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H I G H L I G H T S

• The convexity of specific consumption curves is emphasized based on results of PMP.

• The dependency of co-states on SoC and the average fuel cell power is identified.

• A quantitative analytical formula is derived to determine the co-state.

• An excellent fuel economy results due to the accurate estimate of co-states.

• A scalable strategy due to its model-based characteristics.
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A B S T R A C T

A scalable, causal, adaptive optimal control-based energy management strategy for the fuel cell hybrid train is
designed. As learned from the results of offline Pontryagin’s minimum principle (PMP)-based strategies, the
convexity of the specific consumption curve is emphasized to improve the fuel economy. More important is that
the dependency of the co-state on the state of charge (SoC) of batteries and the average fuel cell power is
identified the first time. With the help of using the optimal control theory in a reverse way, a quantitative
analytical formula is derived to determine the co-state based on the SoC and the average fuel cell power. The
accuracy of the estimates, and the effectiveness of this strategy, under different weather, driving, and aging
conditions, is validated by comparison to the results of offline PMP-based strategies. Thereby, a maximal de-
viation of the co-state average value compared to the offline results is 1.8%. An excellent fuel economy under a
typical driving cycle of regional railway transports in Berlin, with only 0.03% more consumption for both
summer and winter conditions, compared to the results of offline PMP, is resulted. Due to the model-based
characteristics, the strategy can be scaled or transferred to other configuration systems or driving conditions
without the loss of effectiveness.

1. Introduction

1.1. Background and motivations

About 50% of the railway network in Europe is operated by com-
bustion engines [1]. In order to reduce greenhouse gas emissions, more
electrification of the railway network is planned in the near future.
However, it is not economically beneficial to electrify railway networks
with low and medium use. Therefore, the hydrogen-powered railway
vehicle is planned to replace the combustion engine-driven vehicles

without high investment to electrify the entire railway network. Com-
pared to the CO2-based fuels, hydrogen is more economical and en-
vironmental friendly [2]. So far, the Proton Exchange Membrane (PEM)
fuel cells have been attempted in the propulsion system for railway
transportation. A 1200 kW hybrid locomotive powered with a 250 kW
fuel cell as the prime energy source and lead-acid batteries as ancillary
power was designed for possible commercial applications by the North
American Consortium [3]. A 120 kW fuel cell-powered railcar is re-
ported by Japan’s Railway Technical Research Institute [4]. In China,
Southwest Jiao-tong University introduced the first fuel cell-powered
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locomotive in 2013 [5]. In Europe, Italy declared a road-switcher
combined with a 120 kW fuel cell system and a 360 kWh lead-acid
puffer battery system [6]. Notably, Alstom presented the world’s first
fuel cell-powered train named Coradia iLint powered by two 200 kW
fuel cells and 110 kWh lithium-ion batteries in 2016, which started
revenue service in Germany in 2018 [7]. Siemens is developing Mireo
to replace the diesel engine-based train, and a fuel cell variant is also
planned in cooperation with Ballard, which is expected to be opera-
tional in 2021 [8]. This is also the focus of this paper.

The fuel cell hybrid train of Mireo has no catenaries, and works
under charge-sustaining conditions, which means, the fuel cell system
provides the average load power along the entire driving cycle, while
the battery system affords the transient high power during acceleration
or absorbs negative load power during regenerative braking. Therefore,
the degree of freedom to distribute load power between the fuel cell
system and the battery system can be utilized to improve the perfor-
mance of the driveline. Not only the fuel economy but also the opera-
tion of fuel cells and batteries with less stress is pursued in the design of
energy management strategy [9].

1.2. Literature review

There are two types of energy management strategies: rule-based
methods and optimization-based methods [10]. The rule-based
methods are defined as a series of “if-then” rules to determine the
control input, which are based on engineer expertise, intuition, safety
considerations, and boundary constraints [11]. Their main advantage is
the low computational burden and they are widely used in several
commercial hybrid vehicles like the Toyota Mirai [12] and the Prius
[13]. Furthermore, the rule-based methods can be classified into two
types: deterministic rule-based methods und fuzzy rule-based methods.
They are formulated in terms of fixed or fuzzy rules, which are influ-
enced by various control parameters. Offline optimized control para-
meters can substantially advance the performance of rule-based stra-
tegies, as used in [14] to optimize the parameters of membership
functions. However, these optimized parameters are strongly depending
on the driving cycles and vehicle configurations, limiting the adaptivity
of the rule-based methods in real-time applications.

The optimization-based methods are classified into global optimi-
zation methods and real-time optimization methods. The global opti-
mization methods are implemented to calculate the global optimum
solution for the entire driving cycles based on a priori information
about future load situations. The most famous of them are dynamic
programming and optimal control theory. Dynamic programming
solves different optimization problems in discrete form based on
Bellman’s principles of optimality [15]. With the interpolation to
evaluate the cost-to-go function of the new states, the algorithm is
parallelized to improve computational efficiency [16]. Nevertheless,
due to the remaining prohibitive computational load and the fact that
the solutions are solely optimal for a given driving cycle, it is used as a
reference strategy. In the stochastic dynamic programming (SDP), the
Markov chain is used to describe the uncertain driving conditions, and
the obtained solution by SDP is inferior to dynamic programming due to
the insufficient information about the future driving situations [17]. For
the optimal control-based strategy, the control law is based on the
minimization of the so-called Hamiltonian function in each time instant
under consideration of limits on controls. At lower computational ef-
fort, it outperformed an equivalent consumption minimization strategy
(ECMS) regarding the fuel economy [18]. However, the estimation of
the initial co-state has a non-trivial influence on the solution con-
vergence if the driving cycle is not known.

For real-time optimization methods, the control variable is de-
termined, minimizing a predefined cost function based on future
equivalence assumption of the electric energy consumption. In general,
the cost function should be mathematically formulated suitably for real-
time applications in terms of memory resources and computational

demands [13]. The most famous one is the above mentioned ECMS,
which converts the electric energy consumption into an equivalent fuel
consumption by using equivalent factors [19]. The crucial point is to
estimate the equivalent factors considering different components’
characteristics and dynamics of power sources. Because the estimation
of the equivalent factors strongly influences the performance of ECMS,
the research about ECMS can be differentiated in the two perspectives:
searching the optimal static values or dynamic update of this equivalent
factor [13]. The former can be realized using the evolutionary algo-
rithm [20] regarding different driving cycles and vehicle configura-
tions. The latter can be categorized into three subtypes: First, correcting
the equivalent factor using PI-controller based on the offline reference
trajectory [21]. Second, Introducing a penalty factor depending on the
battery charging level to correct the equivalent factor [22]. Third, by
using multi-dimensional look-up tables, which are offline calculated
[23]. Another real-time optimization method is based on PMP. It is
proved in [24] that ECMS is a simplified version of PMP-based strategy.
As for the ECMS, the functionality of the PMP-based strategy is sensitive
to the estimation of the co-state. Therefore, the dynamic correction of
these values is implemented by using PI-control [25]. Compared to the
rule-based strategies, the advantages of optimization-based energy
control have been indicated in [26].

