
lable at ScienceDirect

eTransportation 4 (2020) 100057
Contents lists avai
eTransportation

journal homepage: www.journals .e lsevier .com/etransportat ion
A scalable, causal, adaptive rule-based energy management for fuel
cell hybrid railway vehicles learned from results of dynamic
programming*

Hujun Peng a, *, Jianxiang Li a, Andreas Thul a, Kai Deng a, Cem Ünlübayir c,
Lars L€owenstein b, Kay Hameyer a

a Institute of Electrical Machines (IEM), RWTH Aachen University, Aachen, Germany
b Siemens Mobility GmbH, Vienna, Austria
c Chair for Electrochemical Energy Conversion and Storage Systems, Institute for Power Electronics and Electrical Drives (ISEA), RWTH Aachen University,
Germany
a r t i c l e i n f o

Article history:
Received 10 February 2020
Received in revised form
24 March 2020
Accepted 14 April 2020
Available online 7 May 2020

Keywords:
Energy management
Fuel cell hybrid trains
Rule-based strategy
Dynamic programming
Scalability
* This work is funded by the German Federal Mini
Energy (BMWi) under the National Innovation Prog
Technology (NIP) with the funding numbers of 03B1
authors gratefully acknowledge the support by Sieme
* Corresponding author.

E-mail address: hujun.peng@iem.rwth-aachen.de

https://doi.org/10.1016/j.etran.2020.100057
2590-1168/© 2020 Elsevier B.V. All rights reserved.
a b s t r a c t

A scalable, causal, adaptive rule-based energy management strategy for fuel cell hybrid trains is devel-
oped. The rules of this strategy are initiated by the results of two-dimensional dynamic programming
under different driving conditions and utilize the convexity of the characteristic specific consumption
curve of the fuel cell system. According to the strategy, the fuel cell power follows the estimated average
load power. This average value is updated each time when the train leaves a station by using prior
knowledge, which ensures its causality. Furthermore, the power demand due to the gradient slope is
excluded while estimating the average value because the gravitational energy is recyclable. In this way,
the fuel cell system works more stably without being influenced by the strongly changeable power
demand due to the gradient slopes. In order to avoid over-charging of batteries during long hold time,
which is often the case for regional railway vehicles, the pre-known driving, holding, and travel time
available in railway transportation are used to improve the estimation of the average values. After
comparison with the results of dynamic programming, an excellent fuel economy is observed under
different driving cycles and weather. More consumption of 0.01% and 0.09% in summer and winter,
respectively, compared to dynamic programming, results under a typical driving cycle of regional railway
vehicles in Berlin. Because the rules are based on the component characteristics, this strategy can be
transferred to other vehicle configurations or driving situations without a loss of effectiveness. In
addition to the excellent fuel economy, the lifetime of fuel cell systems benefits from its less dynamic
operation.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

1.1. Background and motivations

About 40% of the railway network in Germany is not electrified.
More electrification of the railway network is proposed to reduce
stry for Economic Affairs and
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(H. Peng).
carbon dioxide emissions, [1]. Nevertheless, to fully electrify railway
networks, especially for parts with low and medium traffic, is not
economically beneficial. Therefore, it is a promising short-term
alternative to replace combustion engine-driven vehicles with
hydrogen-powered vehicles without high investment to completely
electrify the entire network. So far, the Proton Exchange Membrane
(PEM) fuel cell hybrid trains have been prototyped and commercial-
ized worldwide. In June 2019, East Japan Railway Company declared
that it is financing in developing a two-car trainset utilizing fuel-cell
technology from Toyota, expecting to start tests by 2021 and have
commercially-viable technology available by 2024 [2]. In September
2016,Alstomunveiled theirnewlyproduced iLint train,manufactured
at the factory in Salzgitter. In September 2018, the operation of the
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trains was launched in Lower Saxony, Germany [3]. Siemens is
workingonMireo to substitute combustion engine-driven trains, and
a fuel cell variant with 200 kW rated fuel cell power is designed in
partnership with Ballard. This hybrid train is supposed to begin its
operation after 2021, which is the focus of this paper [4]. The fuel cell
hybrid railway vehicles of Siemens is planned work under charge-
sustaining conditions. In other words, the average load power is
covered by the fuel cell systems, while the transient power demand
duringaccelerationor regenerativebrakingoperation is supportedby
thebatterysystems.Accordingly, theperformanceof thedrivelinecan
be improved by optimizing the distribution of load power between
the battery systems and the fuel cell systems. In addition to hydrogen
consumption minimization, it is beneficial to operate fuel cells less
dynamically, to prolong the fuel cell lifetime [5].

1.2. Literature review

Two types of energy management strategies: optimization-
based methods and rule-based methods are found in literature
reviews [6,7]. In the rule-based methods, a series of heuristic rules
are defined to determine the control, basing on human experience,
boundary limitations, and safety concerns. Their advantage lies in
robustness and low computational load, which enables them
widely adopted in commercial hybrid vehicles like Prius [8] and
Toyota Mirai [9]. Wang. et al. implement the rule-based strategies
for fuel cell hybrid vehicles, with various mechanisms integrated
[10]: considers the criteria of the remaining capacity, the demand
power, and the power capability of the energy storage systems [11],
adopts the Markov prediction method [12,13], use a finite state
machine (FSM)-based energy management strategy. However, the
parameters of the rules are based on heuristic experiences, and can
not be transferred to other system configurations and driving
conditions without loss of functionality. More crucial is that the fuel
cell system is frequently switched on and off, which shortens the
fuel cell lifetime and is in the praxis not reasonable. Furthermore,
the parameters of the rule-based methods can be optimized by
using the evolutionary algorithm to improve their performance. In
Ref. [14], the parameters of membership functions of fuzzy logic
rules are optimized. Nevertheless, the optimized parameters are
related to the driving cycles for training, which restricts the adap-
tivity of the rule-based methods under changeable driving condi-
tions. In order to avoid the affects of heuristic experience on the
functionality of the rule-based strategies, the experience can be
extracted from offline optimization-based results. In Ref. [15], dy-
namic programming is utilized to derive the rule-based energy
management strategy for an electric city bus with a hybrid energy
storage system, including a battery and a supercapacitor. However,
the extracted rules are dependent on specific driving cycles, and
then can not be scaled or transferred if the vehicle configuration or
driving conditions change.

