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A B S T R A C T   

Fuel cell hybrid trains are being commercialized to replace trains powered by combustion engine to reduce 
carbon dioxide emission without high investment cost in overhead catenaries. In this context, this paper presents 
a universal model-based strategy for the operation of fuel cell hybrid trains based on adaptive Pontryagin’s 
minimum principle (APMP). Different from all other work, the implementation of Pontryagin’s minimum 
principle (PMP) considers the relaxation process due to the resistance-capacitor branches in the batteries to 
provide a precise reference for the evaluation of the robustness and fuel economy of the APMP-based strategy. 
Furthermore, a formula to physically estimate the costate is inspired by the offline PMP results and derived by 
using the energy conservation principle. Moreover, the robustness of the strategy against fuel cell aging, battery 
aging, inaccurate fuel cell modeling, and deviations introduced through fitting experimental data is investigated 
through simulation. Compared to the offline results, a maximum 1.5% higher hydrogen consumption is observed 
by simulation under different aging and uncertain operating conditions. Finally, the effectiveness and the 
robustness of the strategy are validated through measurement on the test bench at the Center for Mobile Pro-
pulsion of the RWTH Aachen University. A maximum of 2.7% more hydrogen consumption is measured 
compared to the offline PMP results under various conditions of uncertainty.   

1. Introduction 

1.1. Background 

In July 2020, European Commission has released its hydrogen 
strategy for a climate-neutral Europe and a roadmap to 2050 is also 
provided. The primary goal is to produce clean hydrogen with renew-
able electricity and to boost hydrogen consumption of end-users. From 
2020 up to 2024, at least six GW hydrogen electrolyzers will be installed 
in the EU. In the second phase, from 2025 to 2030, more than 40 GW 

hydrogen electrolyzers will be installed. In the third phase, from 2030 
towards 2050, electricity from hydrogen should be used in all hard-to- 
decarbonize sectors [1]. Besides hydrogen production, the demand for 
hydrogen will be boosted in end-user sectors, including industry appli-
cation and mobility. In transport, hydrogen-powered vehicles are 
promising alternatives to combustion engine-driven ones, and more 
public transport vehicles powered by hydrogen have already entered the 
market. Notably, the world’s first commercial hydrogen-powered train 
named Coradia iLint began its service in Germany, 2018, and a total of 41 
trains have been ordered. The Netherlands will be the second country to 
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prove the emission-free solution for no-electrified lines [2]. Siemens is 
also working with RWTH Aachen University to develop a high-power- 
fuel-cell-hybrid-train, with fuel cell systems provided by Ballard 
Power Systems, which is the background of this contribution [3]. 

1.2. Literature review 

For hydrogen-power trains, besides the fuel cell system, a high- 
power-density lithium battery system is used to assist traction and 
recycle energy during regenerative braking. Due to the hybrid config-
uration of power sources, the power distribution between them, named 
energy management, can be used to improve the performance of the 
hybrid trains. The main goal is to minimize hydrogen consumption 
under different driving conditions, while reducing the component 
degradation at the same time. Furthermore, the hybrid train operates 
under charge-sustaining conditions instead of a plug-in operation. 
Therefore, the State of Charge (SoC) of the battery should be maintained 
within the required range to avoid overcharging and over-discharging of 
battery cells. There are a lot of research articles in the field of energy 
management strategies for fuel cell hybrid vehicles, and they can be 
categorized into three types, including rule-based, optimization-based, 
and learning-based methods. The rule-based approach uses heuristic 
experiences and is implemented as deterministic or fuzzy logic-based 
rules whose computational load is low. In [4], a rule-based strategy 
implemented by a finite state machine is introduced with robustness 
against different driving conditions. However, the rules are extracted 
purely heuristically, and it is not straightforward to prove the correct-
ness of the choice of parameters. In [5,6], the fuzzy logic-based strate-
gies are used, whereby the parameters of the membership function are 
optimized by using genetic algorithms with a previously defined cost 
function to be minimized. Even though the fuzzy logic control is famous 
for its robustness, it is not convincing that this strategy performs well 
under various and unpredictable driving conditions, because the pa-
rameters are optimized only for training driving cycles. For the learning- 
based method, no model or experiences are needed, and the algorithm is 
based on training data resulted from offline strategies [7]. However, the 
learning-based method requires large amounts of data, which limits its 
adaptivity if the driving condition is not trained before. Furthermore, 
the effectiveness of reinforcement learning is rather sensitive to 
parameter selections [8]. For the optimization-based method, there are 
two subtypes, including global optimization-based and local 
optimization-based methods. The global optimization-based method 
includes dynamic programming and Pontryagin’s minimum principle 
(PMP)-based method. In [9,10], these global optimization-based 
methods are introduced. However, they can not be implemented in 
real-time because information about the entire driving cycle is required 
as prior knowledge. Therefore, the results from the offline strategy can 
be used as a benchmark to evaluate other real-time strategies and to 
exact rules for the rule-based strategy [11]. For the local optimization- 
based method, equivalent consumption minimization strategy (ECMS) 
and adaptive Pontryagin’s minimum principle (APMP) are primarily 
found in the literature. The ECMS can be derived from APMP mathe-
matically; Therefore, they are essentially the same. For them, the largest 
challenge lies in the adaptive update of the costate or the equivalent 
factor according to driving conditions without loss of causality. In some 
literature, a PI-controller is used to adjust the factors according to the 
SoC values. However, the set up of the controller parameters is also 
challenging. In [12], a multi-mode equivalent energy consumption 
method is used to distribute power between fuel cells, batteries, and 
capacitors. Thereby, during different driving phases, such as parking, 
traction, coasting, or braking, the power requirement for fuel cell is set 
to maximize the working efficiency during respective periods. However, 
various parameters, which are not physically derived, are introduced 
into the strategy, limiting the transferability to other conditions. 
Moreover, maximizing efficiency in each driving phase does not lead to 
maximal efficiency along the whole driving cycle. If component aging 

occurs, the robustness of this strategy remains troublesome because 
many of the parameters mentioned above depend on component char-
acteristics. In [13,14], driving pattern recognition is used to update the 
equivalent factor, and Markov-based velocity prediction is implemented 
to predict the future driving condition. However, the candidates of the 
equivalent factors are limited to training samples, which, therefore, 
limits its robustness and adaptivity. In a few articles, such as [15,16], the 
range of the costate is physically derived, which is not dependent on 
specific driving cycles. However, within the bounds, the costate is 
assumed to be a linear or quadratic function of SoC, which is not 
physically proven. Moreover, the amplitude of the costate decreases as 
SoC increases, which is not correct, because the open-circuit voltage of 
batteries increases as SoC increases, and so should the magnitude of the 
costate [10]. Besides good fuel economy under the deterministic 
framework, the strategy should be robust against uncertainties. In [17], 
various uncertainties, including the ones in hybrid energy sources, 
auxiliary services, driving subsystems, and load condition, are intro-
duced. For that, a sub-optimal real-time strategy with these un-
certainties considered is implemented. This strategy uses the ECMS as 
the primary strategy and fuzzy logic control to compensate for the fuel 
cell power as the aging of components increased. However, the pa-
rameters of the membership function remain crucial, as mentioned 
above. Furthermore, components suffer from the aging process. 
Compared to batteries, the fuel cell system is much more sensitive to 
operation conditions, like water management and load dynamic, which 
makes the robustness of strategies against component uncertainties 
necessary [18]. In [4], a simple formula to predict the performance 
degradation of fuel cells dependent on transient power load, start/stop, 
idling, and high power load is validated through the experiment. The 
degradation model is integrated into the energy management to reduce 
cost over the entire lifespan of vehicles. In [19], an adaptive ECMS is 
used to distribute power between fuel cells, batteries, and capacitors. 
Thereby, the equivalent factor is adjusted according to the aged models 
of fuel cells and battery. However, the equivalent factor is adjusted by 
using heuristic mathematical formulas to realize charge sustaining 
conditions as closely as possible, which is not generalized enough and 
can not ensure its robustness under different driving conditions. 