Furthermore, these real-time optimization methods can be com-
bined with model predictive control (MPC) [27], in which the SoC re-
ference value or an optimized SoC trajectory is pursued to be followed,
as considered in the cost function. However, on one side, the fixed re-
ference value limits the optimality of strategies, while the optimized
SoC trajectory is strongly dependent on the optimality of the pattern
predicting the optimal SoC trajectory. Moreover, in the case of ECMS or
PMP-based MPC control, the estimation of the equivalent factor or co-
state, which goes into the cost function, remains critical, as mentioned
above.

Nowadays, it can be observed that the main trend of energy man-
agement is to acquire optimal solutions in real-time [28]. For this
purpose, subsidiary adaptations tools such as pattern recognition, in-
telligent traffic systems, and prediction/estimation are integrated into
optimization-based strategies [28]. However, the functionality of this
subsidiary methods-based strategy is dependent on the offline training
efforts, which does not guarantee the scalability and transferability of
the strategy to other driving conditions and different aging components
states.

In all, the PMP-based adaptive strategy is promising for real-time
applications with the help of subsidiary tools if the available compu-
tational resources permit. However, the estimation of the co-state re-
mains challenging, and the methods used, including driving pattern
recognition, intelligent system, and prediction, to update the co-state
do not show sufficient scalability, causality, and adaptivity regarding
changes in terms of driving conditions, vehicle configurations, and
components aging. The essential reason is that the dependency of the
co-state on components characteristics and driving cycles is though
identified. However, the quantitative formula to calculate the co-state is
lacking. In other words, all the strategies about adaptive ECMS and
PMP used in the reviewed literature utilize only the qualitative or partly
quantitative relation of the co-state to the driving cycles.

1.3. Main work

In response to the above shortcomings, an analytical formula is
derived for the first time to estimate the co-state for adaptive
Pontryagin’s minimum principle-based strategies (APMP). This formula
is initiated by the discovery of dependency of the co-states on the
average fuel cell power and SoC values from offline results. Thereby the
co-state is determined by using the component characteristics. In the
case of changes in vehicle configurations and components aging, the
determination of the co-states or rather the whole strategy is adjusted,
which ensures the scalability and adaptivity of the strategy. It is worth
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mentioning that the global fuel cell power is not known in advance in
real-time. Therefore, a novel mechanism to estimate the average fuel
cell power by using information from history and about the available
terrain and time table is implemented to improve the estimate of the
average fuel cell power.

1.4. Paper organization

The paper is organized as follows: in Section 2, the driveline mod-
eling necessary for analyzing energy management is introduced. In
Section 3, the offline PMP-based strategy and its results are described.
Thereby, on the one side, the convexity of the specific consumption
curve of the fuel cell system is emphasized to improve the fuel
economy. On the other side, the dependency of the co-state on the
average fuel cell power and SoC is identified. Subsequently, the ana-
lytical formula to determine the co-state, from the average fuel cell
power and SoC, is derived. Then, the mechanism to estimate the
average fuel cell power in the real-time application is introduced. In
Section 4, the functionality of the APMP-based strategy under different
driving cycles, weather, and aging conditions are approved based on
simulations, compared to the results of offline PMP-based strategies. A
thoughtful discussion based on that will be given. In Section 5, the
conclusions and a possible outlook are given.

2. Driveline modeling

The configuration of the parallel hybrid train powered by fuel cells
and batteries is displayed in Fig. 1. In order to study the influence of
energy management strategies on the fuel economy, it is common to
stationary model the most components of the driveline except the train
velocity and SoC, without dynamic in other components considered.
Due to symmetry, power flow is modeled for a half train instead of a
whole train, as shown in Fig. 2. The modeling of components will be
explained in the following sections.

2.1. Environment model

In the environment model, driving cycles and slope profiles of three
routes in Germany are defined, as presented in Fig. 3. The driving cycle
1 of a distance of 145.8 km and travel time of 8110 s belongs to the
regional train 1 between Aachen and Cologne, and it goes downhill and
then uphill. The driving cycle 2 of a distance of 154 km and 8192 s
corresponds to the Mannheim-Karlsruhe-Basel railway in the State of
Baden-Wüttemberg, and it goes uphill and then downhill. The driving
cycle 3 of a distance of 584.5 km and 68213 s belongs to the regional
train 27, which travels through Berlin and Brandenburg. The driving
cycle 3 has a much smaller slope than the former two. Information
about route parameters, including terrain gradient, velocity limits,
traveling time between stations, and hold time in each station, comes
from project partners. These driving cycles are determined by using
dynamic programming with the minimization of hydrogen consump-
tion as the goal [29], with algorithm parallelized as [16]. The number

of passengers is assumed to be 120, each with a mass of 75 kg.

2.2. Longitudinal dynamic

The various forces acting on the vehicle are illustrated in Fig. 4. The
forces acting on the train can be broadly classified as the traction force
Ftrac acting on the wheels of the train and the other various resistant
forces. The various resisting forces on the vehicle body include aero-
dynamic drag Faero, uphill resistance Fgrade, acceleration force Fa, and
rolling resistance Froll, as shown in (1). During mechanical braking,
there is also resistance force represented by Fb. The positive direction of
the resistance forces is defined against the train velocity v.

= − − − −F F F F F F ,a trac roll aero grade b (1)

which can be expanded as follows:

= − − − −m dv
dt

F μ mg ϕ ρ C A v mg ϕ F· cos( ) 0.5 sin( ) ,trac r air d f
2

b (2)

where m is the train mass, μr the coefficient of the rolling resistance; Cd
the aerodynamic coefficient, ρair the air density, Af the front area, g the
gravitational acceleration, and ϕ the angle of slope. The above men-
tioned parameters can be found in Table 1.