The optimization-based methods include both the global
optimization-based methods and the local optimization-based
methods. The global optimization methods can determine the
global optimum solution by utilizing pre-known load information
about the whole driving cycle. The most important ones are dy-
namic programming and Pontryagin’s minimum principle (PMP)-
based methods. Dynamic programming solves process optimiza-
tion problems by utilizing Bellman’s principles of optimality [16].
With interpolation used to estimate the cost-to-go function of new
states, the algorithm is implemented parallelly to reduce compu-
tation time [17]. To fully satisfy the precondition of without after-
effect before using dynamic programming, two-dimensional
dynamic programming is designed to consider constraints on the
change rate of fuel cell power [18]. However, because the solutions
of dynamic programming are optimized for a pre-known driving
cycle, they can be applied as a reference for real-time strategies. For
the PMP-based methods, the control input is determined to mini-
mize the Hamiltonian function at each time instant. However, the
evaluation of the initial co-state strongly influences the solution
quality if driving cycles are not priorly known.

For the local optimization-based methods, control is calculated
by minimizing a predefined cost function, which is based on
assumed equivalent factors of the battery energy consumption.
Generally, for real-time applications, computational load and
memory resources have to be considered to formulate the cost
function suitably. The equivalent consumption minimization strat-
egy (ECMS) is the most prominent one, which transforms battery
power into an equivalent fuel consumption rate with the help of
equivalent factors [19]. It is most challenging to estimate the
equivalent factors because the evaluation of the equivalent factors
greatly determines its performance. As found in the literature, the
equivalent factors can be adjusted by using PI-controller based on
the offline optimized state of charge (SoC) trajectory [20], corre-
sponding to different driving conditions [21]. Besides ECMS, the
adaptive PMP-based strategy belongs to the local optimization-
based methods. It is described in Refs. [22] that ECMS is a simpli-
fied version of the PMP-based method. Similar to ECMS, the quality
of estimation of the co-state influences the performance of the PMP-
based method strongly. It is common to use PI-controllers to adjust
the co-state [23]. However, the parameters of the PI-controller are
not suitable for different driving conditions. Furthermore, these
local optimization-based methods can be integrated into model
predictive control (MPC) [24]. Thereby, the deviation of SoC from a
reference value or an optimized SoC trajectory from prediction
patterns is considered in the cost function. However, a fixed refer-
ence value restricts the optimality of strategies, as learned from
offline results, and the optimized SoC trajectory relies on the quality
of the prediction patterns. Besides, the requirement on real-time
capability and limits by the available computational resources on-
board restricts the horizontal length to be predicted in MPC.

Nowadays, the main research trend in the area of the energy
management is to obtain optimal solutions in real-time applica-
tions [25]. Subsidiary adaption tools like intelligent traffic systems,
pattern recognition, and prediction/estimation are combined with
optimization-based methods to improve the performance of stra-
tegies [25]. However, on the one side, the effectiveness of these
subsidiary tools relies on offline training efforts. Therefore, the
transferability of the strategy to other driving conditions and
different aging component states is not ensured. On the other side,
the necessary communication infrastructure is not yet ready for big
data communication.

Overall, the strategies adopted for commercial hybrid vehicles
are restricted to the rule-based methods because of low compu-
tational burden and robustness, as for the ToyotaMirai [9], Prius [8],
and Alstom Coradia iLint [26]. Compared with optimization-based
methods, the inferiority of the rule-based methods have been
expressed in Ref. [27,28]. The most important justifications for the
conclusion are that the rules are extracted based on human expe-
rience, which restricts optimality and adaptivity of the rule-based
methods. The fundamental reason for this prejudice is that the
rules in the reviewed literature are assumed to be based on the
engineer experience rather than analytically and quantitatively
derived. Due to the lacking quantitative formulation, the scalability
and adaptivity of the rule-based method are underestimated.

1.3. Main work

In order to overcome the shortcomings of rule-basedmethods, a
quantitative formula based on the convexity of the specific con-
sumption curve of fuel cell systems instead of human experience is



Fig. 2. A half train.
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developed for the rule-based strategy. The rules are initiated by the
results of dynamic programming, which is implemented for
different driving cycles, weather, and rate limits of fuel cell systems.
According to the strategy, the fuel cell power follows a corrected
load power average value. Thereby, the available terrain informa-
tion and pre-known information about driving, holding, and travel
time, which are the case in railway transportation, are incorporated
to correct the average estimates of load power. This incorporation
helps to reduce the oscillation of working points of fuel cell sys-
tems, to prolong the fuel cell lifetime without loss of fuel efficiency.
Moreover, two-dimensional dynamic programming is used as a
reference to prove the effectiveness of the purposed strategies for
different driving conditions, rate limits of fuel cell systems, and
aging conditions. Simulation results show that this rule-based
strategy can achieve an excellent fuel economy on the one side
and maintains the fuel cell system towork with much less dynamic
on the other side. More important is that this strategy can be scaled
or transferred to different system configurations, driving conditions
without loss of functionality. Moreover, this strategy is applied
online.

1.4. Paper organization

The paper is organized as follows: In section 2, the driveline
configuration related to energy management is briefly introduced.
In section 3, the two-dimensional dynamic programming is used to
determine the optimal strategy. Thereby, different driving cycles
under different weather are used, and generic experience drawn
from their results is given. In section 4, the rules learned from the
results of dynamic programming are detailedly derived. Thereby, a
quantitative analytical formula to estimate the average load power
is step by step improved and mathematically justified. In section 5,
the functionality of this rule-based strategy under different driving
cycles, weather, rate limits of fuel cell systems, and aging conditions
are approved by comparing simulation results to that of dynamic
programming. Discussion based on the results will be given. In
section 6, the conclusion and the possible outlook are given.

