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Abstract 

An optimal energy management strategy for a fuel cell and lithium-ion battery 

hybrid train, based on the Pontryagin’s Minimum Principle (PMP), is introduced 

in this paper. Particularly, the aging model of the battery is included for the sake 

of balancing the fuel economy and prolonging the lifetime of the battery in de-

veloping the energy management strategy. As the temperature strongly influ-

ences the aging effect, in this work, the lithiumion cells in the battery system are 

modeled considering the thermoelectric coupling effect. Due to the high dimen-

sionality of the battery model, the energy management strategy based on the 

Pontryagin’s Minimum Principle (PMP) is better suited to solve this problem 

class. By employing a strategy based on PMP, the estimation of the initial values 

of the so-called co-states remains crucial. Instead of using the classic shooting-

method, a robust, and fast search mechanisms based on the differential evolution 

is developed, to find the proper initial co-states values. 

Keywords: fuel cell hybrid train, optimal energy management strategy, Pontryagin’s Min-

imum Principle, battery model, battery aging, differential evolution. 



  Hujun Peng 

Proceedings of the 2nd International Railway Symposium Aachen 2019  415 
 

1 Introduction 

The electrification of railway vehicles is an effective way to save energy and reduce emis-

sions. However, the cost of complete electrification of the railway network, particularly 

for lines with low traffic, is not cost effective. For these railway sections, the fuel cell 

hybrid train is an efficient alternative. In a fuel cell hybrid train, a lithium-ion battery 

system is used in addition to fuel cells, providing and absorbing high transient power 

during acceleration and recuperative braking operation. Moreover, the hybrid train oper-

ates in charge-sustaining mode. Therefore, the fuel cell system meets the average power 

requirement and the battery system fulfills the transient peak power demand. The power 

distribution between the two energy storage systems, the energy management strategy 

(EMS), provides a degree of freedom to optimize the performance of the hybrid train, 

including the driveability, the hydrogen consumption and the fuel cell lifetime. Develop-

ing an energy management strategy under many constraints, defined globally or locally, 

is a challenging task. In the literature, there are basically three methods of developing 

energy management strategies: rule-based, local optimization based and global optimiza-

tion based methods [2]. The rule-based method is based on the engineer’s experience and 

implemented using conditional rules. Benefiting from the low computational effort, the 

rule-based strategy is real-time capable. However, it does not guarantee optimal perfor-

mance [12]. The local optimization based method is also real-time capable because the 

power distribution is determined based on a predefined transient cost function. The most 

famous of them is the equivalent consumption minimization strategy (ECMS), which 

treats the battery power in a sense as fuel consumption in the future using an equivalent 

factor [16]. This method does not guarantee an optimal power distribution as well [2]. 

However, the optimal distribution is accessible if the drive cycle of the vehicle is known 

in advance, which is a reasonable assumption for railway transport. For this purpose, the 

global optimization based method is used. There are two subtypes under the global opti-

mization based method: Dynamic Programming (DP) and Pontryagin’s Minimum Prin-

ciple (PMP) [11]. Both approaches require enormous computational time on conventional 

hardware setups. This is a reason to employ a simple battery model as can be found mainly 

in the literature [1, 17]. Under such a model simplification, the optimal energy manage-

ment strategy problem has only one state variable: the SoC of the battery. The disad-

vantage of this model is that it is not sufficient to represent the real performance of the 

battery under high dynamic load profiles, which is strongly influenced by the thermal 

conditions. Besides, for developing the energy management strategy, in addition to min-

imizing the hydrogen consumption, a long life of the battery is aspired to reduce the over-

all cost. Therefore, the aging model should be included to consider the balance between 

the fuel economy and the battery lifetime. There are basically two types of aging models 
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for the battery: electrochemical models and empirical models [3]. Since the electrochem-

ical models are not real-time available, the empirical models are used. In most literatures 

about battery aging, the battery temperature dynamic is modeled [18, 19, 22]. If the une-

ven temperature distribution within the battery pack is taken into account, several local 

temperatures need to be included as state variables in the system dynamics. However, DP 

cannot effectively solve problems with numerous variables due to the phenomenon of 

"Bellman’s curse of dimensionality" [4]. Therefore, to determine the optimal strategy, 

strategies based on PMP are used [9, 10]. In developing strategies based on PMP, the 

biggest challenge is to estimate the initial values of the so-called co-states defined in the 