2.3. Electrical machines

Three high-speed induction machines of 220 kW rating power are
used to drive a half train, to ensure a maximal speed of 160 kmh and an
acceleration capability of 1.2 m/s2. The electrical machines are sta-
tionary modeled by using lookup tables without considering the ma-
chine mechanical dynamic due to the short time constant compared to
the train dynamic. Those lookup tables come from post-processing of
results of Finite Element Analysis, and they have torque demand and
the rotational speed as inputs. A total of four lookup tables, as displayed
in Fig. 5, are needed to model the loss along the driveline. Besides the
power loss, the other three lookup tables are required to calculate the
inverter loss. The current directly influences the inverter loss, and the
power factor determines the current sharing between IGBT and diode.
The motor voltage influences the modulation degree, which can also
influence the inverter loss. The ratio of the gear is assumed to be 10,
and its efficiency 0.98. The vehicle wheel radius is 0.425 m. With the
help of these parameters, the machine torque is converted to the trac-
tion force on the tire. All related parameters can be found in Table 2.

Fig. 1. System configuration of hybrid train.

Fig. 2. A half train.
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2.4. DC/AC inverter

The inverter loss depends on the machine current, machine voltage,
power factor, switching frequency or machine speed, DC-link voltage,
and semiconductor temperature. Nevertheless, temperature and DC-
link voltage are in practice controlled to be constant. In the simulation,
the DC-link voltage is 1200 V, and the temperature is assumed to be

∘120 C. Therefore, the inverter is modeled using four-dimensional lookup
tables, with the machine voltage, machine current, machine speed,
power factor as inputs, shown in Figs. 6 and 7. The influence of the
power factor and motor speed on loss is also displayed, based on a
working point with phase voltage and current equal to 350 V and 200
A. The lookup tables are derived by using simulation with the help of
software Plecs, and the simulated model is presented in Fig. 8. Three
alternate current sources with a phase shift of 120 degrees to each other
are applied as the symmetrical load. Through modulation control, the
amplitude of phase voltage and the power factor can be adjusted. Be-
sides that, the switching frequency is adjusted proportionally to the

motor speed to reduce the switching loss of the converter at low motor
speed. The switching frequency is ten times the ground frequency of the
current supply f1. The semiconductor module has a rated current of 450
A and a breakdown voltage of 3300 V, whose datasheet belongs to the
product of Infineon named FF450R33T3E3. Other parameters of in-
verters can be found in Table 3.

2.5. Auxiliary consumption

The auxiliary systems correspond to the non-driving function of the
hybrid trains, which include heating, compressors, ventilation systems,
and air conditioning. In order to determine the energy consumption of
an air conditioning system, the thermal power introduced into the
passenger compartment has to be considered, including heat conduc-
tion, convection and radiation, passenger heat generation, ventilation
and the heat from electrical components [30]. Since the focus lies on
hybrid strategies in this work, a static thermal model is used to simplify
the calculation of energy consumption. It is assumed −5 °C in winter,
35 °C in summer, and 21 °C in the cabin. In the simulation, the power,
including the onboard electrical consumers, is estimated to be 83 kW in
winter and 55 kW in summer, respectively.

2.6. DC/DC converter

For the DC/DC converter, the coupling between thermal and elec-
trical modeling is considered. A thermal network, as shown in Fig. 12, is
used to calculate the temperature of semiconductors, and the heatsink
temperature is set to be 40 °C. In order to consider the nonlinearity,
simulation with the help of the software Plecs is used to determine the
lookup tables, whose model with three parallel branches is presented in
Fig. 9. The converter loss is dependent on the load current, DC-link
voltage, battery voltage, and semiconductor temperature. The power
loss lookup tables are displayed in Figs. 10 and 11 regarding different
temperatures and battery voltages. The effect of the temperature and
battery voltage on the loss can be identified, based on an operational
point with the DC-link voltage and load current equal to 1200 V and
350 A. The semiconductor module is the same as that in the DC/AC
converter. Other parameters related to the loss can be found in Table 4.

Fig. 3. Driving cycles: (a) driving cycle 1 with distance of 145.8 km and travel time of 8110 s, (b) driving cycle 2 with a distance of 154 km and travel time of 8192 s,
(c) driving cycle 3 with a distance 584.5 km and travel time of 68213 s.

Fig. 4. Forces acting on the train.

Table 1
Parameters related to longitudinal dynamic.

parameters symbols values units

train mass (with passengers included) m 60000 kg
gravitational acceleration g 9.81 m/s2

rolling resistance coefficient μr 0.0015 –
air density ρair 1.4 kg/m3

aerodynamic coefficient Cd 0.15 –
front area Af 10 m2
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2.7. Fuel cell system

The efficiency of the fuel cell system is strongly dependent on the
dynamic conditions, and especially related to the operative conditions
of auxiliary sub-systems including stacking cooling, reactant feeding,
and humidification [30]. As the focus of this paper lies in the design of
energy management strategy to improve fuel economy, it is general to
model the fuel cell system stationary, and a model based on a specific
consumption curve of the fuel cell system in Fig. 13 is used. The con-
vexity of the curve can be identified, as described in (3).

+ − < + −m α P α P α m P α m Ṗ ( · (1 )· ) · ̇ ( ) (1 )· ̇ ( ),H fc,1 fc,2 H fc,1 H fc,22 2 2 (3)

where ṁH2 represents the mass flow depending on the net fuel cell
power. The convexity will be utilized to derive an analytical formula to
determine the co-state later. Correspondingly, its efficiency curve is
displayed in Fig. 14. It is worth mentioning that the product of Ballard
HD7 is used as the fuel cell system and its detailed parameters about its
inner construction are not available.

2.8. Battery system

The battery model of the lithium-ion high-performance cell used is
parameterized by using real measurement data consisting of pulse tests
and electrochemical impedance spectroscopy. The cells are inter-
connected to modules, which are connected to a battery pack with
nominal voltage of 850 V and energy capacity of 200 kWh. Here an
equivalent circuit model with 3 R-C branches is used for the entire
battery system, as shown in Fig. 15. The dependency of various para-
meters on the SoC and temperature can be found in Fig. 16. The heat
loss is dissipated by active liquid cooling. With the active cooling, the
temperature of the battery pack is controlled to be 25 °C, and the
thermal modeling is not considered. The characteristic curves of the
open-circuit voltage and R0 at 25 °C are displayed in Fig. 17, which
shows an obvious dependency on SoC.