Summarily, ECMS, or APMP is a promising method to minimize 
hydrogen consumption in real-time applications. However, the esti-
mating of the costate is based on heuristic formulas or trained under 
various training samples. In this way, the effectiveness of the strategy is 
limited. The practical applications are especially troublesome due to 
numerous uncertainties and component aging. The robustness of the 
energy management becomes cumbersome due to the lack of model- 
based formula to estimate the costate or the equivalent factor, even 
though the literature recognizes the energy management robustness as 
particularly advantageous property. In order to solve this problem, [10] 
introduces a model-based method to correct the costate. Thereby, a 
formula is inspired by the offline PMP results and derived by using the 
optimal control theory in a reverse way. However, dynamics in the 
parallel resistance-capacitor branches of the battery system are not 
considered in obtaining the costate, which will be solved in this 
contribution. 

1.3. Main work 

The most significant contribution of this work is to design and vali-
date a scalable, robust APMP-based strategy for fuel cell hybrid vehicles. 
The costate is regularly corrected by using an analytical formula, which 
is derived based on the energy conservation principle. Different from all 
other research contributions, the offline PMP considers more accurate 
battery models, with various resistance-capacitor branches included, 
which provides a precise reference to evaluate the online APMP strategy 
regarding fuel economy and robustness. Moreover, the robustness of the 
APMP-based approach against fuel cell aging, battery aging, inconsis-
tency between modeling used in energy management and the actual 
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system, as well as deviations introduced through fitting experiment 
data, are proved by using simulation and experimental measurement. 
Because of its model-based characteristic, it is easy to be transferred to 
other transportation or stationary applications. 

1.4. Paper organization 

This work is organized as follows: In Section 2, the configuration of 
the hybrid driveline is briefly introduced. Thereby, the influence of 
various operation conditions on the specific consumption curve or the 
efficiency curve of the fuel cell system is introduced. In Section 3, the 
offline PMP algorithm considering relaxation processes in batteries is 
firstly introduced. Then, the formula to estimate the costate is derived 
based on the energy conservation principle. After that, the algorithm of 
APMP is presented. In Section 4, the effectiveness and the robustness of 
the APMP-based strategy against various uncertainties in fuel cell and 
battery modeling, as well as aging effects, are proved based on simula-
tion results. In Section 5, the configuration of the test bench is presented, 
and the robustness of the APMP-based method is verified through 
measurement. In Section 6, the conclusions will be given. 

2. Driveline 

In the following sections, the driveline configuration, the battery 
system, and fuel cell system will be explained in detail, and a respective 
overview of the modeling of other components of the drive line can be 
found in [11]. 

2.1. Dirveline configuration 

This section provides a brief overview of the hybrid train. The 
configuration, which is utilized in the simulations in subsequent chap-
ters, is displayed in Fig. 1. 

This hybrid train is powered by two sources, a fuel cell system and a 
lithium-ion battery system. As the primary energy source, the fuel cell 
system is actively controlled by a unidirectional DC/DC converter. The 
lithium-ion battery system is directly connected to the DC bus of the fuel 
cell output to assist acceleration and store back the energy during 
regenerative braking. For this purpose, a bidirectional DC/DC boost 
converter is utilized as an interface from fuel cell output to the DC-link. 
Auxiliary equipment, which is modeled as constant power load, is all 
attached to DC-link, and includes heating, compressors, ventilation 
systems, and air conditioning system. The power rating of auxiliary units 
is assumed to be 39 kW in summer and 67.7 kW in winter. After the DC- 
link, the electric power is fed to electric motors through an inverter, and 
then finally converted to mechanical power by the electric motors. In 
addition, the electric motor can also operate as a generator to recuperate 
the mechanical energy from braking. The mechanical torque from the 
electric motor shaft is transmitted to the axle and tires of the train 
through the gear system. 

Regarding the environment conditions, four different driving cycles 
and corresponding terrain profiles of three different routes are defined, 
as shown in Fig. 2. The distances and travel time corresponding to all 
four driving cycles are listed in Table 1. Moreover, the number of 

passengers is assumed to be 120 regarding all four driving cycles, with 
an average passenger weight of 75 kg. 

2.2. Fuel cell system 

Two Proton-exchange membranes (PEM) fuel cell systems supplied 
by the company Ballard Power Systems are used in the experiment, 
including HD7 and HD8. Thereby, the maximal power of HD7 is 100 kW, 
while HD8 can output 200 kW net power. Their specific consumption 
curves can be found in Fig. 3a. Furthermore, the fuel cell system’s effi-
ciency curve depends strongly on the operational conditions [18]. In 
Fig. 3b and c, the influence of the coolant temperature at stack inlet and 
the differential pressure across the membrane on the system efficiency of 
HD7 is displayed, respectively. Moreover, the fuel cell system suffers 
from the aging process with time, and the influence of fuel cell degra-
dation on HD7’s system efficiency is displayed in Fig. 3d, whereby the 
efficiency decreases with aging. Since the fuel cell system’s character-
istic curves suffer from some degree of uncertainty of both short-term 
and long-term, the energy management strategy should show robust-
ness to maintain a high fuel economy even though the performance of 
the fuel cell system varies. 

2.3. Battery system 

The high-performance lithium-ion cell used in this work is modeled 
through a third-order equivalent electrical circuit and parameterized by 
the measurement data. Regarding the high-power requirement from the 
train, battery pack with technical specifications listed in Table 2 is uti-
lized. The dependency of the battery open-circuit voltage and the in-
ternal resistance on the battery SoC is shown in Fig. 5. 

Battery SoC is calculated according to Eq. (1). 

