C2 and C3 are the polarization capacitances, V1, V2
and V3 are the voltages over the capacitances and Pbat is the battery
power, which is the difference between the demand load power
Pdem of the vehicle and the fuel cell power Pfc:

Pbat ¼ Pdem � Pfc: (6)

Thereby, Pdem is controlled by the driver and Pfc is controlled by the
energy management controller. Since a source side DCDC converter
is used to control the voltage of the DC link, the battery system fills
the difference between Pdem and Pfc. In this way, the load power is
distributed. It should be noted that the power split ratio is not used
in the following energy management design. Instead, the control
variable Pfc is chosen, which has the same functionality on the
power distribution.
3. PMP-based MPC

The focus of this work is on optimum decisions of power dis-
tribution between the battery and fuel cell system for hybrid rail-
way vehicles without external charging. The energy management
module determines the desired power output of the fuel cell sys-
tem according to the power demand from the driver and the sys-
tem. Due to the dynamic nature of power demand, this is a dynamic
decision-making problem. The goal is to achieve better fuel econ-
omy and sustaining the charge of the battery while ensuring no
constraint is violated. For this constrained nonlinear dynamic
optimization problem, the need for an approach based on real-time
optimization motivates us to use MPC.
3.1. PMP-based MPC formulation

It is assumed that by using the PI controller to control the
vehicle speed, its value ideally follows the reference speed trajec-
tory. Therefore, the vehicle speed dynamic will not be considered in
the framework of MPC, and merely the dynamics related to the
battery system are included. Then, a linear time-varying (LTV)
model based on the equations (2)e(6) is introduced. In order to
linearize the system model, battery parameters in Fig. 4 related to
the battery’s SoC at 25 �C are fitted by piecewise polynomial
functions. The nonlinear continuous model is linearized around the
operation point by the Jacobian and the resulted state-space rep-
resentation is:(

x ¼ f ðx;u; vÞ ¼ Acxþ Bc
uuþ Bc

vv þ Fc;

y ¼ gðx;u; vÞ ¼ Ccxþ Dc
uuþ Dc

vv þ Gc;
(7)

where

x ¼

2
664
SoC
V1
V2
V3

3
775; u ¼ ½Pfc�; v ¼ ½Pdem�; y ¼

2
4 SoC
mH2

SoC

3
5; (8)
5

Ac ¼
�
vf
vx

�
ðx0;u0;v0Þ

;Bc
u ¼

�
vf
vu

�
ðx0;u0;v0Þ

Bc
v ¼

�
vf
vv

�
ðx0;u0;v0Þ

;Cc ¼
�
vg
vx

�
ðx0;u0;v0Þ

Dc
u ¼

�
vg
vu

�
ðx0;u0 ;v0Þ

;Dc
v ¼

�
vg
vv

�
ðx0;u0;v0Þ

Fc ¼ f ðx0;u0; v0Þ � Acx0 � Bc
uu0 � Bc

vv0

Gc ¼ gðx0;u0; v0Þ � Ccx0 � Dc
uu0 � Dc

vv0

(9)

with the linear system matrices Ac, Bc
u, B

c
v , C

c, Dc
u, D

c
v , F

c, Gc, which
are updated at each time step. In Eq. (8), x is the state vector, u is the
control vector, v is the disturbance vector and y is the output vector.

As the disturbance of the system, the power demand is the sum
of traction power Ptraction, power losses along the driveline Ploss and
the power consumption of auxiliaries Paux:

Pdem ¼ Ptraction þ Ploss þ Paux: (10)

The future traction power depends on the speed prediction and the
rail track. Because the focus of this work is on optimum power
distribution for energy management, the speed and the road
gradient in the prediction horizon are assumed to be ideally
extracted from the navigation data system. Then, the future traction
power is estimated by

Ptraction ¼
�
m,aþ mrmgcosð4Þ þ 1

2
,rairCdAfv

2 þmgsinð4Þ
�
,v;

(11)

with the vehicle acceleration a ¼ vððkþ1ÞTÞ�vðkTÞ
T and the sample time

T. Using the speed and traction power, the power losses along the
driveline are calculated by the look-up tables, which refers to
Ref. [33]. Furthermore, the power consumption of auxiliaries is
assumed to be constant with 55 kW for summer and 83 kW for
winter during the whole trip, which can be found in Ref. [13].