3. Adaptive optimal control-based strategy

In this section, the scalable, causal, and adaptive optimal control-
based strategy will be detailedly displayed. In the first step, the offline
PMP-based energy management strategy is briefly introduced, and the
sensitivity of the strategy on the estimate of co-states is emphasized.
With the help of offline PMP, on the one side, the convexity of the
specific consumption curve of the fuel cell system is identified to im-
prove the fuel economy. On the other side, the dependency of the co-
state on SoC and the average fuel cell power is the first time identified.
This new discovery initiates the possibility of determining the co-state
analytically. With the help of reversely using the optimal control
theory, the formula to determine the co-state is derived. Furthermore,
to eliminate the sensitivity of the strategy depending on the estimates of
the co-state, the average fuel cell power is over again estimated.

Fig. 5. Electrical machines characteristics: (a) Electrical machine voltage in V, (b) Electrical machine current in A, (c) Electrical machine power factor, (d) Electrical
machine loss in W.

Table 2
Parameters related to electrical machines.

parameters values units

number of poles 4 –
rated power (kW) 220 kW
maximal power (kW) 300 kW
rated rotational speed 3200 rpm
maximal rotational speed 12000 rpm
gear ratio 10 –
gear efficiency 0.98 –
number of motors 3 –
wheel radius 0.425 m

Fig. 6. Inverter loss in W at low motor speed =n 3000 rpmmotor : (a) under =ϕcos 0.8, (b) under =ϕcos 0.7.
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3.1. Basics of offline PMP

For using the optimal control to get the optimal offline strategy, the
formulation of the Hamiltonian function plays a central role, which is
formulated as follows:

= +H SoC P λ t m P λ t SoC t( , , , ) ̇ ( ) ( )· ̇ ( )fc H fc2 (4)

where the ṁH2 is the mass flow with the unit of g/s, which depends on
the fuel cell power Pfc, as shown in Fig. 13, SoC t( ) the state variable,
and the λ t( ) the co-state with the unit of g. The dynamics of the state
and the co-state are defined according to the optimal control theory as
follows:

= −SoC t I
Q

̇ ( ) ,bat

bat (5)

for the state dynamic, and

= − ∂
∂

λ t H SoC P λ t
SoC

̇ ( )
( , , , )

,fc
(6)

for the co-state dynamic. With the substitution of the Hamiltonian
function defined in (4) into (6), the co-state dynamic can be expanded
as

= −
∂
∂

− ∂
∂

= − ∂
∂

λ t
m
SoC

λ t SoC
SoC

λ t SoC
SoC

̇ ( )
̇

( )·
̇

0 ( )·
̇

,H2

(7)

whereby the derivative of the mass flow with respect to SoC equals
zero, because the mass flow is independent on SoC.

The battery current I is related to the load power and the fuel cell
power as follows:

− = = −I V R I P P P·( · ) .oc,bat 0,bat bat load fc (8)

From that, the battery current can be written in function of the load
power and the fuel cell power:

=
− − −

I
V V P P R

R
4·( )·

2·
,

oc,bat oc,bat
2

load fc 0,bat

0,bat (9)

which can be substituted into (5):

= −
− − −

SoC t
V V P P R

Q R
̇ ( )

4·( )·
2· ·

.
oc,bat oc,bat

2
load fc 0,bat

bat 0,bat (10)

It is obvious that the change rate of SoC is not directly related to
SoC, however, the open-circuit voltage Voc,bat and the resistance R0,bat
are dependent on SoC, as displayed in Fig. 17. Then, the derivative of
the change rate of SoC with respect to SoC can be reformulated as
follows:

⎜ ⎟
∂
∂

= ⎛
⎝

∂
∂

∂
∂

+ ∂
∂

∂
∂

⎞
⎠

SoC
SoC

SoC
V

V
SoC

SoC
R

R
SoC

̇ ̇
·

̇
· ,

oc,bat

oc,bat

0,bat

0,bat

(11)

which can be substituted into (7) to calculate the co-state dynamic:

⎜ ⎟= − ⎛
⎝

∂
∂

∂
∂

+ ∂
∂

∂
∂

⎞
⎠

λ t λ SoC
V

V
SoC

SoC
R

R
SoC

̇ ( )
̇

·
̇

· .
oc,bat

oc,bat

0,bat

0,bat

(12)

With utilization of (10) follows the partial derivative of the change
rate of SoC with respect to the open-circuit voltage

Fig. 7. Inverter loss in W at low motor speed =n 10000 rpmmotor : (a) under =ϕcos 0.8, (b) under =ϕcos 0.7.

Fig. 8. Simulated model of DC/AC inverter in Plecs.

Table 3
Parameters related to DC/AC inverter.

parameters values units

number of inverter 3 –
DC-link voltage 1200 V
module temperature 120 °C
switching frequency f10· 1 Hz
breakdown voltage of the semiconductor module 3300 V
rated current of the semiconductor module 450 A

Fig. 12. Thermal network of DC/DC converter.

Fig. 9. Simulated model of DC/DC converter in Plecs.
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∂
∂

= −
⎛

⎝
⎜ −

− −

⎞

⎠
⎟

SoC
V Q R

V

V P P R

̇ 1
2·

· 1
4·( )

,
oc,bat bat 0,bat

oc,bat

oc,bat
2

load fc 0,bat (13)

and the partial derivative of the change rate of SoC with respect to the
inner resistance R0,bat

∂
∂

=
⎛

⎝
⎜

− −

− −
+

⎞

⎠
⎟

SoC
R Q R

P P R V

V P P R
V

̇ 1
2·

2·( )

4·( )
.

0,bat bat 0,bat
2

load fc 0,bat oc,bat
2

oc,bat
2

load fc 0,bat
oc,bat

(14)

The derivatives of the open-circuit voltage and the inner resistance
with respect to SoC, which are also in function of SoC, can be derived
from the characteristic curves shown in Fig. 17, and the results are
shown in Fig. 18.

According to PMP, the control is determined to minimize the
Hamiltonian function in each instant as follows:

=∗P t H SoC P λ t( ) argmin ( , , , ).
P t

fc
( )

fc
fc (15)

If the initial values of the state and the co-state are known, they can
be updated in each instant with the help the dynamic Eqs. (10) and
(12). However, in the physical world, only the initial and end values of
the states are known, from which the name of two-point boundary
value problems come. Due to the nonlinearity of the system defined by
the dynamic Eqs. (10) and (12), there are only numeric solutions in this
case. For that purpose, the shooting method by using a bidirectional
search is utilized to find the right initial co-state. For the boundary
conditions, the initial and end SoC are chosen to be 0.5. Due to the
widely known PMP, only some essential results are displayed in Fig.
(19). Thereby, Fig. 19a displays the end SoC value depending on the
initial co-state values, and a monotonic relation between them can be
identified. The end SoC value is sensitive to the initial co-state in the
neighborhood of the true value of the co-state, which means a small
error in estimates of the co-state value leads to enormous different so-
lutions. Fig. 19b depicts SoC trajectories corresponding to different
initial co-states, which also reflects the sensitivity of the solutions
against the initial values of the co-state. Therefore, the core of using

PMP in energy management for hybrid vehicles is to estimate the co-
state accurately in real-time.