2. Driveline modeling

Fig. 1 displays the schematic of the driveline, which corresponds
to a parallel hybrid structure. In order to analyze the effect of en-
ergymanagement on the fuel economy of hybrid trains, it is general
to model the most components of the driveline stationary except
SoC and the train velocity, with dynamic in other components not
considered. Due to symmetry, a half train instead of the whole train
is modeled in the following, as shown in Fig. 2. The modeling of
components will be described in detail in the subsequent sections.

2.1. Environment model

In the environment model, driving cycles and slope profiles of
three routes in Germany are defined, as presented in Fig. 3. The
driving cycle 1 goes downhill and then uphill by trend, the driving
cycle 2 goes uphill and then downhill, and the driving cycle 3
Fig. 1. System configuration of a hybrid train.
belongs to a regional railway vehicle in Berlin, which has a much
smaller slope than the first two. These driving cycles were obtained
by dynamic programming, with their route parameters, waiting
times, and maximum acceleration considered, which is standard
technology for velocity optimization. Other relevant environmental
parameters include ambient temperature, number of passengers.

2.2. Longitudinal dynamic

The various forces acting on the vehicle are illustrated in Fig. 4.
The forces acting on the train include several resistant forces and
traction force Fx acting on wheels. The resisting forces on the train
include rolling resistance Fr, uphill resistance Fg, aerodynamic drag
Fair. During mechanical braking, there is also resistance force rep-
resented by Fb. The positive direction for the resistance forces is
defined against the direction of travel. The longitudinal dynamics is
described by (1):

Fa ¼ Fx � Fr � Fair � Fg � Fb (1)

m ,
dv
dt

¼ Fx � mrmgcosð4Þ � 0:5,rairCdAfv
2 �mg sinð4Þ � Fb

where Fa is the net force for acceleration, m the train mass, mr the
rolling resistance coefficient, rair the air density, Cd the aero-
dynamic coefficient, g the gravitational acceleration, Af the front
area, Fx the traction force onwheels, and4 the angle of slope, which
is related to the slope as follows:

4¼ arctanðslopeÞ: (2)

The above mentioned parameters can be found in Table 1.

2.3. Electrical machines

A half train is driven by three high-speed asynchronous ma-
chines, each with a peak power of 300 kW. The machines are
modeled stationary because of the much shorter machine time
constant when compared to the longitudinal dynamic. In total, four
tables, as presented in Fig. 5, are used, which result from Finite
Element Analysis. Besides the power loss in themachines, the other
three lookup tables are necessary to determine the loss in inverters.
The motor current influences the inverter loss directly, and the
power factor influences the loss distribution between IGBT and
diode. Themotor voltage determines themodulation degree, which
then influences the inverter loss. The gear system has a ratio of 10
with an assumed constant efficiency value of 0.98, and the vehicle
wheel radius is 0.425 m. With the help of these parameters, the
motor torque can be transformed to the traction force on the
wheels. All the parameters related to themachines are summarized
in Table 2.

2.4. DC/AC inverter

The inverter loss is dependent on various variables, including
machine current, machine voltage, switching frequency or machine
speed, power factor, semiconductor temperature, and DC-link



Fig. 3. Driving cycles: (a) driving cycle 1 with distance of 145.8 km and travel time of 8110 s, (b) driving cycle 2 with a distance of 154 km and travel time of 8192 s, (c) driving cycle 3
with a distance 584.5 km and travel time of 68213 s.

Fig. 4. Forces acting on the train.

Table 1
Parameters related to longitudinal dynamic.

parameters symbols values units

train mass (with passengers included) m 60000 kg
gravitational acceleration g 9.81 m=s2

rolling resistance coefficient mr 0.0015 e

air density rair 1.4 kg=m3

aerodynamic coefficient Cd 0.15 e

front area Af 10 m2
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voltage.Nevertheless, temperatureandDC-linkvoltageare inpractice
controlled to be constant. Therefore, four-dimensional lookup tables
with the machine current, machine voltage, machine speed, power
factor as inputs are utilized to model the inverter loss. The lookup
tables result fromasimulationwith thehelpof softwarePlecs, and the
simulatedmodel is displayed inFig. 6. Three alternate current sources
are used as the load instead of motors, with a phase shift of 120+ to
each other. Through modulation control, the power factor and the
amplitude of phase voltage can be changed. The influence of the po-
wer factor and motor speed on loss is also displayed, based on a
working pointwith voltage and current equal to 350V and 200A. It is
worth mentioning that the switching frequency is adjusted propor-
tional to themotor speed, to keep the switching loss of the converter
low at low motor speed. The switching frequency is 10 times the
fundamental frequency of the current supply. The semiconductor has
a breakdownvoltage of 3300V and a rated corrector current of 450A,
whose datasheet corresponds to the product of Infineon named
FF450R33T3E3.

2.5. Auxiliary consumption

The auxiliary systems are used to implement the non-driving
function of the train including creating a thermally comfortable
environment. This includes compressors, heating, air conditioning,
and ventilation systems. In order to calculate the energy con-
sumption of an air conditioning system, consideration must be
given to the thermal power introduced into the passenger
compartment: heat conduction and convection, radiation, passen-
ger heat tranfer, ventilation and the heat from electrical compo-
nents [29]. In this work, since the focus lies on hybrid strategies, we
used a static thermal model to simplify the calculation of energy
consumption. We assume �5+C in winter, 35+C in summer, and
21+C in the cabin. Energy consumption can be estimated by
calculating with heat flow and coefficient of power. In the simula-
tion, we estimate that the power, including the onboard electrical
consumers, is 83 kW in winter and 55 kW in summer.

2.6. DC/DC converter

For determining the DC/DC converter loss, the coupling between
thermal and electrical modeling is taken into account. A thermal
network is used to implement the thermal modeling and the
heatsink temperature is set to be 40+C. In order to consider the



Fig. 5. Electrical machines characteristics: (a) Electrical machine voltage in V, (b) Electrical machine current in A, (c) Electrical machine power factor, (d) Electrical machine loss in
W.