By simulating both the linearized model and the original plant
model with the same initial states under the identical control and
disturbance signals, the trajectories of the state and output vari-
ables are displayed in Fig. 5. The simulation runs for 10 s. The
sample time of the linearized model is 1 s and the sample time of
the plant model is 0.01 s. The average errors of SoC and the
hydrogen mass flow are 0.01% and 1.1%, respectively. It can be
pointed out, the linearized model has a small error compared to the
plant model. As the linearized model is updated at each sample
time, the correctness of the linearized model as the internal pre-
diction model can be ensured.

Finally, under the MPC structure, a discrete time state space
model is used, which can be discretized from (7) at every time step.
Assuming constant inputs between two consecutive time steps, the

following transition matrices are used: AD ¼ exp(AcT), BD
u ¼

ðAcÞ�1,ðexpðAcTÞ � IÞ,Bc
u, BD

v ¼ ðAcÞ�1,ðexpðAcTÞ � IÞ,Bc
v ,

FD ¼ exp(AcT) ,Fc, CD ¼ Cc, DD
u ¼ Dc

u, D
D
v ¼ Dc

v and GD ¼ Gc. Then, the
MPC problem can be written as:



Fig. 5. Comparison between the linearized model and plant model by applying the same control and disturbance at the identical initial state: (a) SoC in %, (b) mH2
in g/s, (c) V1 in V,

(d) V2 in V, (e) V3 in V, (f) SoC.
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min
Du

JðDuÞ ¼
XNu�1

i¼0

k Duðkþ ijkÞk2WDu|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
penalty of the fuel cell power oscillation

þl
XNp

i¼0

y1ðkþ iþ 1jkÞT
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

battery consumption

þ
XNp

i¼0

y2ðkþ iþ 1jkÞT
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
hydrogen consumption

;

i ¼ 1; ,,,;Np � 1; (12)

subject to:

8<
: xðkþ 1Þ ¼ ADxðkÞ þ BD

uuðkÞ þ BD
v vðkÞ þ FD;

yðkÞ ¼ CDxðkÞ þ DD
uuðkÞ þ DD

v vðkÞ þ GD;

xmin � xðkþ iþ 1jkÞ � xmax;

ymin � yðkþ iþ 1jkÞ � ymax;

umin � uðkþ ijkÞ � umax;

Dumin � Duðkþ ijkÞ � Dumax;

where Np and Nu are the prediction and control horizons,
x(k þ i þ 1|k), y(k þ i þ 1|k), u(k þ i|k), Du(k þ i|k) denote the
prediction of the variable based on the information at time k, Du is
the increment of fuel cell powerDPfc, y1 is the SoC’s change rate SoC,
y2 is the mass flow mH2

and T is the sample time. The cost function
(12) is the cumulative hydrogen consumption, which includes the
6

direct hydrogen consumption, the equivalent hydrogen consump-
tion when the battery energy is used, and the penalty for the fuel
cell power oscillation. Thereby, WDu is the tuning factor with the
unit of g/kW2. It is used to penalize the oscillation of the fuel cell
power. l is the co-state derived from PMP and is used to calculate
the equivalent hydrogen consumption from the battery. It has the
unit of g and is updated at each time step and stays constant in the
prediction horizon.

According to the requirements of the real battery and fuel cell
system, the system constraints are defined as shown in Table 2.

Then, the optimization problem (12) can be formulated as a
quadratic programming (QP):

Duopt ¼ arg minDu
1
2
DuTHDuþ DuTq; (13)

subject to:

AineqDu� b � 0;

where H, q, Aineq, b are the matrices that are rebuilt at each time
step, and especially H is a positive definite matrix. Using the QP
solver, the control variable can be fast calculated. The optimized
result Duopt is a sequence of control increments, and for every time
step, the control input to the vehicle model is:

uðkÞ ¼ uðk� 1Þ þ DuoptðkjkÞ: (14)
3.2. Estimation of the co-state in PMP

In PMP, the Hamiltonian function is defined as follows:
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HðSoC; Pfc; l; tÞ ¼ mH2
ðPfcÞ þ lðtÞ,SoCðtÞ; (15)

where the dependence of the mass flow on the fuel cell power is
already shown in Fig. 2a, and the l(t) represents the co-state with
the same unit as that of mass. According to the optimal control
theory, the dynamic of the co-state is:

lðtÞ ¼ �vHðSoC; Pfc; l; tÞ
vSoC

: (16)