3.2. Results of offline PMP

The shooting methods are used to find the right initial co-state va-
lues for different driving cycles under different weather. The results
regarding the fuel cell power trajectories, SoC trajectories, and the co-
state trajectories for different driving cycles are displayed in (Fig. 20),
(Fig. 21) and (Fig. 22), respectively. Recognized from the SoC trajec-
tories in Figs. 20c, 21c and 22c, the condition of charge-sustaining is
fully satisfied, which means the estimates of the initial co-states for all
cases are correct. Besides that, the SoC trajectories are fast identical
under summer and winter because, under offline PMP, the fuel cell
system covers the average load power for both seasons, and the battery
current due to acceleration and regenerative braking is fast identical.
From the co-state trajectories in Figs. 20b, 21b and 22b, a changeable
co-state can be observed. Therefore, strategies, as found in much lit-
erature, with an assumed constant value of the co-state, can not opti-
mize power distribution. More interesting is that the average amplitude

Fig. 10. DC/DC converter loss in W depending on voltage and load current at DC-link with battery voltage equal to 850 V: (a) under 150 °C, (b) under 80 °C.

Fig. 11. DC/DC converter loss in W depending on voltage and load current at DC-link with battery voltage equal to 740 V: (a) under 150 °C, (b) under 80 °C.

Table 4
Parameters related to DC/DC converter.

parameters values units

switching frequency 1000 Hz
number of parallel branches 3 –
resistance of inductor pro branch 0.15 mΩ
inductance pro branch 1.3 mL
capacitor 6 mF
breakdown voltage of the semiconductor module 3300 V
rated current of the semiconductor module 450 A
Rch,igbt, case to heatsink, per IGBT 17.4 K/kW
Rjc,igbt , junction to case, per IGBT 28.4 K/kW
Rch,diode, case to heatsink, per diode 19.3 K/kW
Rjc,diode, junction to case, per diode 45.5 K/kW
Theatsink, Temperature of heatsink 40 °C
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of the co-state in summer is more than that in winter for all three
driving cycles, which is related to the different average load power in
different seasons. The dependency of the amplitude of the co-state on
the average fuel cell power can be identified in Table 5. The average
amplitude of the co-state decreases as the average fuel cell power de-
creases. The analytical relations between the co-state values and the
average fuel cell power will be derived in the next subsection. More
notable is that the fuel cell power for different driving cycles under
different weather, as shown in Figs. 20a, 21a and 22a, stays near its
average values, along with small and frequent dynamics. It can be de-
rived that the power distribution with the fuel cell power approxi-
mately close to its average values results in an excellent fuel economy.
The reason for that lies in the convexity of the specific consumption of
the fuel cell system. To meet the charge-sustaining condition, the total
electrical energy from the fuel cell system should be equal to the sum of
the total load energy and the total battery loss energy as:

∫ ∫= +P τ dτ P τ P τ dτ( ) ( ( ) ( )) ,
T T

0 fc 0 load loss,bat (16)

where T is the travel time. The average fuel cell power is defined as
follows:

∫
=P

P τ dτ
T

( )
.

T

fc
0 fc

(17)

Then, the convexity, as described in (3), can be extended for the
average fuel cell power along with the entire driving cycles:

∫
<m P

m P τ dτ
T

̇ ( )
̇ ( ( ))

.
T

H fc
0 H fc

2
2

(18)

Therefore, a concentration of working points near an average value
results in an excellent fuel economy than a distribution of working
points, which is consistent with the results of offline PMP. Then, the
average value, close to which the fuel cell system works, should be
equal to the sum of the average load and the average battery loss, due to
the charge-sustaining, as follows:

= +∗P P P ,fc load loss,bat (19)

as derived with the help of division of both sides in (16) by the travel
time T.

Other relevant parameters related to the offline results are sum-
marized in Table (5), including the average load power, the average
battery loss, the average fuel cell power, and the average amplitude of
the co-state. Thereby, the hydrogen consumption is scaled back for a
whole train instead of a half train.

3.3. Dependency of the co-state on SoC and the average fuel cell power

Besides displaying its trajectories in the time domain in the last
subsection, the co-state is here plotted in the function of SoC for dif-
ferent driving cycles under different weather, respectively, as shown in
(Fig. 23). The amplitude of co-state under the optimal control increases
with SoC increased, which is entirely contrary to the co-state correction
mechanism adopted in all reviewed literature about ECMS and PMP,
which decreases the amplitude of the co-state as SoC goes up. The
reason for this lies in the higher open-circuit voltage of batteries at
higher SoC, as shown in Fig. 17. According to the energy-conservation
principle, for the same incremental increase of SoC at a higher SoC
level, more electrical energy is required, which also means more hy-
drogen consumed to charge the battery system. Besides that, with the
average fuel cell power in winter increasing compared to that in
summer, the average amplitude of the co-state increases, as mentioned
in the last subsection. The reason is that in winter, the fuel cell system
works at higher average power, whose corresponding efficiency is also
lower than that in summer, as shown in (Fig. 14). That means, for the
same incremental increase of SoC, more hydrogen consumption is re-
quired, and the amplitude of the co-state goes up. More notably, the
value of co-states under optimal control shows a significant con-
centration under different combinations of SoC and the average fuel cell
power. It can be inferred that the co-state can be simplified to be a
single-valued function of SoC and the average power. This function can
be approximated by using data from offline PMP for various driving
conditions and weather conditions, and the approximated curves are
also shown in corresponding figures.