Table 2
Parameters related to electrical machines.

parameters values units

number of poles 4 e

rated power (kW) 220 kW
maximal power (kW) 300 kW
rated rotational speed 3200 rpm
maximal rotational speed 12000 rpm
gear ratio 10 e

gear efficiency 0.98 e

number of motors 3 e

wheel radius 0.425 m

Fig. 6. Simulated model of DC/AC inverter in Plecs.
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effect of the nonlinearity on the loss, lookup tables resulted from
simulation, whose model is displayed in Fig. 8, are used. The
semiconductor module is the same as used in the inverter. Pa-
rameters related to the loss are listed in Table 3.

Basically, the converter loss depends on the load current, battery
voltage, DC-link voltage, and semiconductor temperature. The loss
look-tables, with the battery voltage equal to its nominal value of
850 V, are presented in Fig. 7. The loss under different temperatures
is shown, based on an operational point with the load current and
DC-link voltage equal to 350 A and 1200 V.
2.7. Fuel cell system

The used PEM fuel cell system has a nominal power of 200 kW
and an own DC/DC converter to control the output power. As the
focus of this paper lies in the design of energy management strat-
egy to improve fuel economy, instead of the effects of strategies on
fuel cell aging, a static model of the fuel cell without an agingmodel
is used within the simulation model. In other words, the electro-
chemistry mechanisms and complicated thermodynamic are not
considered. The specific consumption curve shown in Fig. 9 is used
to calculate the consumption. The convexity of the consumption
curve can be drawn from Fig. 9b, which can be mathematically
formulated as:

_mH2

�
a,Pfc;1þð1�aÞ,Pfc;2

�
<a, _mH2

�
Pfc;1

�
þð1�aÞ, _mH2

�
Pfc;2

�
;

(3)

where _mH2
represents the mass flow depending on the net fuel cell

power.

2.8. Battery system

The battery model of the lithium-ion high-performance cell
used is parameterized with real measurement data. To obtain the
parameters, electrochemical impedance spectroscopies and pulse
tests were performed on single cells. Within the battery simulation
model, an equivalent circuit model with 3 ReC branches is used, as
shown in Fig. 10. Also it is assumed that during operation,
compensation currents between battery cells connected in parallel
are not taken into account. The cells are interconnected tomodules,
which are combined into a battery systemwith an total capacity of
200 kWh and a nominal voltage of 850 V. The open circuit voltage
and various resistances of the whole battery system are displayed
in Fig. 11. With the active liquid cooling, the temperature of the
battery pack is controlled to be at 25+C, and thermal modeling is
neglected.

3. Two-dimensional dynamic programming

Before introducing the adaptive rule-based strategy, two-
dimensional dynamic programming is used to determine the
optimal strategy. In most literature about energy management for



Fig. 7. DC/DC converter loss in W depending on voltage and load current at DC-link: (a) under 150+C, (b) under 80+C.

Fig. 8. Simulated model of DC/DC converter in Plecs.

Table 3
Parameters related to DC/DC converter.

parameters values units

switching frequency 1000 Hz
number of parallel branches 3 e

resistance of inductor pro branch 0.15 mU
inductance pro branch 1.3 mL
capacitor 6 mF
breakdown voltage of the semiconductor module 3300 V
rated current of the semiconductor module 450 A
thermal resistance, case to heatsink, per IGBT 17.4 K/kW
thermal resistance, junction to case, per IGBT 28.4 K/kW
thermal resistance, case to heatsink, per diode 19.3 K/kW
thermal resistance, junction to case, per diode 45.5 K/kW

Fig. 10. Equivalent circuit with 3 ReC branches for battery cells.
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fuel cell hybrid vehicles, the SoC is defined as the only one state to
maintain computational load low. However, as described in
Ref. [18], the handling of dynamic constraints on fuel cell systems
under the one-dimensional framework makes the precondition of
using dynamic programming not satisfied. Therefore, the same as
[18], two-dimensional dynamic programming is used in this work.
From the results of dynamic programming, the indication for
Fig. 9. Specific consumption curves of the fuel c
developing a scalable and adaptive rule-based strategy is identified.
3.1. Basics of dynamic programming

Before using dynamic programming, the continuous model is
discretized in time domain. Then the system equations can be
written as follows:

x ½iþ1� ¼ f ðx ½i�;u½i�; iÞ; i¼0;1;2;…; T � 1 (4)

where T represents the number of time steps and i the i-th time
instant, x ¼ fu½0�;u½1�;…;u½T �1�g the control series along the
whole process. The total cost using this control series x, with x0 as
the initial state value, is determined like:

Hxðx0Þ¼hðx ½T�Þ þ
XT�1

i¼0

cðx½i�;u½i�; iÞDt; (5)

where hðx ½T�Þ is the cost initialization related to the final states and
the term cðx ½i�;u½i�; iÞDt represents the transition cost in the i-th
time interval. The optimal control policy x* is the one, that
ell system: (a) Without Zoom, (b) Zoom in.



Fig. 11. Parameters of the equivalent circuit of the battery system: (a) Open-circuit voltage in V, (b) R0 in U (c) R1 in U, (d) R2 in U, (e) R3 in U, (f) Time constant due to R1, C1 in
seconds, (g) Time constant due to R2,C2 in seconds, (h) Time constant due to R3,C3 in seconds.
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minimizes the cost H under a provided initial state x0 as follows:

H*ðx0Þ¼min
x2X

Hxðx0Þ; (6)

where X represents the set of all viable policies.
According to the Bellman’s principle of optimality [16], the

optimal cost-to-go function H*ðx ½i�Þ is determined for every node
x ½i� in the discretized state-time space by iterative calculations:

� Cost values at end states:
H*ðx ½T �Þ¼ hðx ½T �Þ: (7)
� Iterative calculations from i ¼ T � 1 until i ¼ 0:

H*ðx½i�Þ¼ min
u½i�2U½i�

ðcðx½i�;u½i�; iÞDtþH*ðx½iþ1�ÞÞ; (8)

where U½i� represents the feasible control set in the i-th instant and
x½iþ1� is the new state, calculated by utilizing (4). After backward
recursion from i ¼ T � 1 to i ¼ 0, the optimal control series are
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determined.
The exemplary implementation of dynamic programming, as

found in most literature, is implemented by using embedded loops
over state variables, control variables, and time steps. Its compu-
tational effort corresponds to the order of

O
�
T , jm , kn

�
; (9)

where j and k represent the discretization degree for state and
control variables, m and n the number of states and control vari-
ables respectively [30]. Therefore, the computational load is expo-
nential proportional to the number of states and controls. Resulted
from this, only the SoC is defined as the state variable in using
dynamic programming to solve the offline strategies for hybrid
vehicles with two energy sources, in order to maintain the
computational load low, as found in most literature.