With substituting the Hamiltonian defined in (15) into (16), the
dynamics related to the co-state are expanded:

lðtÞ ¼ �vmH2

vSoC
� lðtÞ,vSoC

vSoC
¼ 0� lðtÞ,vSoC

vSoC
: (17)

Because mH2
is merely dependent on the control variable Pfc,

instead of on SoC, its derivative with respect to SoC is zero.
The dynamics of the state are described in Eq. (3), with the

battery current calculated in Eq. (4). From the two equations, it is
evident that the battery current or rather the SoC’s change rate SoC
is not directly dependent on SoC. However, the open-circuit voltage
and the inner resistances rely on SoC, as shown in Fig. 4. Then, the
differential of the SoC to SoC is written as follows:

vSoC
vSoC

¼
�
vSoC
vVoc

,
vVoc

vSoC
þ vSoC

vR0
,
vR0
vSoC

�
; (18)

with (17) the co-state dynamic is:

lðtÞ ¼ �l

�
vSoC
vVoc

,
vVoc

vSoC
þ vSoC

vR0
,
vR0
vSoC

�
(19)

By utilization of Eqs. (3) and (4), the partial differential of SoC to
Voc is obtained:

vSoC
vVoc

¼ � 1
2,QbatR0

,

0
B@1� Voc �

P3
i¼1Viffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðVoc �
P3

i¼1ViÞ
2 � 4,Pbat,R0

q
1
CA;

(20)

and its partial differential to R0 is:

vSoC
vR0

¼ 1

2,QbatR
2
0

0
B@ 2,Pbat,R0 � ðVoc �

P3
i¼1ViÞ

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðVoc �

P3
i¼1ViÞ

2 � 4,Pbat,R0

q

þ ðVoc �
X3
i¼1

ViÞ

1
CA (21)

Moreover, vVoc
vSoC and vR0

vSoC are calculated based on the parameter
curves of the battery system shown in Fig. 4.

According to PMP, the optimal control variable in each time
instant minimizes the Hamiltonian:

P*fcðtÞ ¼ arg min
PfcðtÞ

HðSoC; Pfc; l; tÞ: (22)

Because of the monotone relation between the initial co-state
and the SoC end value, a bidirectional search method, as shown
in Fig. 6, can be used to determine the correct initial co-state. After
the first guess of the co-state, PMP is used to determine the control
variable in each discrete time point over the entire time horizon.
When the iteration finishes, the current SoC end value is compared
7

to the target value. If they are approximately identical, then the
initial co-state value is found successfully, and the shooting pro-
cedure ends. If not, the initial co-state value is adjusted according to
the monotone relationship between the initial co-state and the SoC
end value, and the PMP iteration is repeated. The initial co-state’s
search range can be shorted based on a later derived formula,
which estimates the co-state based on the average power and the
SoC values. Thereby, the average power corresponding to the
driving cycle is obtained after online simulation. The SoC used to
estimate the co-state range is assumed to be 0.5 due to the charge-
sustaining mode. After that, the co-state range is determined by
including a ten percent derivation from the calculated value, posi-
tive and negative, respectively. It often takes less than six times
iterations to realize SoC end value accuracy with four decimal
digits.

As an example, the results of the offline PMP-based strategy for
the driving cycle 2 (Fig. 9b) are displayed in Fig. 7, with the tra-
jectories of SoC, the co-state and control variable included.The
shooting method works to find the correct initial co-state, as the
SoC end value reaches 0.5 the same as its initial value. The co-state
trajectories are shown in Fig. 7b, and its amplitude in summer is
lower than in winter. Since more fuel cell power is required in
winter, as shown in Fig. 7a, the fuel cell system works with lower
efficiency in winter than in summer, and the amplitude of co-state
is correspondingly larger. In 7d, the relation of the co-state and SoC
is identified, which will be derived later. Furthermore, it is evident
that the fuel cell power is close to its average value. Therefore,
considering the convexity of the fuel cell consumption curve in
Fig. 2a, it is reasonable to assume that the differential of the
Hamiltonian to control variable is zero at the average fuel cell
power:

vH
vPfc

�����
Pfc¼Pfc

¼ vmH2

vPfc
þ l

vSoC
vPfc

�����
Pfc¼Pfc

¼ 0; (23)

inwhich, the average fuel cell power can be estimated based on the
time tables of regional trains and the history information, including
load and battery losses [33]. Meanwhile, the estimated average fuel
cell power is used to adjust the co-state regularly when the train
leaves the station. In Ref. [35], the analytical estimation of the co-
state dependent on SoC and the average fuel cell power is
described. In this work, the dynamics because of the ReC elements
are further considered. First, the partial differential of SoC to Pfc can
be determined from (3)(4) (6):

vSoC
vPfc

¼ 1
Qbat

,
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðVoc �
P3

i¼1ViÞ
2 � 4,Pbat,R0

q : (24)