3.4. Analytical formula to derive the co-state

According to the optimal control theory, the control is determined
to minimize the Hamiltonian function, as defined in (15). It is reason-
able to assume, that the partial differential of the Hamiltonian with
respect to the control for the optimal control is zero, as follows:

∂
∂

=
∂
∂

+ ∂
∂

=
= =∗ ∗

H
P

m
P

λ SoC
P

̇ ̇
0,

P P P Pfc

H

fc fcfc fc

2

fc fc (20)

where ∗Pfc represents the actual optimal control. As learned from the last
subsection, the fuel cell power under the optimal control is close to its
average value, and then the average value is substituted into (20) as
follows:

∂
∂

=
∂
∂

+ ∂
∂

=
= =

H
P

m
P

λ SoC
P

̇ ̇
0,

P P P Pfc

H

fc fcfc fc

2

fc fc (21)

whereby the partial derivative of the change rate of SoC with respect to
the fuel cell power can derived from (10):

Fig. 13. Specific consumption curves of the fuel cell
system: (a) Without zoom, (b) Zoom in.

Fig. 14. Efficiency curve of the fuel cell system.

Fig. 15. Equivalent circuit with 3 R-C branches for the battery system.
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∂
∂

=
− −

SoC
P Q V P P R

̇ 1 · 1
4·( )

.
fc bat oc,bat

2
load fc 0,bat (22)

After its substitution into (21) follows the analytical formula to
determine the co-state:

= −
∂
∂

− −
=

λ
m
P

Q V P P R
̇

·( · 4·( ) ) ,
P P

H

fc
bat oc,bat

2
load fc 0,bat

2

fc fc (23)

whereby the derive of the mass flow with respect to the fuel cell power
can be derived from the specific consumption curve, which is also a
function of fuel cell power, as depicted in Fig. 24. The open-circuit
voltage and the inner resistance are dependent on SoC, as shown in
Fig. 17. However, an assumption have to be made for the value of the
load power. A reasonable but straightforward assumption is that the
load power equals the average fuel cell power because, in this case, the
battery loss equals to zero. Then the analytical formula to determine the
co-state can be simplified to

= −
∂
∂ =

λ
m
P

Q V
̇

· · ,
P P

H

fc
bat oc,bat

2

fc fc (24)

then it is evident that the co-state is a function of SoC included in the
open-circuit voltage, and the average fuel cell power included in the

Fig. 16. Parameters of the equivalent circuit components of the battery system: (a) Open-circuit voltage in V, (b) R0 in Ω (c) R1 in Ω, (d) R2 in Ω, (e) R3 in Ω, (f) Time
constant due to R C·1 1 in seconds, (g) Time constant due to R C·2 2 in seconds, (h) Time constant due to R C·3 3 in seconds.

Fig. 17. Open-circuit voltage and R0 of the whole battery system depending on
SoC at 25 °C.

Fig. 18. Derivatives of the open-circuit voltage
Voc,bat and the inner resistance R0,bat with respec to
SoC in function of SoC: (a) ∂

∂
V

SoC
oc,bat , (b) ∂

∂
R

SoC
0,bat .
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derivative of the mass flow with respect to the fuel cell power.
According to the equation, the co-state can be plotted as the func-

tion of SoC and the average fuel power with its value as the same as the
offline case, as shown in Fig. 25. After comparison to the fitted curve
from the offline results, the effectiveness of the analytical formula is
validated. It is worth mentioning that the parameters required in the
analytical formula are the fuel cell system and battery system char-
acteristics, which depend only on the components and system config-
uration instead of specific driving cycles or driving patterns. Therefore,
this analytical formulation to estimate the co-state can be scaled or
transferred to other system configuration without the loss of effective-
ness. Even in the case of component degradation, the formula adapts
itself to maintain accuracy regarding the actual component character-
istics.

This analytical formula can be utilized to correct the co-state reg-
ularly, in order to eliminate the sensitivity of the strategy on the values
of the co-state, as mentioned before, which is the most challenging task
faced with ECMS. During the remaining time, the co-state evolves as the
dynamic Eq. (12) shows, to utilize the local optimality based on PMP.

However, the required average fuel cell power along the whole
drive cycle is unknown in the real-time application. Therefore, the
history information of the load and battery loss power is utilized to
estimate the global average values. The remaining task is to determine
when to correct the co-state and how to estimate the average fuel cell
power from history information correctly.

3.5. Mechanism of updating the average fuel cell power

Typically, vast load power is demanded during acceleration, and
negative power is regenerated during regenerative braking operation.
Therefore, the average load power is overestimated during acceleration
of the vehicle and underestimated during regenerative braking, when
compared to the global average load power. To solve this problem, the
time instant, when the train leaves each station along the driving cycle,
is chosen to correct the co-state, as shown in Fig. 26. This instant also
applies to estimate the average battery loss well due to the same reason.
In this way, the average fuel cell power is estimated to be

∫
=

+
P t

P τ P τ dτ
t

( )
( ) ( )

,
t

fc
0 load loss,bat

(25)

whereby the load power is the sum of various loss power:

= + +P t F v P P( ) ·load trac loss,driveline aux (26)

with help of the longitudinal dynamic equation in (1), the above
equation can be expanded to

= ⎛
⎝

+ + + + ⎞
⎠

+ +P t m dv
dt

F F F F v P P( ) · · ,load roll aero grade b loss,driveline aux

(27)

where Paux represents the auxiliary consumption, Ploss,driveline the sum of
power loss in the DC/DC converter, gear, motor, inverter, and the re-
maining power is required to overcome the different resistances along

Fig. 19. Results of Shooting methods: (a) End value of SoC dependent on the initial co-state value, (b) SoC trajectories under different initial co-state values.

Fig. 20. Results of PMP for the driving cycle 1: (a) Fuel cell power trajectories, (b) Co-state trajectories, (c) State trajectories.
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with the driving cycle. The mean amplitude of the gradient force can be
more than other resistant forces except for the acceleration force, de-
pending on driving cycles, as shown in Fig. 27. They are determined by
using the longitudinal dynamic Eq. (1), and the mechanical braking is
applied if the mechanical torque demand torque exceeds the maximal
motor torque. As presented in Fig. 3, the driving cycle 2 owns the lar-
gest average value of the slope, while the driving cycle 3 the least value.
This large gradient force results in a significant difference in the load
power between uphills and downhills, and the estimate of the average
fuel cell power is indirectly influenced. Therefore, the estimated
average fuel cell power by using (25) is lower than the global average
one, if the train first goes downhills and then go uphills, while the es-
timated average fuel cell power is higher than the global one reversely,
which leads to a bad fuel economy of the strategies.