SoC = SoC0 −
1

Qbat

∫ t

t0
Ibat

(

t
)

dt, (1)  

where Qbat is the nominal capacity of the battery and equals 207 Ah, Ibat 

the battery current, and SoC0 the initial state of charge. The relation 
between the power measured at the terminal and the battery current can 
be formulated in Eq. (2): 

Pbat =
(
Voc,bat − V1,bat − V2,bat − V3,bat

)
⋅Ibat − I2

bat⋅R0,bat, (2)  

where R0,batis the internal resistance of the battery, Voc,bat the open cir-
cuit voltage of the battery, V1,bat, V2,bat, and V3,bat the voltage across each 
R-C branch, respectively, as shown in Fig. 4. With introducing a variable 
in Eq. (3) that represents the difference between the open-circuit voltage 
and the parasitic voltages: 

Vdiff = Voc,bat − V1,bat − V2,bat − V3,bat, (3)  

the Eq. (2) can be rewritten as Eq. (4): 

Pbat = Vdiff ⋅Ibat − I2
bat⋅R0,bat. (4)  

3. Adaptive Pontryagin’s minimum principle-based strategy 

3.1. Fundamentals of offline PMP 

In general, an energy management strategy implemented in a hybrid 
electric vehicle is designed to minimize the fuel consumption, while 
fulfilling all dynamic power requirements imposed on the electric 
vehicle. In this section, the PMP algorithm is applied in energy man-
agement as the benchmark for the to be introduced APMP. The goal is to 
minimize hydrogen consumption, and the corresponding Hamiltonian 
function is defined in Eq. (5): 

H
(

SoC
(

t
)
,Pfc

(
t
)
, λ
(

t
)
, t
)
= ṁH2

(
Pfc

(
t
))

+ λ
(

t
)

˙SoC
(

t
)
, (5) 

Fig. 1. System configuration of the hybrid train.  
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where ṁH2 represents the mass flow of hydrogen and is a function of the 
fuel cell power. The SoC is the state variable, which is a subject of the 
following constraint in Eq. (5) 

SoCmin < SoC(t) < SoCmax, (6)  

where SoCmin and SoCmax are the boundaries of permitted battery SoC 
range. In this application, they are assumed to be 0.15 and 0.9, as sug-
gested by the supplier. Moreover, the fuel cell power is controlled within 

its constraints as shown in Eq. (7): 

Pfc,min < Pfc
(
t
)
< Pfc,max, (7)  

where Pfc,min and Pfc,max are the boundaries of permitted fuel cell power 
range. In this application, they are assumed to be 20 kW and 180 kW, 
respectively, to prolong its lifetime. The necessary conditions of the 
PMP-based strategy are formulated according to the optimal control 
theory in Eqs. (8)–(10): 

P*
fc

(

t

)

= argmin
Pfc(t)

(

H

(

SoC

(

t

)

,Pfc

(

t

)

, λ

(

t

)

, t

))

, (8)  

˙SoC
(

t
)

=
∂
∂λ

H
(

SoC
(

t
)

,Pfc

(

t
)

, λ
(

t
)

, t
)

, (9)  

λ̇
(

t
)

= −
∂

∂SoC
H
(

SoC
(

t
)

,Pfc

(

t
)

, λ
(

t
)

, t
)

. (10) 

Fig. 2. Velocity and altitude trajectories of different driving cycles.  

Table 1 
Parameters of driving cycles.  

Driving cycle Distance (km) Travel time (s) 

ENV1 145 8192 
ENV2 145 8110 
ENV3 584.5 68213 
ENV4 70.2 3065  
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Since the train in this application works under charge-sustaining 
condition, the SoC end value is equal to its initial value as Eq. (11) 
shows: 

SoC
(
tf
)
= SoCtarget = SoC0. (11) 

According to the equivalent electrical circuit of the battery, the 
battery current Ibatrelated to the load power and fuel cell power can be 
represented in Eq. (12): 

Ibat⋅
(
Vdiff − R0,bat⋅Ibat

)
= Pload − Pfc. (12) 

The battery current can be written in the function of the load power 
and the fuel cell power as shown in Eq. (13): 

Ibat =
Vdiff

2R0,bat
−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
Vdiff

)2
− 4
(
Pload − Pfc

)
R0,bat

√

2R0,bat
(13) 

The V1,bat, V2,bat, and V3,batincluded in Vdiff , vary as shown in the 
following first-order differential equations: 

V̇1,bat = −
V1,bat

R1,bat⋅C1,bat
+

1
C1,bat

⋅Ibat,

V̇2,bat = −
V2,bat

R2,bat⋅C2,bat
+

1
C2,bat

⋅Ibat,

V̇3,bat = −
V3,bat

R3,bat⋅C3,bat
+

1
C3,bat

⋅Ibat, (14)  

where R1,bat, R2,bat, R3,bat and C1,bat, C2,bat, C3,bat are the resistances and 
capacitances of each RC branch, all of which are functions of SoC. Then, 
the dynamics of state can be calculated as follows: 

˙SoC

⎛

⎝t

⎞

⎠ = −
Vdiff

2R0,batQbat
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
Vdiff

)2
− 4
(
Pload − Pfc

)
R0,bat

√

2R0,bat⋅Qbat
. (15) 

The battery open-circuit voltage Voc,bat and the internal resistance 
R0,bat are SoC-dependent. Therefore, the dynamic of the state variable is 
indirectly related to SoC, and the dynamic of the costate λ in Eq. (10) can 
be reformulated as follows: 

Fig. 3. Dependency of fuel cell system efficiency on various factors.  

Table 2 
Battery parameters.  

Parameters Value Units 

Nominal voltage 850 V 
Voltage range 760 ̃ 950  V 
Nominal capacity 207 Ah  

Recommended SoC range 0.15 ̃ 0.95  –  

Fig. 4. Third-order equivalent electrical circuit of the battery system.  
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λ̇ (t) = − λ⋅
∂ ˙SoC
∂SoC

= − λ⋅

(
∂ ˙SoC

∂Voc,bat

∂Voc,bat

∂SoC
+

∂ ˙SoC
∂V1,bat

∂V1,bat

∂SoC
+

∂ ˙SoC
∂V2,bat

∂V2,bat

∂SoC

+
∂ ˙SoC
∂V3,bat

∂V3,bat

∂SoC
+

∂ ˙SoC
∂R0,bat

∂R0,bat

∂SoC

)

.

(16) 

However, only the SoC can change freely, and other variables such as 
V1,bat, V2,bat, and V3,bat, change depending on the history of the variable 
SoC, because the change rate of the SoC and the voltage over the 
parasitic capacitors are coupled by the battery current. Therefore, only 
the SoC is defined as the state variable, while the voltages over three R-C 
branches are observed as variable parameters. These variable parame-
ters are updated in each time instant. As a result, the partial derivatives 
of V1,bat, V2,bat, and V3,bat with respect to the SoC are assumed to be zero as 
follows: 

∂V1,bat

∂SoC
=

∂V2,bat

∂SoC
=

∂V3,bat

∂SoC
= 0, (17)  

and Eq. (16) can be derived as: 

λ̇

(

t

)

= − λ⋅

(
∂ ˙SoC

∂Voc,bat
⋅
∂Voc,bat

∂SoC
+

∂ ˙SoC
∂R0,bat

⋅
∂R0,bat

∂SoC

)

. (18) 

The partial derivative of the dynamic of the state variable with 
respect to the open-circuit voltage results as: 

∂ ˙SoC
∂Voc,bat

= −
1

2R0,batQbat
⋅

⎛

⎜
⎝1 −

Vdiff
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

V2
diff − 4

(
Pload − Pfc

)
R0,bat

√

⎞

⎟
⎠, (19)  

and the derivation of the SoC dynamic with respect to the battery 
resistance as: 

∂ ˙SoC
∂R0,bat

=
1

2R2
0,batQbat

⎛

⎜
⎝

2
(

Pload − Pfc

)
R0,bat − V2

diff
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

V2
diff − 4

(
Pload − Pfc

)
R0,bat

√ + Vdiff

⎞

⎟
⎠. (20) 

Using the derivations provided above, the optimal control problem 
can be executed based on the PMP algorithm. At each time instant over 
the optimization horizon, under the required load power, the Hamilto-
nian is computed and minimized based on Eq. (8). As a result, the 
optimized control variable Pfc is determined and then applied to the state 
and the costate dynamic equations to update the values of the state and 
the costate in the next discrete time instant. The calculation process it-
erates until the end of the drive time. The initial values of the costate and 
the state variable are required to start this iterative process. However, 
only the initial state and end value of state are known and the initial 
value of the costate is physically not available, from which the name of 
two-point boundary value problem comes. Since the system is not linear, 
this two-point boundary value problem can only be solved numerically 

through an iterative procedure. For that purpose, the shooting method 
based on a bidirectional search is utilized to find the right initial costate 
[10]. Fig. 6 shows the SoC and the costate trajectories depending on the 
initial value of the costate. It is evident that the results of PMP are 
strongly sensitive to the initial value of the costate λ, which is the most 
critical issue for real-time application. 