Then, the analytical formula to determine l follows by its substi-
tution into 23:

l ¼ � vmH2

vPfc
,

 
Qbat,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðVoc �

X3
i¼1

ViÞ2 � 4,Pbat,R0

vuut !�����
Pfc¼Pfc

;

(25)

whereby the differential of mH2
to Pfc can be determined using the

consumption curve depicted in Fig. 2a. The dependency of Voc on
SoC is presented in Fig. 4. Then, assumptions have to be made for
the values of Vi and the battery power. In the acceleration phases,
Vi’s are positive, while negative during regenerative braking. In
addition, at the end of driving cycles, there is no energy stored in
the polarization capacitances, which are short-circuited by their



Fig. 6. Shooting method.
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corresponding polarization resistances. Therefore, the values of Vi

can be assumed to be zero. As the fuel cell system is operated for
battery’s charge-sustaining mode, the averaged battery power is
zero, which is also a reasonable assumption here. Finally, an
analytical formula to estimate the co-state, dependent on the
averaged fuel cell power and the actual SoC, results as:

l ¼ � vmH2

vPfc
,Qbat,Voc; bat

�����
Pfc¼Pfc

: (26)

Fig. 8 shows that the analytically estimated co-state matches the
resulting ones from the offline PMP strategy, which validates the
estimation’s correctness.
Fig. 7. Results of offline PMP-based strategy using the driving cycle 2 in summer and in wi

8

4. Simulation and analysis

The PMP-based MPC strategy is realized with MATLABⓇ/Simu-
linkⓇ and simulated in the real regional train driving cycles, as
shown in Fig. 9. Driving cycle 1 represents the rail track between
Aachen and Cologne, with a total distance of 70.2 km and a driving
time of 3065 s. In the driving cycle 2, the rail track of Mannheim-
Karlsruhe-Basel in Baden-Württemberg, with a distance of
154 km and a driving time of 8192 s, is shown.

Table 3 shows the parameters for MPC configuration. The in-
fluences of tuning factors and prediction horizon are further dis-
cussed in the subsections. To evaluate the proposed strategy, two
strategies are applied for comparison. One derived from offline PMP
nter: (a) Power of fuel cell system, (b) Co-state, (c) SoC, d) Co-state related to the SoC.



Fig. 8. Comparison of analytically estimated l with the ones from offline results.
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is used as the benchmark, while another one is a typical MPC-based
strategy using the following cost function with a constant SoC
reference:

min
Du

JðDuÞ ¼
XNu�1

i¼0

k Duðkþ ijkÞk2WDu|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
penalty of the fuel cell power oscillation

þ
XNp

i¼0

k y3ðkþ iþ 1jkÞ � yref ðkþ iþ 1jkÞk2Wy|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
penalty of the battery’s SoC

þ
XNp

i¼0

y2ðkþ iþ 1jkÞT
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
hydrogen consumption

;

i ¼ 1; ,,,;Np � 1; (27)

where yref is 0.5 and Wy is 10 g, which means this MPC-based
strategy continually desires to hold the battery’s SoC at 50%.
Meanwhile, for a fair comparison, the other configurations are the
same as the proposed strategy. Moreover, the strategies are simu-
lated under both winter and summer conditions for two driving
cycles and the initial SoC is set to 50%.