3.2. Energy management based on two-dimensional dynamic
programming

In this work, as mentioned before, two-dimensional dynamic
programming is implemented to consider dynamic constraints on
fuel cell systems. Besides SoC, the second state variable is the fuel
cell power Pfc. Then, the control variable is the power change rate of
fuel cell systems dPfc

dt . It is worth mentioning that a dynamic
degradation model without the three ReC branches is considered
for modeling in implementing dynamic programming, to avoid
introducing three more states variables of capacitor voltages, and
then increase the computational load by three orders of magnitude.
The energy management problem for the fuel cell hybrid trains can
be formulated like:

� State vector x ¼ ½x1;x2� ¼ ½SoC;Pfc�,
� Control variable u ¼ dPfc

dt ,
� Model dynamics

_x1 ¼ � I
Qbat

; (10)

_x2 ¼u;

where Qbat is the battery capacity, and I the battery current, which
is related to the battery power Pbat as follows:

I ,
�
Voc;bat �R0;bat , I

�¼ Pbat ¼ Pload � x2: (11)

From that, the battery current can be written in function of the
load power and the fuel cell power like:

I¼ Voc;bat

2R0;bat
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
Voc;bat

2R0;bat

!2

� Pload � x2
R0;bat

vuut : (12)

After its substitution in (10), follow the model dynamics under
the two-dimensional framework:

_x1 ¼ � 1
Qbat

0
B@Voc;bat

2R0;bat
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
Voc;bat

2R0;bat

!2

� Pload � x2
R0;bat

vuut
1
CA; (13)

_x2 ¼u;

Thereby, the dependency of the battery open-circuit voltage
Voc;bat and the inner resistance R0;bat on SoC is considered.

� state constraints:
0:15 � x1 � 0:95; (14)

20kW � x2 � 200kW;
where the minimal power of fuel cell system is set to be 20 kW
instead of zero to avoid switching off of the fue cell system and the

maximal power is equal to the rated power of the fuel cell system
200 kW. It is worth mentioning that as suggested by the supplier of
the fuel cell system, aminimal internal current of 10 A of the system
is required to keep the system working healthily if switched on,
which corresponds to the assumed minimal value of 20 kW. The
limits on SoC protects the battery system from over-charging and
over-discharging.

� control constraint to avoid rapid power change of fuel cell
systems:

�5kW=s � u � 5kW=s: (15)

It is worth mentioning that the limits can be adapted more
appropriately according to the actual states of the fuel cell system. It
will be shown later, that under different limits, the extraction of
experience from the results of dynamic programming is not influ-
enced. Here, they are set conservatively to realize a fully secure
operation, and the effects of these limits on the fuel economy will
be described later.

� battery current limits to avoid overheating and further acceler-
ated aging of batteries

�900A � I bat � 900A: (16)

The cost function with fuel economy and fuel cell aging
considered is defined as follows:

J¼h
�
x1
�
tf
��

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
initialization

þDt
XT�1

i¼0

_mH2
ðx2½i�Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

fuel cell consumption

þ Dt
XN�1

i¼0

dju½i�j
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

change rate penalty

; (17)

where hðx1ðtf ÞÞ is the initialization function in terms of the final
states and _mH2

the mass flow with unit of g/s. The rapid power
change of fuel cell system is penalized by factor d in the last term.
For d ¼ 0, the cost function considers only fuel economy.

To reduce computational time, matrix-based calculation is
implemented for the dynamic programming algorithm. The cost-
to-go function of new states, needed in (8), is evaluated using
interpolation. If the new state lies in unfeasible area, a vast number
is allocated to the new state, to exclude the policy, that leads the
state trajectories go through this unfeasible state point.
3.3. Results of dynamic programming and discussions

The setup parameters of two-dimensional DP are summarized
in Table 4. The initial and end SoC are set to be 0.5 as the boundary
conditions.

This algorithm is implemented for the three driving cycles un-
der different weather conditions, damping factors, and the limits of
fuel cell power change, and the results of power distribution and
SoC trajectories are displayed.

According to the results for different driving cycles in summer,
as shown in Fig. 12, it is evident that the fuel cell system maintains
its power near an average one, independent on that whether the
train goes uphills and downhills. Correspondingly, the power
required to overcome the terrain gradient does not influence fuel
cell power. In other words, the fuel cell system should work near



Table 4
Setup parameters of two-dimensional dynamic programming.

Parameters Lower Upper Discretization Number of stages

Time (s) 0 e 1 e

SoC 0.15 0.95 0.0001 8001
Pfc (kW) 20 200 5 37
dPfc
dt

(kW/s)
�5 5 1 11

Fig. 12. Results of dynamic programming for different driving cycles in summer: (a) Power
Power distribution for driving cycle 2, (d) SoC and height trajectories for driving cycle 2, (e)

H. Peng et al. / eTransportation 4 (2020) 100057 9
the global average load power without following the enormous
power demand change due to the changeable terrain gradient.
Then the battery system covers and recycles the power demand due
to the gradient, and the SoC tends to increase when the train is
going downhill and decrease vice versa, as shown in Fig. 12b and d.

The comparison of power distribution under different weather,
including summer and winter, is shown in Fig. 13a and Fig. 13b.
distribution for driving cycle 1, (b) SoC and height trajectories for driving cycle 1, (c)
Power distribution for driving cycle 3, (f) SoC and height trajectories for driving cycle 3.