It is worth mentioning that by applying the PMP as the benchmark, 
the load power trajectory and the SoC initial and end values resulted 
from the online strategies are used as input for the PMP algorithm. 

3.2. Analytical derivation of the costate 

According to the offline PMP from the previous section, the results 
are strongly sensitive to the initial estimate of the costate. Therefore, the 
shooting method is applied for finding the proper initial value of costate. 
However, the shooting method requires knowledge of the driving cycle 
in advance and therefore is not suitable for real-time application. In this 
section, to eliminate the sensitivity of the PMP strategy depending on 
the estimation of the costate initial value, a new analytical method is 
developed to correct the costate during the real-time operation. 

The formulation of the Hamiltonian function, as already shown in 
Eq. (5), plays a central role in analytically correcting the costate. 
Physically, the costate λ represents the equivalent amount of hydrogen 
consumption for using battery power. According to the PMP results of 
fuel cell power in Fig. 7, the optimal operation points of fuel cell power 
are mostly near their average value. 

Due to the charge-sustaining condition, considering the energy 
conservation law, the total electrical energy generated from fuel cell 
should fully cover the total load energy and the total energy loss in the 
battery as follows: 
∫ tf

t0
Pfc

(

t
)

dt =
∫ tf

t0

(

Pload

(

t
)

+Ploss,bat

(

t
))

dt, (21)  

and the average power is defined as follows: 

Pfc =

∫ tf

t0
Pfc

(

t
)

dt

T
,Pload =

∫ tf

t0
Pload

(

t
)

dt

T
,Ploss,bat =

∫ tf

t0
Ploss,bat

(

t
)

dt

T
,

(22)  

where T is the total travel time defined as: 

T = tf − t0. (23) 

Then, Eq. (21) is divided by T on both sides, to gain the relation that 
regards the average power values: 

Pfc = Pload +Ploss,bat, (24)  

which means the DC component of the fuel cell power (average value) 
fully covers the load demand and the battery losses. Therefore, not all 
the fuel cell power participates in energy conservation into the battery. 
The equivalent amount of hydrogen mass for using battery power, which 
the costate λ represents, is merely related to the incremental part of the 
fuel cell power. In conclusion, only the incremental part of hydrogen 
flow and the dynamics of SoC should be considered to derive the costate 
λ, which is depicted as follows: 

ΔPfc = Δ ˙SoC⋅Voc,bat⋅Qbat. (25) 

By linearizing the specific consumption curve of the fuel cell at the 
average operation point, as shown in the Fig. 8, follows the relation 
between the incremental fuel cell power and the incremental hydrogen 
consumption as: 

ΔPfc = ΔṁH2

/
∂ṁH2

∂Pfc
|Pfc=Pfc

, (26)  

which can be substituted into Eq. (25), then 

Fig. 5. Open-circuit voltage and internal resistance of the battery system under 
Temperature of 25 ◦C. 
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ΔṁH2

/
∂ṁH2

∂Pfc
|Pfc=Pfc

= Δ ˙SoC⋅Voc,bat⋅Qbat. (27) 

Due to the energy conservation principle, an increase in battery 
power leads to hydrogen consumption. As a result, the costate λ is 
derived as: 

λ = −
ΔṁH2

Δ ˙SoC
= − Voc,bat⋅Qbat⋅

dṁH2

dPfc
|Pfc=Pfc

. (28) 

It is evident that the costate λ is a function of SoC included in the 
open-circuit voltage Voc,bat, and of the average fuel cell power Pfc, which 
is related to the derivative of the mass flow with respect to the fuel cell 
power. According to the equation, the costate can be plotted as the 
function of SoC and the average fuel cell power, as shown in Fig. 9. After 

comparison to the curve from the offline results, the effectiveness of the 
analytical formula is validated. 

The analytical Eq. (28) requires several parameters regarding the 
characteristics of the fuel cell system and battery system, which are 
merely related to the components themselves, and independent from 
specific driving cycles. Therefore, this analytical formulation of esti-
mating the costate guarantees the causality of the APMP strategy for 
online applications, and it also has adaptivity to be scaled or transferred 
to other system configurations without the loss of effectiveness. Even in 
the case of component degradation, this analytical formula automati-
cally adapts itself regarding the actual component characteristics to 
maintain its accuracy, which will be verified through simulation results 
in the followed section. 

The prerequisite of using Eq. (28) to correct the costate λ is a 

Fig. 6. The influence of λ0 on PMP results.  

Fig. 7. Pfc trajectories resulted from PMP regarding different driving cycles.  
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reasonable estimation of average fuel cell power Pfc along the whole 
driving cycle, which is, however, challenging in real-time applications. 
For that purpose, an accurate estimation of the average fuel cell power 
will be introduced in the next section. Summarily, the equation Eq. (28) 
is utilized regularly to correct the costate, and in remaining periods, the 
costate λ evolves through its dynamic, as shown in Eq. (16), to achieve 
the best local optimality based on PMP. 

Then, the remaining crucial tasks for APMP strategy are how to 
accurately estimate the average fuel cell power along the whole driving 
cycle and when to update the costate analytically. Further correction of 
the average fuel cell power based on the timetable and the plug-in 
operation, is not the focus of this work, and can be found in [11]. 

3.3. Estimation of the fuel cell average power 

The estimation of the average fuel cell power is fundamentally based 
on the historical operation status of the train. Typically, a vast amount of 
positive load power is demanded during the acceleration phase, and 
negative power is recuperated during the regenerative braking phase. 
Therefore, the average fuel cell power is overestimated during acceler-
ation and underestimated during regenerative braking. In this work, the 
time instant, when the train leaves each station, is chosen to update the 
average fuel cell power and average battery loss, as shown in the 
following Fig. 10: 

In this way, the average fuel cell power is estimated to be: 

Pfc

(

t

)

=

∫ t
t0

Pload

(
t
)

dτ +
∫ t

t0
Ploss,bat

(
t
)

dτ
t

, (29)  

whereby the load power Pload is the sum of various power as: 

Pload
(
t
)
= Ptrac +Ploss,driveline

(
t
)
+Pauxiliary, (30)  

where Ptrac represents the traction power, Ploss,driveline various power los-
ses along the drive-line, and Pauxiliary the auxiliary consumption. 