4.1. Simulation results and analysis

Fig. 10 shows the simulation results of the driving cycle 1. The
figures in the left column correspond to the summer conditions,
while the figures in the right column correspond to the winter
conditions. Due to the higher power consumption of auxiliaries, the
total power demand in winter is higher than in summer, which
results in higher fuel cell power requirements. The second row of
figures is a comparison of fuel cell power output under different
strategies. Knowing the global information, the offline PMP strat-
egy tends to keep the fuel cell output power close to 120 kW in
summer and 150 kW in winter. According to Fig. 2b, the fuel cell
Fig. 9. Driving cycles: (a) Driving
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efficiency will remain at a high level above 40%. Under the typical
MPC strategy, the fuel cell power output fluctuates widely, varying
from 40 kW to 180 kW. In winter due to high power demand, the
fuel cell remains around 180 kW for a longer period of time than in
summer, which can accelerate the degradation of the fuel cell stack
[36]. In contrast, the proposed PMP-MPC strategy uses the esti-
mated power demand based on historical data, which optimizes
the fuel cell power output in a short future time. The fuel cell power
is optimized to maintain around 120 kW in summer and 150 kW in
winter with high efficiency like the performance of offline PMP.
Furthermore, the third row of figures shows the battery’s SoC for
the different strategies. Despite the different power demands in
winter and summer, the PMP-MPC strategy achieves to keep the
SoC within a reasonable range and yields a similar result as the
offline PMP strategy.

In Fig. 11, the simulation results of the driving cycle 2 are pre-
sented. Because of the long-distance and the slope characteristics of
first going uphill and then going downhill, the power demand is
more complicated than driving cycle 1. Due to a long-term downhill
situation starting from the middle of the cycle, the typical MPC
strategy has to maintain the SoC by controlling the fuel cell system
at low power output, which results in low efficiency as well as the
risk of acceleration degradation and reducing lifetime [36]. By
comparison, the proposed PMP-MPC strategy avoids the extreme
fuel cell power output and keeps the SoCwithin a reasonable range.
Here, the final value of SoC is higher than in the previous cycle
because the average power estimation is based on history and is
updated every time the vehicle drives off. Therefore, the proposed
strategy will adaptively adjust the power output in the next
journey.

The resulting hydrogen consumptions are collected in Table 4. In
summary, compared to the typical MPC strategy, the PMP-MPC
strategy has achieved a significant fuel economy improvement
from about 6% to 12%. Simultaneously, it also reached an optimized
result with just 1.5% to 3% more hydrogen consumption than the
offline PMP strategy.

4.2. Influence of tuning factors

The low fluctuation of power and the operation at part load
represent an essential part of fuel cell lifetime improvement [37].
Therefore, the tuning factor WDu is implemented in the PMP-MPC
strategy. To test the influence related to the degradation of fuel
cell stacks, the tuning factors of 0.001 g/kW2, 0.01 g/kW2, 0.05 g/
kW2 and 0.1 g/kW2 are applied in the strategy for driving cycle 1 in
summer. The results in Fig. 12a show the fuel cell power under
different tuning factors, while Fig. 12b presents the sum of absolute
fuel cell power increment, fromwhich the low fluctuation with the
improving tuning factor is observed. As for hydrogen consumption
shown in Table 5, the fuel economy is reduced as the tuning factor
increases. Thereby, this shows a trade-off between fuel cell
cycle 1, (b) Driving cycle 2.



Fig. 10. Simulation results using driving cycle 1 in summer (left column) and in winter (right column): (a) (b) Power demand Pdem in kW, (c) (d) Power of fuel cell system Pfc in kW,
(e) (f) SoC in %.

Fig. 11. Simulation results using driving cycle 2 in summer (left column) and in winter (right column): (a) (b) Power demand Pdem in kW, (c) (d) Power of fuel cell system Pfc in kW,
(e) (f) SoC in %.

K. Deng, H. Peng, S. Dirkes et al. eTransportation 7 (2021) 100094
degradation and fuel economy. Since the core of this work is
focused on fuel economy, in further tests, the tuning factor of
0.001 g/kW2 is applied.
10
4.3. Influence of prediction horizon

The real-time implementation requires low computational ef-
forts, for which the prediction horizons are changed from 10 to 40



Fig. 12. Influences of tuning factors: (a) Fuel cell power profile under different tuning factors, (b) Fuel cell power oscillation under different tuning factors.

Fig. 13. Setup of HiL test bench at CMP.
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steps in increments of 10 to estimate the PMP-MPC strategy in
control performance and calculation time. The driving cycle 1 in
summer is used for simulation, and the control horizons are
simplified to be half of the prediction horizons. As Table 6 shows,
the simulation time and the hydrogen consumption are trade-offs.
Since the time increases significantly while the hydrogen con-
sumption decreases slightly as the prediction horizon increases, the
prediction horizon is set to 10 steps in the following tests.
5. HiL test

The simulation results have shown an excellent fuel economy of
11
the proposed PMP-MPC strategy. Its real-time performance is
evaluated and validated by a HiL test bench located at the CMP of
RWTH Aachen University.
5.1. HiL setup

The central components of this test bench environment are a
HiL powertrain emulator and real physical components, as shown
in Fig. 13. The emulator controls the load controller to simulate the
dynamic power demand that occurs in the DC link, meanwhile, it
controls DC/DC converters and the fuel cell system to distribute the
power flows according to power signals from energy management



Fig. 14. HiL results using driving cycle 1 in summer with reduced-scale power: (a) Train speed vveh and reference speed vref in m/s, (b) Measured reduced-scale power distribution
with Pdem, Pfc and Pbat in kW.