PMP. The number of co-states is identical to the number of the state variables. Under the 

numerous state variables, the classic shooting method and the deterministic methods are 

not numerically efficient to find the proper estimates of the co-states variables [13]. For 

this reason, in this paper, a robust, and fast search mechanisms based on the differential 

evolution is developed to find the proper estimates of the initial co-states variables. The 

paper is organized as follows: first, the hybrid train model and its subsystems are de-

scribed; second, the basic principle of PMP and its application in EMS is introduced; 

third, the robust differential evolution algorithm is introduced; following, the results of 

optimum energy management strategy using PMP with the help of the differential evolu-

tion will be displayed. Based on that follows a investigation of the effect of a weighting 

factor between fuel economy and battery lifetime. Last, the conclusion and the possible 

outlook will be given. 

2 Hybrid Train Driveline Model 

The driveline configuration of the hybrid train is shown in Fig. 1. The fuel cell provides 

electric power through a DC-DC converter actively, and the battery passively supplies 

the residual power to fulfill the power demand. The sum of them is converted to the me-

chanical power in an electric motor, with the loss in inverter and motor deducted. Finally, 

the motor torque is transmitted through the gear and axle to the tire, which drives the train 

forward. The DC-DC converter is modeled using a constant efficiency of 0.98. For other 

subsystems, there are a detailed introduction in the following parts. 

2.1 Longitudinal Dynamics 

The drive cycle of the hybrid train is known as a priori knowledge to the energy manage-

ment problem. Based on that, the corresponding road power can be determined using the 

inverse vehicle dynamic model. This demand power must be corrected because it might 

exceed the component capacity. For example, the traction power might be more than the 

power of both 
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fuel cells and battery system, or the braking power may be out of the amount that can be 

collected by the battery system. This inverse dynamic model is based on the balance of 

forces. The force acting on the train consists of two parts: the traction force on the wheel 

and the various resistant force on the vehicle body. The difference between them accel-

erates or brakes the train. The various resistant forces on the vehicle body include aero-

dynamic drag, uphill resistance, and rolling resistance, that are generally depending on 

the vehicle velocity as shown in (1) 

 

where m is the train mass; δ is the mass factor, combining the translational and rotational 

inertial together; μr is the coefficient of the rolling resistance; Cd is the aerodynamic co-

efficient; Af is the front area; g is gravitational acceleration and the ϕ is the angle of slope. 

Then, the power demand on the tire is 
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2.2 Axle and Transmission 

For energy analysis, a lossy gear model is used, which takes into account power losses. 

Given that the speed ratio is equal to the gear ration gfb, being given by kinematic con-

straints, where the subscripts b and f indicate the base and follower shaft. The power loss 

means a reduction of the torque at the output shaft, described using the gear efficiency 

ηgear as 

 

with the convention that power flow positive when going from b to f. The power loss is 

always positive and is computed as 

 

The gear ratio is chosen to be 10 and the efficiency of the whole transmission and axle is 

considered to be at constant 0.98. 

2.3 Electric Machine 

The electrical motor is modeled using maps in function of torque and rotational speed, 

without considering dynamic. Desired torque and the actual rotational speed can be used 

as control inputs. There are four map used: power loss map Ploss (Tem; ωem), current map 

I (Tem; ωem), voltage map U (Tem; ωem) and power factor map cosϕ (Tem;ωem). The relation 

between motor torque and electric power can be expressed as 

 

When operating in motor mode, both the mechanic power Tem • ωem and the motor loss 

power Ploss (Tem; ωem) are positive, then the input electric power Pelec is the sum of them; 

when operating in generator mode, the mechanic power Tem • ωem is negative and the 

motor loss power Ploss (Tem; ωem) is still positive, then the output electric power Pelec is 

the difference of them. Except the power loss map, the other three maps are also used to 

analytically calculate the power loss in the inverter, which will be introduced in the next 

part. 
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2.4 Inverter 

The two level inverter provides sinusoidal currents and voltages. As a result, the duty 

cycle and the motor current change in each switching pulse. To calculate the average 

power loss during a electrical period, the loss must be calculated for each switching cycle 

and be added up. Since this procedure is very complex, an alternative, simple calculation 

method is used. By assuming sinusoidal quantities, an analytical calculation of the switch-

ing losses with the parameters of the circuit breaker is possible. The derivation of the 

equations can be taken from the work of Mestha [15] and Casanelas [5]. Instead of giving 

the detailed deriving process, the resulting formulas are listed in equation (6)) – (7) 

 

The conduction loss in IGBT PC-IGBT and diode PC-Diode depends on the motor current î, 

the degree of modulation â, the power factor cosϕ and the component parameters. For the 

switching loss follows 

 

where fs is the switching frequency; Eon and Eoff are switching-on loss and switching-of 

loss of IGBT respectively; EREC the switching-off loss of Diode; Udl the dc-link voltage; 

Uref and Iref the reference voltage and current corresponding to the Eon, Eoff and EREC. 