4. Robustness analysis of APMP based on simulation 

4.1. APMP without components aging 

In this part, the trajectories resulted from the APMP-based strategy 
for different driving cycles and weather conditions are displayed, 
together with those resulted from PMP. The power consumption of 
auxiliary units in winter is about 30 kW higher than in summer due to air 

Fig. 8. Linearization of the fuel cell’s specific consumption curve at the average 
operation point, where Δṁ represents the incremental mass flow at the line-
arized point, and ΔPfc the incremental fuel cell power. 

Fig. 9. Costate trajectories as the function of SoC regarding different driving cycles.  
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conditioning. The initial SoC is 0.5 for all simulations, and the fuel cell 
system HD8 is used. 

Based on the method of estimating the average fuel cell power from 
the previous section, trajectories of estimated average fuel cell power in 
comparison to global average value under different driving cycles with 
various weather conditions are shown in Fig. 11. The trajectory of 
estimated average fuel cell power under the driving cycle ENV3 almost 
overlaps with its global average value, while those under other driving 
cycles have more deviations. The degree of the relative deviations is 
formulated as 

ΔPfc,aver =

∫ tf
t0

⃒
⃒
⃒Pfc,aver,esti

(
t
)
− Pfc,aver,global

⃒
⃒
⃒dt

T
, (31)  

where Pfc,aver,esti(t) is the varied estimate of the average fuel cell power by 

using Eq. (29) and Pfc,aver,global the average power along the entire driving 
cycles, which are also collected in Table 3. The reason for the small 
deviation is that the driving cycle ENV3 has much longer traveling time 
and more stations. Based on more historical data, the error of estimation 
can be corrected in time. Although there are such large deviations under 
the other three driving cycles in the short-time scale, the positive and 
negative deviations are compensated against each other which does not 
overly affect the charge-sustaining condition. 

The corresponding SoC trajectories are shown in Fig. 12. They nearly 
overlap with the PMP results under all driving cycles for different 
weather conditions. Even though the charge-sustaining mode is not 
strictly achieved, as shown in Table 3, they will be compensated in 
another subsequent trip. 

Based on the proper estimation of average fuel cell power, the costate 
λ is also analytically well estimated. Since the average fuel cell power is 

Fig. 10. Time instant to update the average fuel cell power and average battery loss.  

Fig. 11. Trajectories of estimated average fuel cell power in comparison to global average value under different driving cycles for various weather conditions.  
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the only crucial input parameter for the estimation of the costate λ, the 
accuracy of the estimations is bonded to each other. As shown in Fig. 13, 
the trajectories of the costate λ in APMP are basically around those in the 
PMP results. Especially under the driving cycle ENV3, the result shows a 
high degree of coincidence, while regarding the results under the other 
three driving cycles, the degree of coincidence is lower, which is 
consistent with the result of estimated average fuel cell power in Fig. 11. 
The average relative deviations of the costate λ under each driving cycle 
are listed in Table 3. 

The trajectories of fuel cell power are displayed in Fig. 14 as the final 
output of the APMP-based strategy. They strongly overlap with the PMP 
results under all driving cycles in each weather condition. Since the 

highest degree of coincidence in the estimated average fuel cell power 
and the costate λ is achieved for the driving cycle ENV3, the fuel cell 
trajectory also shows an outstanding consistency with PMP results, 
which is also intuitively reflected in fuel economy. As shown in Table 3, 
under the driving cycle ENV3, the hydrogen consumption is higher for 
0.59% in summer and 0.48% in winter time, compared to the results of 
PMP, respectively, which is significantly lower than the other three 
driving cycles. The additional hydrogen consumption under the other 
three driving cycles is up to 2.13% for the driving cycle ENV1 in 
summer. 

4.2. APMP with fuel cell aging accurately monitored 

The influence of aging on the fuel cell system is directly reflected in 
its specific consumption curve and efficiency curve. The specific con-
sumption curve of the fuel cell system HD8 after aging is not available, 
because it requires a long operation period. Therefore, the specific 
consumption curve of another fuel cell system named HD7 of Ballard at 
the beginning and the end of the lifetime are used to test the robustness 
of the APMP-based strategy under fuel cell aging. They are fitted 
respectively according to the given data sheet from Ballard by using 
second-order polynomial as follows: 

ṁH2 ,HD7 = 0.1387⋅P2
fc + 1.244⋅Pfc + 1.6,

ṁH2 ,HD7Aging = 0.1985⋅P2
fc + 1.318⋅Pfc + 1.626,

(32)  

as shown in Fig. 15(a). The first-order differentiation curves are shown 
in Fig. 15(b). 

It is assumed that the specific consumption curve of the fuel cell after 
aging is estimated accurately. The APMP simulation results under the 
driving cycle ENV2 are displayed in the Fig. 16, together with the results 
of the PMP strategy as the benchmark, with the same aging degree 
considered. It is worth mentioning that the conclusions under the 

Table 3 
Simulation results of APMP.  

Driving cycle 1 2 3 4 

Summer ΔPfc,aver  6.53% 8.39% 4.2% 5.75%  

SoCend  0.64 0.52 0.58 0.53  

λ (g)  − 12853 − 12910 − 10748 − 12625  

Ref.|λ| PMP  +4.68% +5.59% +1.35% +3.86%  

mH2 (g)  32726 31554 170724 11836  
mH2 (g/km)  212.39 216.39 292.08 168.62  
Ref.mH2  +2.13% +1.48% +0.59% +1.72%  

Winter ΔPfc,aver  5.27 (%) 6.66% 3.09% 4.58%  

SoCend  0.64 0.52 0.63 0.53  

λ (g)  − 15172 − 15257 − 12507 − 14917  

Ref.|λ| +4.68% +4.68% +1.75% +3.87%  

mH2 (g)  43464 42102 242934 15800  
mH2 (g/km)  282.07 288.73 415.62 225.09  
Ref.mH2  +1.91% +1.33% +0.48% +1.57%  

Fig. 12. SoC trajectories of APMP results in comparison to PMP results under different driving cycles for various weather conditions.  
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driving cycle ENV2 can be transferred to other driving conditions. It is 
evident that the fuel cell power and SoC trajectories from simulations, 
which use the original model or the aging model for the fuel cell system, 
are similar for both PMP results in Fig. 16(a) and (c) and APMP results in 
Fig. 16(b) and (d). This proves the excellent adaptivity of the strategy. As 
shown in Fig. 16(e) and (f), the trajectory of λ(t) has similar trends but is 
increased in amplitude in case the aging process is considered, for both 
PMP and APMP results. The reason lies in the decreased efficiency of the 
fuel cell system with aging increased. Regarding the same power de-
mand, the same increase of SoC causes higher hydrogen consumption. 
Therefore, the amplitude of λ(t) increases. 

The costate λ is evaluated with its average relative deviation of 
0.84% and 0.82% in reference to the PMP results, for summer and winter 
conditions, respectively, as shown in Table 4. It is worth mentioning that 
the average relative deviation of λ(t) increases negligibly compared to 
the case without fuel cell aging. In Table 4, the important parameters 
related to fuel economy are listed. With fuel cell aging considered, the 
additional hydrogen consumption in comparison to PMP results is 
1.47% and 1.23%, for summer and winter, respectively, which are 
slightly increased compared to the case without fuel cell aging. By 
comparing hydrogen consumption between cases with and without 
aging, merely slight increase is observed. As a conclusion, the APMP- 
based strategy maintains its performance after fuel cell aging, which 
shows low sensitivity and high degree of robustness. 