Fig. 13. Comparison regarding fuel cell power for driving cycle 1 under different weather, damping factors, and power change limits: (a) Basis of comparison, summer, d ¼ 0, and ±
5 kW/s (b) Winter, d ¼ 0, and ±5 kW/s, (c) Summer, d ¼ 0:025, and ±5 kW/s (d) Summer, d ¼ 0, and ±20 kW/s.
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Under both seasons, the fuel cell power is close to the average
values, with the average value inwinter about 30 kWhigher than in
summer. This increase is related to auxiliary consumption. As
mentioned in modeling, the average auxiliary consumption in
winter is 83 kW, compared to 55 kW in summer. The effect of the
damping factor on the power distribution can be drawn from
Fig. 13c. With the help of a small damping factor equal to 0.025, the
fuel cell system works under a much stable operation with less
dynamic. Regarding the fuel economy, the increase in total
hydrogen consumption is negligible, as 16052 g under d ¼ 0:025
compared to 16018 g under d ¼ 0. Then it can be imagined further
that the fuel cell power keeps a constant value during travel be-
tween two stations, which will be introduce into the rule-based
strategy later. The effect of rate limitations on the power distribu-
tion can be drawn in Fig. 13d. The fuel cell power is almost over-
lapping with each other, and the hydrogen consumption difference
is only 4 g. Some other results from dynamic programming are
Table 5
Results of dynamic programming.

Cycles Season d Limits [kW/s] Pfc [kW] H2 [g] H2 [kg/km]

1 summer 0 ±5 114.6 16018 0.220
2 summer 0 ±5 107.9 15088 0.196
3 summer 0 ±5 78.3 87905 0.301

1
summer 0.025 ±5 114.8 16052 0.220

1 winter 0 ±5 143.5 20881 0.286
1 summer 0 ±20 114.6 16022 0.220
listed in Table 5. Thereby, the hydrogen consumption is scaled for
the whole train instead of a half train.

Overall, it can be drawn from the results of dynamic program-
ming for different driving situations, that the fuel cell system
should work near the global average load power, for the goodness
of stable operation and fuel economy.

4. Rule-based strategies

In this section, the rule-based strategy will be derived, and its
scalability, causality, and adaptivity will be emphasized.

4.1. Utilization of the convexity of specific consumption curves

The fuel cell trainworks without over-lines. To meet the charge-
sustaining condition, the total electrical energy from the fuel cell
system should be equal to the total load energy as:

ðT
0

PfcðtÞdt¼
ðT
0

PloadðtÞdt; (18)

where T is the travel time. Here, the loss in battery systems is not
considered in order to simplify the to derive process. According to
the power follower rules, as found in most literature about rule-
based strategies, the fuel cell power varies with the load power
changes. Therefore, the distribution of the working points depends
on the working conditions of the hybrid train. Usually, a train



Fig. 14. Mechanism of the rule-based strategy: (a) Operation modes, (b) Hysteresis
control.
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experiences mainly three different load phases: acceleration, con-
stant speed, and regenerative braking. In the acceleration phase,
the high power demand leads to a more massive fuel cell power
according to the load follower rules. In the other phases, the
massively reduced power demand keeps the fuel cell power low.
Therefore, the working points of the fuel cell system are mainly
distributed in the high and low power range, whose corresponding
specific consumption is rather distributed.

In order to reduce hydrogen consumption, the convex specific
consumption curve of the fuel cell system, as shown in Fig. 9, can be
utilized. The inequality in (3) can be extended for the whole trav-
eling as:

_mH2

�
Pfc
�
<

ðT
0

_mH2

�
PfcðtÞ

�
dt

T
: (19)

Therefore, a concentration of working points near the global
average load power results in less hydrogen consumption than a
distribution of working points, which is consistent with the results
of dynamic programming. From this, the rules of the strategy can be
derived, as displayed in Fig. 14. Thereby, the fuel cell system works
in mode 2 if the SoC is in medium-range, whereby the fuel cell
power is maintained at the average load power. It is worth
mentioning that the average value is not fixed and will be updated
depending on the driving condition. If the SoC is low, the fuel cell
system works in mode 1, with the fuel cell power more than the
average value by factor a. Conversely, if the SoC is beyond an upper
limit, the systemworks in mode 3, with the fuel cell power reduced
by factor b. In this work, the factor a and b are 0.33 and 0.4,
respectively. Furthermore, hysteresis control is implemented to
avoid frequent switching between different modes, which help to
reduce dynamic in the fuel cell system, as shown in Fig. 14b. Its
threshold values are set with a1, a2, a3, a4 equals 0.25, 0.3, 0.85, and
0.9, respectively. These threshold values are set corresponding to
the SoC limits shown in (14). Besides that, a minimum limit of
20 kW is chosen to avoid switching off of the fuel cell system during
travel, and a maximum limit of 180 kW instead of the rated value is
set for the derated operation of future test on test bench. It has to be
mentioned that these two limits can be adjusted according to the
actual state of the fuel cell system. Here, for simplicity, it is assumed
to be constant with enough margin to the physical limits. These
mentioned parameters can be tuned by using offline optimization.
However, the strategy should be designed so that the system avoids
working in mode 1 and mode 3, for the goodness of stable opera-
tion and fuel economy. This will be realized through the to be
introduced mechanism of estimating the average load power.
Therefore, tunning parameters is not necessary if the average load
power is appropriately updated. The next task is to estimate the
average load power and to integrate this average power into the
strategy appropriately.

4.2. Mechanism to estimate and update average load power

The global average load power along the driving cycle is not
available in real-time applications. Therefore, the history informa-
tion is utilized to estimate the average load power. As before
mentioned, the load power experiences massive variations in
different driving phases. In the acceleration operation, the power
demand is positive and significant, mainly to overcome the inertia
force. In the constant speed phase, comparatively much smaller
driving power is needed to cover friction forces. In the regenerative
braking phase, an enormous negative load power is recycled.
Therefore, In order to avoid overestimation and underestimation,
the update of the average load power, used in the rules shown in
Fig. 14a, takes place when the train leaves stations instead during
acceleration and regenerative braking, as shown Fig. 15. In other
words, the fuel cell power remains constant during traveling be-
tween two stations, which corresponds to the experience from the
last section of strategies with damping factors negligible influ-
encing fuel economy. Because the estimate of the average load
power is based on the history information, as formulated in (20),
the causality of the rule-based strategy is maintained. Corre-
sponding to equation (19) this rule-based strategy realizes a high
fuel economy by taking advantage of the convex characteristics of
specific consumption curves. Moreover, the fuel cell system works
in a much stable condition during driving between two stations,
without the variant load power to follow, from that the lifetime of
fuel cell systems profits.