The total loss of the inverter are composed of all individual losses multiplied by the num-

ber of inverter legs 

 

3 Lithium Ion Battery System 

Here, a high-power LiNi-CoMnO2 cathode and graphite-based anode cell is considered. 

To achieve a balance between the model accuracy and computation burden of energy 

management, a zeroth order equivalent circuit model (ECM) is implemented to model the 

lithium-ion battery dynamics. As mentioned prior, to capture the thermoelectric effect, 
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the temperature dynamics of the battery is also well thought-out here. The zeroth order is 

expressed in equation (11) [20] 

 

where Ut-cell represents the cell terminal voltage, Uocv-cell represents the open-circuit volt-

age of the cell which is a function of both, the temperature q and SOC of the cell, R0-cell 

represents the cell resistance which is again a function of both, the temperature q and 

SOC of cell and Icell represents the current produced by the cell. Battery SOC which is 

one of the dynamics in the optimal control problem ahead is calculated by the total amount 

of charge stored in the cell, relative to the nominal charge capacity of the cell, which is 

given by equation (12) [20] 

 

Battery Pack Configuration: Herein, in total 250 cells are connected in series and 100 

cells are connected in parallel, resulting in a battery Battery pack power is given by equa-

tion (13) 

 

And the battery current evaluated by equation (14) 

 

Here for simplicity, the dc-dc converter between the battery pack and the dc-link is as-

sumed to work with constant efficiency. 
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The battery aging is considered by taking into account the capacity degradation model, 

which is given by equation (15) [23] 

 

With 

 

and θ is the cell temperature in Kelvin, Ic-norm the nominal C-rate, Ah the total charge 

throughput from the cell and R the gas constant. Battery end of life is defined as 20% loss 

of capacity and the battery life at the nominal current rate of 1C, nominal temperature and 

nominal SOC is determined by equation (16) [14] 

 

Whereas the actual battery life calculated at the actual current rate, temperature and SOC 

is determined by equation (17) [14] 

 

The relative ageing effect is calculated by the severity factor s and is evaluated as per 

equation (18) [21] 
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Consequently, the effective Ah throughput from the battery after considering the relative 

severity affect s is calculated by equation (19) [23] [21] 

 

 

3.1 Fuel Cell 

There are various types of fuel cells which are categorized in terms of their electrolyte. 

In this work, the Polymer-Electrolyte- Proton Exchange Membrane (PEM) is used. Ac-

curately modeling the total fuel cell system related to multiple disciplines is complicated. 

Therefore, it is common to use a quasi-static model of the fuel cell in energy management 

application. Without considering the complex thermodynamic and electrochemistry equa-

tions, a model based on an efficiency map in Fig. 5 is used. According to this map, the 

hydrogen consumption rate can be calculated as 

 

where Pfc is the net power output of the fuel cell; QLHV is the lower heating value of 

hydrogen and η (Pfc) the efficiency of the total fuel cell system corresponding 
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4 Pontryagin’s Minimum Principle 

Pontryagin’s Minimum Principle (PMP) is a very computationally efficient optimal con-

trol method to find the global optimum of an objective function. Unlike Dynamic Pro-

gramming, PMP method is efficient for higher dimension problems too. In this method, 

the optimal control value is achieved by considering state dynamic constraints and the 

boundary conditions of the state variables. This is accomplished by minimising the Ham-

iltonian for all the feasible values in control domain at each time instant, which is given 

by equation (21) 

 

Where Hamiltonian is defined by equation (22) 

 

where L(x(t);u(t); t) is the integrand of an objective function J to be minimized, which is 

defined like following 

 

and f (x(t);u(t); t) is a vector of the state dynamics. 