4.3. APMP with battery aging accurately monitored 

Here, without explanation of the battery aging mechanism, it is 
assumed that a capacitance loss of 10% and an internal resistance in-
crease of 5% occur: 

Qbat,aging = 0.9⋅Qbat,

R0,bat,aging = 1.05⋅R0,bat.
(33) 

Furthermore, it is assumed that the internal resistance and capacity 
of the battery after aging can be estimated accurately. The APMP 
simulation results under the driving cycle ENV2 are displayed in the 
Fig. 17, and PMP results with the same aging degree considered are set 
as the benchmark for the APMP results. The fuel cell power trajectory 
under the original battery model and the aging model are almost the 
same for both the PMP results in Fig. 17(a) and the APMP results in 
Fig. 17(b). However, the SoC trajectories in Fig. 17(c) and (d) show a 
clear gap between the original model and the aging model. The reason 
lies in the decreased capacitance of the battery. With aging considered, 
the depth of battery discharge is more than the one without aging 
considered. The trajectories of the costate λ in Fig. 17(e) and (f) have 
similar trends, and the amplitude is decreased after the aging process. 
Due to the lower battery capacity after aging, the same increase of SoC 
corresponds to less battery power consumption, which means less 
hydrogen consumption. Therefore the amplitude of the costate λ goes 
down. 

As shown in Table 5, the costate λ is evaluated with its average 
relative deviation of 1.24% and 1.15% in reference to the PMP results, 
for summer and winter conditions, respectively. The average relative 
deviation of λ(t) increases slightly compared to the case without battery 
aging. The fuel economy with battery aging considered is displayed in 
Table 5. The additional hydrogen consumption in comparison to the 
PMP results is 1.50% and 1.36%, for summer and winter, respectively, 
which are slightly increased compared to the case without battery aging. 
By comparing hydrogen consumption between cases with and without 
battery aging through PMP or APMP based strategy, a slight increase is 
observed. The reason lies in the relatively high internal resistance of 

Fig. 13. λ trajectories of APMP results in comparison to PMP results under different driving cycles for various weather conditions.  
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battery after aging and, therefore, more dissipated energy. All in all, the 
APMP-based strategy maintains its excellent fuel economy after battery 
aging, which shows low sensitivity and a high degree of robustness. 

4.4. APMP with inaccurate fuel cell modeling 

In the case of component aging previously, the characteristic curves 
of components are assumed to be estimated accurately if the aging de-
gree increases. The PMP strategy results with the same aging degree 
considered are used as the benchmark for the APMP results. However, 
highly accurate estimation is challenging. Now, the robustness of the 
APMP strategy under inaccurate modeling of the fuel cell system is 
analyzed. Thereby, the specific consumption curve of the fuel cell system 

HD8 used in the test bench is considered as the accurate modeling, while 
the curves of the fuel cell system HD7 and the aged fuel cell system 
HD7Aging are considered as the inaccurate modeling of the fuel cell 
system. The results of the PMP-based strategy with the specific curve of 
the HD8 applied are considered as the benchmark for the APMP results. 
Here, only the driving cycle ENV2 is tested. 

Fig. 18 shows the simulation results of the PMP and the APMP 
strategy. The fuel cell power, SoC, and the costate trajectories resulted 
from the APMP-strategy, separately using the specific consumption 
curves of HD8, HD7, and HD7Aging to estimate the costate, are displayed 
in the right sub-figures in Fig. 18. The fuel cell power and the SoC tra-
jectories under the APMP strategy with different specific consumption 
curves used are almost identical, as shown in Fig. 18(b) and (d). The 

Fig. 14. Pfc trajectories of APMP results in comparison to PMP results under different driving cycles for various weather conditions.  

Fig. 15. Aging property of the fuel cell system HD7.  
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estimated costate amplitude difference is obvious when various specific 
curves are used for the APMP strategy, as shown in Fig. 18(f). Then, to 
evaluate the APMP strategy’s robustness against inaccurate fuel cell 
modeling, the PMP strategy, which uses the specific consumption curve 
of HD8, is used to determine the minimal hydrogen consumption. 
Thereby, the load power trajectories and the SoC initial and end values 
resulted from the APMP strategies, with different specific consumption 
curves used, are inputs for the PMP algorithm. The fuel cell power, SoC, 
and costate trajectories resulted from the PMP strategy in sub-Fig. 18(a), 
(c) and (e) are almost the same because the input of the load power 
trajectories and the SoC boundaries values from the APMP simulations 
are close. 

The deviations in the costate average value under the APMP for HD7 
and HD7Aging from the value resulted from the PMP strategy, are shown 
in Table 6. The fuel economy under inaccurate modeling of the fuel cell 
system is analyzed in Table 7. The same SoC end value of 0.52 results for 
APMP under different fuel cell models. The hydrogen consumption 

Fig. 16. Performance of energy management strategy with and without fuel cell aging regarding PMP and APMP-based strategy.  

Table 4 
Fuel economy analysis considering fuel cell aging.  

Season Summer Winter  

HD7 HD7Aging HD7 HD7Aging 

λ (g) of APMP  − 12866 − 14631 − 14073 − 16494 

λ (g) of PMP  − 12776 − 14509 − 13976 − 16361 

Ref.|λ| from PMP  +0.70% +0.84% +0.69% +0.82% 

mH2 (g) of PMP  32268 33888 42334 42786 
mH2 (g/km) of PMP  221.29 232.40 290.32 293.42 
mH2 (g) of APMP  32680 34386 45502 46060 
mH2 (g/km) of APMP  224.11 235.81 312.04 315.87 
SoCend  0.52 0.52 0.52 0.52 
Ref.mH2 from PMP  +1.28% +1.47% +1.07% +1.23%  
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increase, which uses inaccurate fuel cell models in the APMP strategy, 
compared to the PMP results, is 1.33% and 1.47% for HD7 and HD7Aging 
respectively in summer, 1.29%, and 1.31% in winter. Compared to the 
APMP strategy, which uses the accurate fuel cell model HD8, which has 
more consumption of 1.48% in summer and 1.33% in winter than the 
corresponding PMP results, the fuel economy’s difference is negligible. 
In conclusion, the excellent fuel economy is maintained, whereby the 
APMP-based strategy’s effectiveness is proved in the case of inaccurate 
fuel cell modeling, which shows low sensitivity and a high degree of 
robustness. 

4.5. APMP without fuel cell aging accurately known 

After a long-term operation, the degradation of the fuel cell in-
creases. It is most likely that the fuel cell’s characteristic curves are 
accurately estimated at the beginning of its lifetime. However, the 
characteristic curves change after the long-term operation due to 

Fig. 17. Performance of energy management strategy with battery aging considered regarding PMP and APMP-based strategy.  

Table 5 
Fuel economy analysis considering battery aging.  