Fig. 15. HiL results using driving cycle 1 in summer with reduced-scale power: Measured and simulated value of (a) Pdem in kW, (b) Pfc in kW, (c) SoC in %, (d) H2 in g.

Fig. 16. Comparison between the measured results from the PMP-MPC strategy and the offline calculated global optimized results from the PMP strategy: (a) Pfc in kW, (b) SoC in %.

Table 3
MPC configuration.

Parameter Symbol Value

Prediction horizon Np 10
Control horizon Nu 5
Tuning factor WDu 0.001 g/kW2

Sample time T 1 s

Table 2
Constraints of battery and fuel cell systems.

Min Variable Max

0.1 SoC 0.9
20 kW Pfc 180 kW
�5 kW/s DPfc 5 kW/s
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system. This emulator consists of (1) a real-time system for virtual
replication of the vehicle and environment model, including the
auxiliaries and the energy management system, (2) measurement
and control systems for coupling the virtual system with the
physical components presented in the test bench.

Besides, the dSPACE SCALEXIO is used to perform the virtual
systems for testing real-time behavior with the real physical com-
ponents, including the DC/DC converters, battery system, fuel cell
system, and a load unit. This load unit connects the supply network
for compensation of additional power. In the test bench room, a
second floor is built to provide a place for the systems. All DC/DC
converters are positioned on the test bench foundation due to their
high weight, while the fuel cell system with rated net power of
200 kW is installed above on the second floor. Outside of the test
field, the hydrogen supply is ensured by hydrogen trailers with a
capacity of approx. 350 kg hydrogen, which guarantees endurance
testing over period of several days. Moreover, the battery systems
are placed in a garage concerning safety precautions.



Table 4
Simulation results of different strategies.

Cycles Strategies SoCend[%] H2[g] Equiv. H2[g] Difference[%]

1, winter offline PMP 54.01 7923.8 7378.6 �1.7
1, winter PMP-MPC 54.01 8051.7 7505.1 0
1, winter MPC 46.12 7485.1 8013.9 6.8
1, summer offline PMP 53.78 5939.9 5456.7 �1.5
1, summer PMP-MPC 53.78 6057.6 5542.4 0
1, summer MPC 46.45 5718.2 6202.1 11.9
2, winter offline PMP 67.35 21868 19461.9 �3
2, winter PMP-MPC 67.36 22467 20059.5 0
2, winter MPC 46.34 20636 21143.6 5.4
2, summer offline PMP 65.77 16322 14135 �3
2, summer PMP-MPC 65.77 16764 14577 0
2, summer MPC 47.22 15949 16334.5 12.1

Table 5
Simulation results using different tuning factors.

Tuning factors[g/kW2] SoCend[%] H2[g] Equiv. H2[g] Difference[%]

0.001 53.78 6057.6 5542.3 0
0.01 53.74 6052.3 5542.5 0.003
0.05 53.51 6044 5565.5 0.418
0.1 53.32 6051.2 5598.6 1.015

Table 7
Comparison between the measured hydrogen consumption under the PMP-MPC
strategy and the offline calculated hydrogen consumption from the PMP strategy.

Strategies SoCend[%] H2[g] Difference[%]

offline PMP 50 5625.9 0
PMP-MPC 50 5778.7 þ2.7
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During the HiL test, the driver model and the driveline model
simulate the power demand. The power demand is implemented
by the load side DCDC converter on the test bench. At the same
time, the MPC energy management controller predicts the states
based on the measured data, and generates the desired fuel cell
power by minimizing the cost function. The fuel cell system on the
test bench outputs the power following the determined value by
energy management. A source side DCDC converter controls the
voltage of the DC link. Then, the battery system on the test bench
compensates the rest power to fulfill the power demand. In addi-
tion to the real systems on the test bench, the fuel cell and battery
models are running simultaneously. The measured fuel cell power
is fed into the fuel cell model to calculate hydrogen consumption.
The measured battery power is sent to the battery model to
simulate the battery behavior.