PloadðtÞ¼

ðt
0
PloadðtÞdt

t
; (20)

4.3. Adjusting of average load power by using terrain information

The load power required to be jointly supplied by fuel cell and
battery systems is

PloadðtÞ¼ Fx,vþ Ploss;driveline þ Paux (21)

¼ �Fa þ Frþ Fairþ Fg þ Fb
�
, vþ Ploss;driveline þ Paux:

With substitution of (21) into (20) follows

Pload;1ðtÞ¼

ðt
0

��
Faþ Frþ Fairþ Fgþ Fb

�
,vþPloss;drivelineþPaux

�
dt

t
(22)

where Paux is the power for auxiliary devices, Ploss;driveline the sum
of power loss in the DC/DC converter, inverter, motor, gear and the
rest is needed to overcome the various resistance along the driving
cycle. Among them, the average amplitude of the gradient force can
be more significant compared to other resistant forces except the
acceleration force regarding the amplitude, as shown in Fig. 16. As
mentioned in the sectionmodeling, the driving cycle 2 has themost
significant average value of the slope, while the driving cycle 3 has
the least value. This enormous gradient force leads to a consider-
able difference in the load power between during uphills and
downhills.

Therefore, the estimated average load power by using (22) is
higher than the global average one, if the train first goes uphills and
then go downhills, while the estimated average load power is lower
than the global one reversely, which results in a bad fuel economy
and oscillations of workings points of fuel cell systems.



Fig. 16. Percentages of the average amplitude of different forces in total resistance
force along the whole driving cycles.

Fig. 17. Loss determination in parallel branches.

Fig. 15. Schematic explaining the time instant to update the average load power.
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As learned from the results of dynamic programming, the fuel
cell system covers the average loss power during the whole travel,
and the power demand due to the gradient force does not mean
loss. The essential reason for that phenomenon is that the gravi-
tational energy reserve during uphills can be recycled during
downhills. Learned from this, the load power is corrected as:

Pload; corðtÞ¼ PloadðtÞ �m,g,sin4ðtÞ,vðtÞ þm,g,sin4,vðtÞ;
(23)

and the estimate of the average value can be reformulated like:

Pload;2ðtÞ¼

ðt
0

�
Pload; corðtÞ

�
dt

t
; (24)

Thereby, the power to overcome the gradient force in each time
instant is excluded from the determination of the average load
power, and the termm,g,sin4 represents the average gravitational
force to overcome, which is related to the height difference be-
tween the start and end stations.

Another critical point is related to the long hold time of regional
trains in some stations, as shown in the driving cycle 3 in Fig. 3c.
The estimated average value by using (24) can lead to an enormous
increase of SoC during the long hold time, which triggered the
Mode 3 as defined before, because the estimation does not consider
possible long hold time in future. Then, the oscillation of fuel cell
systems and a worse fuel economy result. In order to solve this
problem, the travel time and parking time already experienced, and
the total travel time and parking time for each trip, which are
available for railway transportation, are utilized to improve the
estimation of the average values as follows:

Pload;3ðtÞ¼

Tdrive,

ð
driving

Pload; corðtÞdt

Tdriven
þ

Thold,

ð
holding

Pload; corðtÞdt

Theld
T

; (25)

where T is the total trip time, Tdrive the total driving time, Thold the
total hold time, Tdriven the experienced driving time at each time to
update the average value, Theld the experienced hold time, and the
corrected load power is integrated to calculate the energy con-
sumption during driving and hold separately. In this way, the es-
timate of the average value considers the future hold time, and the
over-charging of the battery system during the long hold time can
be avoided.

Furthermore, the difference between the integral of the cor-
rected load power and the supplied fuel cell power so far should be
compensated in the future estimation of the average load power, to
satisfy the charge-sustaining condition, as follows:

Pload;4ðtÞ¼ Pload;3ðtÞ þ

ðt
0

�
Pload; corðtÞ � PfcðtÞ

�
dt

T � Ttraveled
; (26)

where Ttraveled is the experienced travel time in each instant to
update the average value.

Finally, the average battery loss is added to that as:

Pload;meanðtÞ¼ Pload;4ðtÞ þ Pbat;lossðtÞ: (27)

This average value is implemented in mode 2 and updated each
time instant when the train leaves a station in between. If the SoC
end target value is different from the initial value, an average power
corresponding to the difference of battery energy should be added
to that, and the average value can be reformulated as:
Pload;meanðtÞ¼ Pload;4ðtÞ þ Pbat;lossðtÞ þ
DEbat
T

; (28)

where DEbat represents the energy difference corresponding to
different SoC values of the battery system and T the total travel
time.
5. Results and discussions

To evaluate this real-time available strategy, its results are
compared to the results of dynamic programming with the SoC
boundary values and the load power trajectory kept the same as the
rule-based strategy. Because the loss in R1, R2, and R3 of the battery
system is not taken into account in using dynamic programming,
the fuel cell power from the results of dynamic programming has to
be corrected upwards by the sum of this loss. Thereby, the battery
current resulted from dynamic programming is fed into the three
parallel ReC branches of the battery system as shown in Fig. 17.

The corrected fuel cell power is then used to estimate mass flow
and total hydrogen consumption. It is worth mentioning that the
corrected fuel cell power is not entirely equivalent to optimal ref-
erences. However, it can be used to evaluate the rule-based strategy
without significant deviation.