Season Summer Winter  

Origin Aging Origin Aging 

λ (g) of APMP  − 12910 − 11636 − 15257 − 13749 

λ (g) of PMP  − 12756 − 11494 − 15084 − 13593 

Ref.|λ| from PMP  +1.21% +1.24% +1.15% +1.15% 

mH2 (g) of PMP  31094 31116 41550 41576 
mH2 (g/km) of PMP  213.24 213.39 284.94 285.12 
mH2 (g) of APMP  31554 31584 42102 42140 
mH2 (g/km) of APMP  216.39 216.60 288.73 288.99 
SoCend  0.52 0.52 0.52 0.53 
Ref.mH2 from PMP  +1.48% +1.50% +1.33% +1.36%  
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unavoidable degradation, which causes another inconsistency between 
the actual fuel cell and its model. In this case, energy management 
maintains using HD8 as the model of the fuel cell. For the calculation of 
hydrogen consumption, the fuel cell model HD8 is used as the original 
fuel cell without degradation, and the model HD7 and HD7Aging are 
used as the fuel cell with different degradation degree. The results of 
PMP with the same degradation degree are considered as the benchmark 
results for the APMP simulation. Here, the strategy under the driving 

Fig. 18. Performance of energy management strategy considering inaccurate estimation of fuel cell systems regarding PMP and APMP-based strategy.  

Table 6 
Average relative deviations of λ under inaccurate fuel cell modeling.  

Season Summer Winter  

HD7 HD7Aging HD7 HD7Aging 

λ (g) of aging APMP  − 12787 − 14631 − 13628 − 16494 

Ref.|λ| from PMP  0.25% 14.7% 9.63% 9.34%  

Table 7 
Fuel economy analysis considering inaccurate estimation of the fuel cell system.  

Season Model in APMP mH2  mH2  ΔmH2    

of APMP of PMP  

Summer HD8 31094 g 31554 g +1.48%   
213.24 g/km 216.39 g/km   

HD7 31092 g 31504 g +1.33%   
213.22 g/km 216.05 g/km   

HD7Aging 31096 g 31554 g +1.47%   
213.25 g/km 216.39 g/km   

Winter HD8 41550 g 42102 g +1.33%   
284.94 g/km 288.73 g/km   

HD7 41540 g 42074 g +1.29%   
284.87 g/km 288.53 g/km   

HD7Aging 41552 g 42098 g +1.31%   
284.95 g/km 288.70 g/km   
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cycle ENV2 is investigated. 
In the APMP simulation, the same fuel cell model HD8 is used to 

distribute power. Therefore, the fuel cell power trajectories are the 
same. For this reason, only PMP results are displayed in Fig. 19, where a 
low deviation is observed for fuel cell power and SoC trajectories. The λ 
trajectories drift apart due to the difference between HD7, HD7Aging, 
and HD8. 

The deviation in the costate under the APMP from the costate of the 
PMP strategy, with the fuel cell model HD7 and HD7Aging separately 
used for offline calculation, is shown in Table 8. Furthermore, the same 
SoC end value of 0.52 results from simulations. 

The fuel economy due to the undetected deviation of the fuel cell is 
depicted in Table 9. It is worth mentioning that in calculating hydrogen 
consumption, the specific consumption curves of the actual fuel cell 
under different degradation degrees are used and they are HD8, HD7, 
and HD7Aging sequentially. The slight variation of additional hydrogen 
consumption in comparison to PMP results is nearly unnoticeable. In 
conclusion, the excellent fuel economy is maintained, and the effec-
tiveness of the APMP strategy is proved to be not affected by the slight 
undetected deviation of the fuel cell system. 

4.6. APMP under different polynomial approximations for fuel cell 
consumption modeling 

The specific consumption curve is obtained by fitting the experi-
mental data, as shown in Fig. 20(a). Based on the same group of data, 
different fitting methods can provide a slight difference. Here, eight fuel 
cell specific consumption curves are fitted, as shown in Fig. 20(b). 
Among all these models, HD8, HD7, and HD8Poly3 are chosen for further 
detailed analysis as examples. The Fig. 21 shows PMP simulation results 
of HD8, HD7, and HD8Poly3. The Fig. 22 shows APMP simulation results 
of HD8, HD7, and HD8Poly3. 

Notably, the fuel cell power trajectories nearly overlap for both PMP 

and APMP results. In comparison to the PMP strategy, the extra 
hydrogen consumed by the APMP strategy has a slight increment from 
1.211% to 1.65%, whereby HD8 is used to calculate the hydrogen con-
sumption. The values related to fuel efficiency are listed in Table 10. 
Therefore, the APMP-based strategy is also robust against deviations 
introduced by curves approximation. 

Fig. 19. Trajectories resulted from the PMP-based strategy under undetected deviation of fuel cell systems.  

Table 8 
Average relative deviations of λ under undetected deviation of fuel cell systems.  

Season Summer Winter  

HD7 HD7Aging HD7 HD7Aging 

λ (g) APMP  − 12910 − 12910 − 15257 − 15257 

Ref.|λ| PMP  1.29% 11.02% 13.18% 6.75%  

Table 9 
Fuel economy analysis considering undetected deviation of fuel cell systems.  

Season Model to mH2  mH2  ΔmH2   

calculate mH2  of APMP of PMP  

Summer HD8 31094 g 31554 g +1.48%   
213.24 g/km 216.39 g/km   

HD7 32150 g 32596 g +1.39%   
220.48 g/km 223.54 g/km   

HD7Aging 33886 g 34388 g +1.48%   
232.38 g/km 235.83 g/km   

Winter HD8 41550 g 42102 g +1.33%   
284.94 g/km 288.73 g/km   

HD7 42026 g 42486 g +1.09%   
288.20 g/km 291.35 g/km   

HD7Aging 45502 g 46070 g +1.25%   
312.04 g/km 315.94 g/km   
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5. Experimental validation 

5.1. Configuration of test bench 

The configuration, which is utilized in the simulations, is displayed 
in Fig. 1. However, the configuration of test bench, which is shown in 
Fig. 23, slightly differs from that of the simulation model. Fig. 24. 

The test bench is also powered by two sources, including a fuel cell 
system and a lithium-ion battery system. The fuel cell system is actively 
controlled by a unidirectional DC/DC converter, while the lithium-ion 
battery system is directly connected to the DC bus of the fuel cell 
output. A bidirectional DC/DC boost converter is applied as an interface 

Fig. 20. Fitting on the experimental data of the fuel cell system.  

Fig. 21. PMP results regarding different fitted fuel cell models.  

Fig. 22. APMP results regarding different fitted fuel cell models.  

Table 10 
APMP simulation results considering different fitted fuel cell models.  

Fitted SoCend  mH2  Ref.mH2  

models  (g/km) from PMP 

HD7 0.52 223.13 +1.21 %  
HD8 0.52 216.39 +1.48 %  
HD8Poly3 0.52 215.95 +1.65 %   
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from fuel cell output to the DC-link, which is controlled to maintain the 
DC-link voltage at 1650 V. Another DC/DC converter is implemented for 
the load side and controls the load power. Instead of a real driveline 
consisting of inverters, motors, gears, wheels, and mechanical loads, the 
load power is emulated by using the load side DC/DC converter. A 
battery system and a load unit, which transports electrical energy into 
the network, are used as power sinks. The load battery absorbs high peak 
power, and the load unit is actively controlled to absorb average fuel cell 
power. 