As the fuel cell power is eventually equal to the sum of various
power loss due to energy conservation principle, the power demand to
overcome slopes does not mean loss eventually, because the increased
gravitational energy can be recycled in the future. Then the load power
can be corrected by excluding the power to overcome the gradient
slopes as follows:

= − +P t P t m g ϕ t v t m g ϕ v t( ) ( ) · ·sin ( )· ( ) · ·(sin )· ( ),load,cor load (28)

then the estimate of the average fuel cell power can be improved

∫
=

+
P t

P τ P τ dτ
t

( )
( ) ( )

,
t

fc,1
0 load,cor loss,bat

(29)

whereby the term m g ϕ· ·sin represents the force required to overcome
the average gradient, which corresponds to the height difference

Fig. 21. Results of PMP for the driving cycle 2: (a) Fuel cell power trajectories, (b) Co-state trajectories, (c) State trajectories.

Fig. 22. Results of PMP for the driving cycle 3: (a) Fuel cell power trajectories, (b) Co-state trajectories, (c) State trajectories.

H. Peng, et al. Applied Energy 267 (2020) 114987

11



between the start and end stations.
Another crucial point is linked to the long down time of regional

trains in some stations, as presented in Fig. 3c for the driving cycle 3.
The estimate of the average value by utilizing (29) can result in a sig-
nificant increase of SoC during the long down time. In order to solve
this problem, the down time and the travel time already experienced,
and the total down time and travel time for each driving cycle, which
are surely available in the area of railway transportation, are used to
correct the estimate by weighting the corrected load power regarding
driving and down time as follows:

= +
∫

∫

+

+

P t‾ ( ) ·

· ,

T

T P τ P τ dτ

T

T

T P τ P τ dτ

T

fc,2
1 · ( ) ( )

1 · ( ) ( )

drive driving load,cor loss,bat

driven

stop stopping load,cor loss,bat

stopped (30)

where T represents the total travel time, Tstop the total down time, Tdrive
the total driving time, Tstopped the experienced down time each time to
update the average value, Tdriven the experienced driving time. The sum
of the corrected load power and the battery loss is integrated to cal-
culate the energy consumption during driving and downtime sepa-
rately. In this way, the estimate of the average value considers the fu-
ture down time, and the over-charging of the battery system during the
long down time can be avoided.

Furthermore, the difference between the integral of the sum of the
corrected load power and the battery loss, and the supplied fuel cell
power so far should be compensated in the future estimation of the
average fuel cell power, to satisfy the charge-sustaining condition, as
follows:

∫
= +

+ −
−

P t P t
P τ P τ P τ dτ

T T
( ) ( )

( ( ) ( ) ( ))
,

t

fc,final fc,2
0 load,cor loss,bat fc

traveled (31)

where Ttraveled represents the experienced travel time in each instant to
update the average value.

If the SoC end target value is different from the initial value as in the
case of a plug-in hybrid vehicle, an average power corresponding to the
difference of battery energy should be added to that, and the average
value can be reformulated as:

= +−P t P t E
T

( ) ( ) Δ ,fc,plug in fc,final
bat

(32)

where EΔ bat is the energy difference, which corresponds to the differ-
ence regarding the SoC values and T the total travel time.

4. Results

The simulation results by using the online APMP-based strategy are
compared to the results of offline PMP with the load power trajectory
and the SoC boundary values as the same as that under the APMP-based
strategy. As the losses in R R,1 2, and R3 of the parallel branches of the
battery system are not considered in implementating offline PMP, the
fuel cell power from the results of offline PMP has to be corrected up-
wards by the sum of these losses. For that purpose, the battery current
resulted from offline PMP flows through the three parallel R-C bran-
ches, as shown in Fig. 17. The corrected fuel cell power is then em-
ployed to calculate mass flow and total hydrogen consumption. It has to
be mentioned that the corrected fuel cell power, in this way, is not
wholly equivalent to optimal references. Nevertheless, it can be utilized
to evaluate the APMP-based strategy without significant deviation. (see
Fig. 28).

Table 5
Results of offline PMP.

Cycles Pload [kW] Ploss,bat [kW] Pfc [kW] λ [g] H2 [kg/km]

1, summer 110.4 1.3 111.7 −12682 0.214
1, winter 139.2 1.3 140.5 −13301 0.280
2, summer 101.1 2.1 103.2 −12006 0.186
2, winter 129.8 2 131.9 −12771 0.296
3, summer 76.7 0.59 77.2 −10720 0.286
3, winter 105.3 0.56 105.9 −12551 0.421

Fig. 23. Dependency of the co-state on SoC under different weather conditions for different driving cycles: (a) Driving cycle 1, (b) Driving cycle 2, (c) Driving cycle 3.

Fig. 24. Derivative of the mass flow with respect to the fuel cell power.
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In the following parts, the trajectories from the APMP-based
strategy for different driving cycles and weather conditions are dis-
played, together with that resulted from offline PMP. The initial SoC is
0.5 for all simulations.

Fig. 29 shows the fuel cell power trajectories for different driving

cycles, including in summer and in winter, and they are compared to
trajectories from offline PMP. The fuel cell system for all the three
driving cycles works near the estimated average values with dynamic
oscillation. Fast overlapping with the results of the offline PMP is ob-
served under the driving cycle 3, while the fuel cell power trajectories
are slight more different from the offline results of PMP under the other
driving cycles, as shown in Fig. 29a and b. The reasons for that is that
the estimated mean fuel cell power under driving cycle 2 and 3 are
more deviated from the global average values, as shown in Fig. 30. Due
to the shorter drive time of cycle 1 and 2 compared to the driving cycle
3, the deviation in the estimate of the average fuel cell power is ob-
viously more. Although there are such deviations in the short-time
scale, positive and negative deviations are compensated, which does
not affect the fuel economy much. Therefore, an excellent fuel economy
results, with more hydrogen consumption of 0.22%, 0.16%, 0.03% in
summer, for driving cycle 1, driving cycle 2, driving cycle 3 respec-
tively, compared to offline results, and more consumption of 0.24%,
0.22%, 0.03% in winter. The reason for that lies in the accurate esti-
mates of the co-states along with the driving cycles.

Fig. 31 shows the co-state trajectories for different driving cycles,
jointly with the co-state trajectories from offline PMP. The difference
between APMP and offline PMP regarding the values of the co-state is
small, with a maximal transient relative deviation of 5.2%, 5.5%, 4.3%
in summer, for driving cycle 1, driving cycle 2, and driving cycle 3
respectively, and a maximal relative deviation of 6.8%, 8.3%, 1.2% in
winter. Though a high deviation of the co-state happens at the begin-
ning of the driving cycles, with the driving cycles running, the error in
the estimates is reduced, which validates the robust adjustability of
APMP. Besides that, It is obvious that the deviations in the case of the
driving cycle 1 and 2 are more than that under the driving cycle 3. The
reason lies in that the estimate of co-states is related to the average fuel
cell power, which is more deviated from the global average values for
the driving cycle 1 and 2. Regard the mean values of the co-states, they
are summarized in Table 6, and a maximal deviations of 1.8% between
APMP and offline PMP is observed.