 

The dynamics of the states and co-states are determined by equation (24) and (25) respec-

tively 

 

4.1 Problem formulation for EMS in a hybrid vehicle 

In this configuration, the fuel cell power is the primary active source of energy, and the 

battery power is to support the transient demands in the Hybrid vehicle. The EMS objec-

tive here is to use this one degree of freedom between two sources and thereby determine 

the optimal load share between the two sources of power and consequently minimise the 

H2 fuel consumed. Additionally, the EMS also targets towards prolonging the battery life. 
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To achieve the abovestated objectives, we define both the control variable u = Pfc and 

power demand as Pdem in kW, where demand power is depending upon the vehicle’s drive 

cycle. Here, a cost function which considers the economical fuel consumption and battery 

ageing simultaneously is derived. The fuel consumption minimisation is given by equa-

tion (26) 

 

Where ṁfc is the H2 mass flow rate in grams per sec which is given by equation (27) 

 

Battery ageing minimization is considered by minimizing the effective Ah throughput 

which is given by equation (28) 

 

Consequently the two objectives as defined in equation (26) and (28) are combined to-

gether with varying weighting factor α ranging from 0 to 1. Here normalization of the 

individual costs is done by dividing with the corresponding maximum values. Therefore 

the resulting normalized cost function to be minimized is given by equation (29) 

 

where ṁfc-max and |Ibatt-max| are the bases to normalize the cost function. The system states 

considered in this case are the state of charge and the temperature of the battery pack, and 

its dynamics are given by equation (30) and (31), 
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The corresponding Hamiltonian with the cost function coupled with the two system state 

dynamics is given by equation (32) 

 

The dynamics of the co-states are calculated by equation (33) and (34) 

 

In using PMP as the optimal control strategy, the most critical part is choosing the right 

initial co-states values. It is critical as only the correct initial values of co-states can satisfy 

the requirements of the problem statements. One of them being end SOC equal to the 

initial SOC and the end value of co-state λ2 equal to zero. λ2 end value equal to zero is the 

requirement of an optimal condition in PMP, in this case as unlike the case of SoC, the 

end value of the second state variable, i.e. the temperature is not fixed. Further, an effi-

cient way to find the correct co-states is explained in section 5. 

5 Differential Evolution 

Instead of shooting method, the evolutionary algorithm will be used to find proper esti-

mates of the initial co-states values. The evolutionary algorithm is suitable for the high-

dimensional multi-constrained optimization problem, which mathematically written as 

 

The x = [x1,x2,…,xD] is a vector of design variables with the dimension D. The k is the 

number of objectives and k = 1 and k > 2 stand for single-objective and multi-objective 
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optimization problems respectively. The m is the number of constrains in form of ine-

quality. All the evolutionary algorithms share the following common process: crossover, 

mutation and selection, as displayed in Fig. 6. They differ from each other in the fourth 

step, how the new solutions are created from the old solutions. The most representative 

and the easiest to tun of these is the differential evolution (DE). In the following, the 

principle and the mechanism for adapting and improving the algorithm are presented in 

detail. 

 

5.1 Principle of Differential Evolution 

The following matrix saves the population with N individuals in the g-th generation. Each 

row of the matrix 𝒙𝑖
𝑔

 = (𝑥𝑖,1
𝑔

 𝑥𝑖,2
𝑔

 𝑥𝑖,3
𝑔

… 𝑥𝑖,𝐷
𝑔

) represents a solution vector with the dimen-

sion of D. 

 

For mutation, a donor vector corresponding to each target vector is generated using dif-

ference formulation from the randomly selected members of the current population as 

follows 

 

where 𝒙𝑟1
𝑔

, 𝒙𝑟2
𝑔

, 𝒙𝑟3
𝑔

 are randomly selected, different individuals from the population in 

the gth generation without the target vector 𝒙𝑖
𝑔

 included to create the donor vector 𝒗𝑖
𝑔

. 

The vector 𝒙𝑏𝑒𝑠𝑡
𝑔

 is the best individual of the population in terms of the objective value. 

The factors Fα and Fβ are scaling factors. Moreover, there are other difference formulation 
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strategies, which can be found in [6]. The difference formulation here utilizes the infor-

mation of the best solution to accelerate the convergence process. After the mutation, 

crossover between the donor vector and the target vector is implemented to create a trial 

using the binary recombination like 

 

Where randj (0;1) is a random number between 0 and 1 for the j-th dimension of each 

trial vector, to be compared with the control parameter CR, which describes how likely a 

dimension of the new trial vector comes from the donor vector. In contrast, the (1 – CR) 

means with which probability, a dimension comes from the target vector. The number 

jrand is a random integer from the set {1,2,…,D} to ensure that at least one dimension 

comes from the donor vector such that the trial vector 𝒖𝑖
𝑔

 differs from the target vector 

𝒙𝑖
𝑔

  by at least one dimension. Finally, the trial vector 𝒖𝑖
𝑔

 will be compared with the target 

vector 𝒙𝑖
𝑔

 and the winner go into the next generation. 