In the following, the trajectories from the rule-based strategy for
different driving cycles, weather, and rate limits are displayed,
together with that resulted from dynamic programming. The initial



Fig. 18. Fuel cell power trajectories for different driving cycles in summer, compared to dynamic programming: (a) driving cycle 1, (b) driving cycle 2, (c) driving cycle 3.
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SoC is set to be 0.5 for all simulations.
Fig. 18 displays the fuel cell power trajectories for different

driving cycles in summer, compared with optimal trajectories from
dynamic programming. The fuel cell system for the driving cycle 1
and 3 under the rule-based strategy works near the average values
with much less oscillation than from dynamic programming. For
the driving cycle 2, as the SoC meanwhile crosses the threshold
values between mode 2 and mode 1, as shown in Fig. 19b, the
operational mode of the fuel cell system switches from mode 2 to
mode 1 with more output than the average value. Until the SoC
reaches the threshold values again, the operational mode is
switched back to mode 2. Regarding the fuel economy, more
hydrogen consumption of 0.48%, 0.83%, and 0.01% result for the
three driving cycles, respectively, as compared to the consumption
by using dynamic programming. It is worth mentioning that the
fuel economy under the driving cycle 2 can be improved if the fuel
cell power increases in advance so that the SoC does not fall below
the threshold values, and no mode switching takes place. For that
purpose, the load and the terrain information in the future are
required.

Fig.19 shows comparison regarding the SoC trajectories. The SoC
Fig. 19. SoC trajectories for different driving cycles in summer, compared to dyna

Fig. 20. Fuel cell power trajectories for different driving cycles in winter, compared to
lies in within the accessible limits. A higher depth of discharge is
observed under the rule-based strategy, compared to that under
dynamic programming. The reason for that phenomenon lies in
that as the fuel cell power stays near the average values under the
rule-based strategy, it follows the change of load power to some
degree under dynamic programming. Then, the throughput of the
battery system under the rule-based strategy is more significant
than under dynamic programming, which also is reflected in the
depth of discharge. The small difference regarding the SoC trajec-
tories between the rule-based strategy and dynamic programming
reflects the high fuel economy of the rules.

In winter, the fuel cell power increases by about 30 kW, as the
auxiliary consumption increases. The fuel cell power and SoC tra-
jectories are compared to that from dynamic programming, as
shown in Fig. 20 and Fig. 21. The fuel cell system alsoworks near the
average values with much less dynamic. Regarding the fuel econ-
omy, increase consumption of 0.38%, 0.43%, and 0.09% for different
driving cycles, resulted as compared to dynamic programming.
Together with the results in summer, the rule-based strategy shows
the best performance regarding fuel economy for driving cycle 3
under different weather, which can be drawn especially from
mic programming: (a) driving cycle 1, (b) driving cycle 2, (c) driving cycle 3.

dynamic programming: (a) driving cycle 1, (b) driving cycle 2, (c) driving cycle 3.



Fig. 21. SoC trajectories for different driving cycles in winter, compared to dynamic programming: (a) driving cycle 1, (b) driving cycle 2, (c) driving cycle 3.

Fig. 22. Effects of rate limits of fuel cell power under driving cycle 1 in summer on: (a) Fuel cell power trajectory (b) SoC trajectory.

Fig. 23. Effects of battery aging under driving cycle 2 in summer on: (a) Fuel cell power trajectory (b) SoC trajectory.
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Figs. 18c and 20c. Thereby, the fuel cell power trajectory is fast in
the middle of the offline optimized trajectories by using dynamic
programming.

In order to examine the effect of rate limits of fuel cell power on
the fuel economy, the simulationwith the rate limit of ± 20 kW/s is
done, with its results compared to that under the limit of ± 5 kW/s,
as shown in Fig. 22. The fuel cell power and SoC trajectories are
almost identical, and also the fuel economy. It is evident that under
the designed rules, especially with the fuel cell power controlled at
a constant value between two stations, a higher rate limit brings no
benefits regarding the fuel economy.

For examining the effect of component aging on the perfor-
mance of the rule-based strategy, a simulation with an assumed
decrease of the battery capacity of 10% is done. The results are
compared to that without aging, as shown in Fig. 23. Due to the
smaller capacity, the strategy is earlier switched into mode 1, and
consumes more hydrogen with more dynamic than before. Con-
sumption increase of 1.27% compared to dynamic programming is
observed. To improve the performance of the strategy with com-
ponents aged, the load and terrain information in the future need to
be utilized, to correct the fuel cell power in advance, so that the
operation of the fuel cell system out of mode 2 is avoided. This
belongs to the future work.

In summary, all the results related to fuel economy and SoC are
collected in Table 6, and the high fuel economy can be identified.
6. Conclusions

In this work, a scalable, causal, adaptive rule-based energy
management strategy for the fuel cell hybrid train is designed, as



Table 6
Simulation results of the rule-based strategy.

Cycles SoCend SoCmin SoCmax H2 [kg/km] Ref.DP Notes

1, summer 0.5183 0.4358 0.7298 0.224 0.48% e

2, summer 0.6445 0.2075 0.6657 0.221 0.83% e

3, summer 0.5733 0.3665 0.8237 0.303 0.01% e

1, winter 0.5236 0.4354 0.7329 0.292 0.38% e

2, winter 0.6475 0.2035 0.6535 0.285 0.43% e

3, winter 0.6228 0.3693 0.8504 0.431 0.09% e

1, summer 0.5183 0.4366 0.7301 0.224 0.46% ±20
1, summer 0.5204 0.4286 0.7549 0.224 1.27% aging
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learned from the results of dynamic programming. This strategy
utilizes the convexity of the specific consumption curve of fuel cell
systems and maintains the fuel cell system working close to the
average load power. Thereby, the average load power is estimated
by using the history information, which makes the strategy causal
and adaptive. Besides that, the transient power demand due to
gradient slopes is excluded in the calculation to reduce oscillations
of workings points of fuel cell systems along with the variable
gradient. The pre-known driving time and hold time available in
railway transportation are utilized to improve the estimation of the
average value, to avoid overcharging of batteries during the long
holding time. The functionality of this strategy, under different
weather, driving, and aging conditions, is validated by comparison
with the results of dynamic programming. An excellent fuel econ-
omy under a typical driving cycle of regional railway vehicles in
Berlin, with only 0.01% and 0.09% more consumption in summer
and winter respectively, compared to the results of dynamic pro-
gramming, is resulted. Moreover, the fuel cell system works with
much fewer oscillations, from which the lifetime of the fuel cell
system benefits. Due to the components-based characteristics, the
strategy can be scaled or transferred to other configuration systems
or driving conditions without loss of effectiveness. In the future, the
average load power can be more appropriately estimated by using
terrain and load information about upcoming routes.
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