Regarding the SoC trajectories shown in Fig. 32, They are fast
overlapped with the results of offline PMP for all three driving cycles,
which verifies the effectiveness of the APMP-based strategies. The SoC
trajectories under different weather are fast the same. The reason lies in

Fig. 25. Analytical determination of the co-state in function of SoC and the average fuel cell power for different driving cycles, compared to the fitted curve from
offline results: (a) Driving cycle 1, (b) Driving cycle 2, (c) Driving cycle 3.

Fig. 26. schematic explaining the time instant to update the average fuel cell
power.

Fig. 27. Percentages of the average amplitude of different forces in total re-
sistance force along the entire driving cycles.

Fig. 28. Loss determination in parallel branches.
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that under both weather conditions, the fuel cell system covers the
average power, with about 30 kW more in winter than in summer due
to the auxiliary consumption, and then the battery current under both
conditions are fast the same. The end SoC values can be found in
Table 6.

To test the effectiveness of this strategy in the long run, with com-
ponents aging increased, the simulation is executed under an assumed
battery capacity loss of 10% and a resistance increase of 5%. Here only
the driving cycle 3 with the longest driving time is tested. The results
are also compared to the results by using offline PMP strategy with the
same aging degree considered. The state, co-state, and power trajec-
tories are collected in Fig. 33, and a high overlapping is observed be-
tween APMP and PMP regarding the trajectories mentioned above. In
terms of fuel economy, more hydrogen consumption of 0.11% and
0.08% compared to the results of offline PMP results for summer and
winter, respectively, which means a slight increase of consumption
when compared to the case without aging. In other words, the goodness
of the fuel economy is maintained under the APMP-based strategy, and
not much affected by the battery aging. The co-state is evaluated with a
maximum relative deviation of 3.06% and 0.84% from the offline re-
sults, for summer and winter conditions, respectively. With the driving
cycle continuing, the deviation decreases, as in the case of without
aging considered. Therefore, the functionality of the APMP-based
strategy is approved for the case of components aging.

It is worth mentioning that the depth of discharge under component
is more than that without aging considered, as shown in Fig. 34b, which

results from the decreased capacity of the battery system. In order to
avoid over-charging and over-discharging of battery systems, informa-
tion about the load in the future is required to adjust the estimate of the
average fuel cell power, which belongs to future work. More notable is
that the fuel cell power trajectories show more oscillations compared to
that without aging, as shown in Fig. 34a, which results from increased
resistance of the battery system. The reason behind that lies in that the
strategy based on PMP tries to makes the fuel cell system work in the
area of high efficiency on the one side and to reduces the battery loss on
the other side, which is influenced by the strategy itself. When the
battery resistance is low, it is more beneficial to maintain the fuel cell
system to work close to the average values, and the battery loss is
comparably small due to its small resistance. However, with the re-
sistance increased due to the aging, the battery loss influences the fuel
economy more, then the fuel cell system works with more oscillation. In
this case, a weighting factor has to be introduced to balance the fuel
economy and the stable operation of the fuel cell system.

5. Conclusions

A scalable, causal, adaptive optimal control-based energy manage-
ment strategy for fuel cell hybrid trains is designed. As learned from the
results of offline PMP, the convexity of the specific consumption curve
is emphasized, which can be used to improve the fuel economy. More
important is that the dependency of the co-state on SoC and the average
fuel cell power is identified for the first time. With the help of reversely

Fig. 29. Fuel cell power trajectories under APMP for different driving cycles, compared to that of PMP: (a) Driving cycle 1, (b) Driving cycle 2, (c) Driving cycle 3.

Fig. 30. Estimated Fuel cell power average trajectories under APMP for different driving cycles, compared to the global average values: (a) Driving cycle 1, (b)
Driving cycle 2.
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using the optimal control theory, the dependency is analytically de-
rived, which can be used to eliminate the sensitivity of APMP on the
estimate of the co-state. Thereby, the co-state is corrected each time

when the train leaves stations based on an estimated average fuel cell
power, during the remaining time, the dynamic of the co-state is used to
update the co-state. This average value is determined by using the
history information, which ensures the strategy causality. Furthermore,
the power demand due to gradient force is excluded in calculating the
average power, which helps to reduce the oscillation of the estimate of
the average value along with the variable gradient. Besides that, the
total down time and the driving time accessible in railway transporta-
tion are used to improve the estimation of the average value, to avoid
overcharging of batteries during the long down time. The accuracy of
the estimated co-states, and the effectiveness of this strategy, under
different weather, driving, and aging conditions, is validated by com-
parison to the results of offline PMP. Thereby a maximal deviation of
1.8% is observed in the co-state average value under different driving

Fig. 31. Co-state trajectories under APMP for different driving cycles, compared to that of PMP: (a) Driving cycle 1, (b) Driving cycle 2, (c) Driving cycle 3.

Table 6
Simulation results of APMP.

Cycles SoCend λ [g] Ref. λ from PMP H2 [kg/km] Ref. PMP

1, summer 0.5182 −12783 0.27% 0.223 0.22%
1, winter 0.5231 −13635 1.8% 0.291 0.24%
2, summer 0.6383 −12625 0.33% 0.218 0.16%
2, winter 0.6449 −13469 1.5% 0.284 0.22%
3, summer 0.5734 −10997 1.5% 0.303 0.03%
3, winter 0.623 −12833 0.45% 0.431 0.03%

Fig. 32. State trajectories under APMP for different driving cycles, compared to that of PMP: (a) Driving cycle 1, (b) Driving cycle 2, (c) Driving cycle 3.
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cycles in the case without aging. An excellent fuel economy under a
typical driving cycle of regional railway transports in Berlin, with only
0.03% more consumption for both summer and winter conditions,
when compared to the results of offline PMP, is resulted. Due to the
model-based characteristics, the strategy can be scaled or transferred to
other configuration systems or driving conditions without loss of ef-
fectiveness. In the future, the average fuel cell power can be more ap-
propriately estimated by applying load information about upcoming
routes, in order to avoid over-charging and over-discharging in the case
of capacity loss of battery systems due to aging.

Declaration of Competing Interest

None.
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