5.2 Constraints handling 

As mentioned, the critical point in using PMP is to find the optimal initial values of the 

costates λ1-t0 and λ2-t0, that satisfies the following boundary conditions 

 

The problems with equality in the constraint are difficult to solve using differential evo-

lution. Therefore, the boundary condition is relaxed into the form that is appropriate to 

differential evolution, with the absolute end value of the second co-state |λ2-tf| as the goal 

function to minimize and the SOCtf included in an inequality equation with tolerance 

 

To incorporate the constraints violation degree into the definition of fitness function, the 

penalty function is often applied [8]. The penalty should be low at the beginning of the 

optimization, to benefit exploration, and increased with the evolution, to ensure that all 

the solutions at the end of optimization comply with the constraints. It’s difficult to define 

such a dynamic penalty function, so another way is chosen. The fitness function is differ-

ently defined dependent on that, whether the solution feasible is or not as follows 
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If the solution is feasible, the fitness value is directly equal to the objective, otherwise, 

the overall constraints violation degree will be signed to the fitness value. Based on that, 

there are three cases when comparing two solutions [7]: 

1. If both solutions are valid, the solution with better objective function value will 

win, 

2. If one solution is valid and the other solution is invalid, the valid solution will 

prevail, 

3. If both solutions are invalid, the solution with less injury will win. 
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6 Simulation Results 

The results discussed here are obtained by implementing the offline optimal control strat-

egy PMP. 

 

Battery SOC: Figure 9 shows the battery state of charge profile. It can be seen that as 

the weighting factor "1 – α" associated with the cost function J2 increases in magnitude 

in equation (29), the battery usage is decreased. In all the cases, the battery SOCt0 at the 

beginning of the drive cycle is equal to the SOCtf at the end of the drive cycle. Thus, the 

boundary condition is satisfied by the optimal initial co-states values. 

Co-state λ1: Figure 10 details the evolution of the co-state λ1 over the entire drive cycle. 

It can be observed that the absolute value of the co-state largely remains almost constant 

over 
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the entire duration. 
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Co-state λ2: Figure 11 details the evolution of the co-state λ2 over the entire drive cycle. 

Unlike co-state λ1, which has no requirement of a fixed end state value, here the co-state 

λ2 associated with the battery temperature must have an end value of zero. 

 

Battery pack Temperature θbatt: Figure 12 details the evolution of the battery pack tem-

perature θbatt over the entire drive cycle. Here it can be observed that with the increasing 

"1 – α " factor on the cost J2 in equation (29), the battery pack maximum temperature is 

decreased. This decrease is obviously due to the reduction in the total Ah throughput of 

the battery. 

 

Pareto front: In this work, the PMP results are evaluated for varying weighting factor α. 

The optimal results are analysed by drawing a pareto front of the total hydrogen con-

sumption (in kg) caused in the fuel cell system against the total Ah throughput of the 

battery system, refer figure 13. The pareto front signifies that a significant increase in 

battery life can be achieved with a minimal increase in the hydrogen fuel consumption. 
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This relation holds, mainly because, hydrogen consumption is quadratic, refer (27) 

whereas the battery ageing is exponential in nature in relation to the power flow. 

7 Conclusion 

In this paper an energy management strategy for a hybrid vehicle using optimal control 

method Pontryagin’s minimum principle has been implemented and analysed. By consid-

eration of battery ageing minimisation along with the fuel cell consumption minimisation 

yielded an economical solution. The Pareto front confirms that the battery life can be 

prolonged significantly with a very little increase in fuel cell energy consumption. A min-

imal increase in fuel cell energy consumption of approx 1:4% resulted in almost 23% 

reduction in the total battery Ah throughput. Also, by consideration of the battery pack 

temperature dynamics along with the state of charge helped us to determine the actual 

severity factor s in the battery ageing mechanism. This absolute optimal energy consump-

tion information serves as a benchmark for heuristic, online real-time control strategy 

design. The paper highlights that with increasing order of system dynamics and the cor-

responding increase in number of co-states, the differential evolutionary algorithm could 

be a very powerful and robust tool in determining the optimal initial co-states values. 
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