Due to technical issues, the system’s power is restricted, and the
following sets are made to downscale power: (1) Two of the three
branches of traction battery are used while the simulated battery
power is scaled to two third of the original power. (2) The
maximum fuel cell power output of the model is limited to 140 kW.
(3) The total passenger number is reduced from 120 to 60. Then, the
driving cycle 1 in summer is used to perform the HiL tests.
5.2. HiL results

In Fig. 14 the results of speed tracking and the measured power
distribution are presented. As displayed in Fig. 14a, the vehicle
speed matches the reference speed. The measured power distri-
bution in Fig. 14b shows that the fuel cell power covers the average
load power and the battery system provides the peak power.

Fig. 15 shows the various measured and simulated trajectories
Table 6
Influence of different prediction horizons.

Prediction horizon SoCend[%] H2[g] Equiv. H2

10 53.78 6057.6 5542.3
20 53.77 6054.5 5540.6
30 53.75 6051.1 5539.9
40 53.74 6048.7 5538.9
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under the PMP-MPC strategy. In Fig. 15a, the power demand is
satisfied without being restricted by the battery or fuel cell system.
The tiny differences between the measured and simulated power
demand can be found because of the limited power ramp in the
power electronics. In Fig. 15b, the measured fuel cell power has a
negligible deviation from the simulated fuel cell power. Meanwhile,
the fuel cell power is maintained at around 110 kW with high ef-
ficiency, which covers the average load power. Fig. 15c shows an
overlapping between the measured and simulated battery’s SoC.
The measured end SoC is 50% and the simulated end SoC is 50.67%,
which proves the correctness of battery modeling and shows the
good charge sustaining under the PMP-MPC strategy. Moreover in
Fig. 15d, the simulated hydrogen consumption is 5733.3 g and the
measured one is 5778.7 g. The deviation of 0.8% shows that the
correctness of the specific consumption curve of the fuel cell sys-
tem is validated.

To evaluate the fuel economy of the PMP-MPC strategy, the
global optimized results from the offline PMP strategy are used. As
the fuel cell system and the battery system modeling are validated,
the measured fuel cell and battery power are summed and used as
inputs for offline PMP. The offline calculated optimal trajectories of
the fuel cell power and SoC are displayed in Fig.16. It can be pointed
out, the averaged fuel cell power from the PMP-MPC is close to the
one from the offline PMP. Due to the start-up process of the fuel cell
system and the lack of global information, the trajectories of PMP-
MPC have deviations compared to the offline PMP, as shown in
Fig. 16a. With the same end SoC of 50% in Fig. 16b, the offline
calculated hydrogen consumption is 5625.9 g, which is about 2.7%
less than the measured hydrogen consumption from the PMP-MPC
strategy. In summary, a comparison of the PMP-MPC strategy and
offline PMP strategy regarding the HiL tests is shown in Table 7.
6. Conclusions

In this work, an adaptive PMP-based MPC strategy for fuel cell
hybrid railway vehicles is proposed. Under the framework of MPC,
the strategy can handle strict constraints on control and state var-
iables. First, a linear time-varying model under consideration of
battery modeling with three ReC elements is formulated. For the
fuel economy and battery’s charge sustaining, the co-state derived
in PMP is used to formulate the cost function. The calculation and
update of the co-state depend on a quantitative analytical formula,
which utilizes characteristic curves of source components. Then,
the performance of the strategy is tested in simulation for two real
driving cycles in summer and winter, and compared with the off-
line PMP and a typical MPC strategy. The simulation results show
that proposed PMP-based MPC strategy provides significant
[g] Difference[%] Simulation time of driving cycle 1 [s]

0 372
�0.03 566
�0.04 740
�0.06 987
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improvement of about 12.1% in fuel economy than the typical MPC
strategy and also it provides sub-optimal solution close to offline
PMP strategy. Besides that, the influence of the tuning factor and
prediction horizon concerning the fuel cell degradation, computa-
tional effort, and hydrogen consumption are presented. Finally, the
proposed strategy is implemented on a HiL test bench located at the
CMP of RWTH Aachen University with high power fuel cell and
battery systems, from which an excellent real-time performance
with merely 2.7% more hydrogen consumption than the global
optimum is observed.
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