Due to the technical limitations of the test objects, the system’s 
power is restricted. Thereby, only two of the three branches of the 
battery system can be used. Therefore, the power demand on the DC-link 
implemented on the test bench should be downscaled to be about two- 
thirds of its simulated value. However, the fuel cell system power de-
mand on the test bench should not be downscaled to ensure that energy 
management strategies’ validation regarding fuel economy remains 
meaningful. Therefore, the load power demanded by the DC link on the 
test bench is formulated as: 

Pload,testbench

(

t
)

=
2
3

⋅Pload

(

t
)

+
1
3
⋅Pfc

(

t
)

, (34)  

whereby Pload,testbench(t) is the implemented load power on the test bench, 
Pload(t) the simulated load power, and Pfc(t) the simulated fuel cell 
power. Then, the battery power in the test bench is estimated to be: 

Pbat,testbench = Pload,testbench
(
t
)
− Pfc

(
t
)

=
2
3
⋅
(

Pload

(

t
)

− Pfc

(

t
))

,
(35) 

Then, the battery power in the test bench is almost two-thirds of the 
simulated battery power. Because two of the three branches of the 

battery system are switched on, the measured SoC trajectory after 
downscaling is close to the results of the initially planned experiments. 
The comparison of test bench parameters is listed in Table 11. 

5.2. Experimental validation of APMP 

In this section, the effectiveness of the stationary modeling of DC/DC 
converter, the fuel cell system, and the lithium-ion battery system is 
validated under driving cycle ENV4. 

The modeling of DC/DC converter is validated by comparing the 
modeled loss power to the measured loss power. The power loss is the 
difference between the input and output power as follows: 

Ploss
(
t
)
= Pfc,meas

(
t
)
+Pbat,meas

(
t
)
− Pdc− link

(
t
)
, (36)  

whereby Pfc,meas(t) is the measured fuel cell power trajectory, Pbat,meas(t)
the measured battery power trajectory, and Pdc− link(t) the measured DC- 
link power trajectory. The power loss trajectories measured in the test 
bench and calculated in the model are displayed in Fig. 25. The effec-
tiveness and accuracy of the DC/DC converter modeling is evident as the 
average measured power loss is 5.42 kW, and that of modeled power loss 
is 5.84 kW, thus making the average relative difference of 7.75%. 

The modeling of the fuel cell system is validated by comparing the 
model-based calculated hydrogen consumption to the measured one 
from the test bench, as shown in Fig. 26. The trajectories in Fig. 26(a) 
nearly overlap, which verifies the effectiveness and accuracy of the fuel 
cell modeling. The measured final hydrogen consumption is 5687 g, and 
the modeled final hydrogen consumption is 5626 g. The enlarged view 
of the trajectories at the end of the driving cycle shows a slight relative 
difference of 1.07%. 

The modeling of the battery system is validated by comparing the 
simulated battery voltage and SoC to the measured counterparts in the 

Fig. 23. Schematic of the test bench configuration.  

Fig. 24. Configuration of the test bench.  

Table 11 
Parameter comparison between the simulation model and test bench.  

Parameters Modeling Test bench 

Maximum fuel cell power 180 kW 150 kW 
Minimum fuel cell power 20 kW 20 kW 
Maximum charge current per branch 300 A 250 A 
Maximum discharge current per branch − 300 A − 250 A 
Maximum battery charge power 730 kW 600 kW 
Maximum battery discharge power 730 kW − 600 kW 
Number of battery branches 3 2 
Number of passengers 120 60  
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test bench, respectively, as shown in Fig. 27. Although the discretization 
procedure of SoC intrinsically provides a deviation of 1% compared to 
its original value, the measured SoC value is consistent with the simu-
lation result, as shown in Fig. 27(b). The trajectories of measured battery 
voltage and modeled battery voltage in Fig. 27(a) nearly overlap. 

In order to validate the effectiveness of the APMP-based strategy on 
test bench, the measured results from the test bench are compared to the 
offline PMP results, which is regarded as the benchmark. The measured 
power demand at DC-link and SoC end value of 0.5, the same as the 
initial value, from the test bench are utilized as inputs to the offline PMP 
calculation. The comparison of results under driving cycle ENV4 is 
displayed in Fig. 28, whereby HD8 is utilized as the fuel cell model. 

The fuel cell power trajectories of measured results in Fig. 28(a) are 
mainly matching those of PMP results. The average value and average 
relative devaition are included in Table 12. An additional hydrogen 
consumption on test bench of 1.09% compared to PMP, which shows a 

perfect fuel economy, verifies the effectiveness of APMP-based strategy 
on the test bench. 

5.3. Validation of the Robustness of APMP 

In order to validate the effectiveness of the APMP-based strategy 
under inaccurate estimation of fuel cell characteristic curves, the test 
bench is operated with EMS utilizing different fuel cell specific con-
sumption curves, i.e., HD7, HD7Aging, HD8Poly3, and HD8Poly5, as 
shown in Fig. 29. 

The measured fuel cell power and SoC trajectories from the test 
bench under the driving cycle ENV4 are displayed in Fig. 30. The 
measured results compared to the offline PMP results are displayed in 
Figs. 31 and 32, whereby the inputs to offline PMP calculation are the 
measured power demand at DC-link and SoC end value from the test 
bench. 

It is evident that the fuel cell power trajectories of measured results 
in Fig. 31 are mostly around the corresponding PMP results. And the SoC 
trajectories in Fig. 32 are also approximately consistent with the PMP 
results. The average value and average relative deviation are included in 
Table 13, where the fuel economy based on the measurement is also 
analyzed. The additional hydrogen consumption of the test bench in 
reference to PMP result is only 1.19 ̃2.70%, which slightly deviates 
from the benchmark of 1.09% under accurate fuel cell modeling by using 
HD8. Therefore, the effectiveness of the APMP-based strategy with 
inaccurate estimation of fuel cell characteristic curves is verified. 

6. Conclusions 

In this contribution, an offline PMP strategy, which considers the 

Fig. 25. Validation of DC/DC converter modeling via power loss trajectories.  

Fig. 26. Validation of fuel cell modeling via hydrogen consumption trajectories.  

Fig. 27. Validation of battery modeling via battery voltage and SoC trajectories.  
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relaxation process due to the resistance-capacitor branches in batteries, 
is implemented to provide accurate reference results for evaluating 
online strategies. After that, the most significant challenge faced with 
the APMP or ECMS-based strategy of adaptively estimating the costate is 
solved by an analytical formula based on the energy conservation 
principle. The robustness of the model-based APMP strategy regarding 

the fuel economy against various uncertainties and aging effects are 
validated through simulation and measurement on the test bench. Under 
various aging and uncertainty conditions, a maximum of 1.5% more 
hydrogen consumption is obtained in the simulation results compared to 
offline PMP results. In the test bench measurement results under various 
uncertain conditions, hydrogen consumption is at most 2.7% higher 
than the optimal offline strategy. Due to its model-based characteristic, 
this strategy is universal, scalable, robust, and adaptive, which can be 
used not only for hybrid trains but also for other transportation and 
stationary applications. 
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Fig. 28. Validation of APMP-based strategy in reference to PMP-based strategy.  

Table 12 
Comparison between test bench measurement of APMP and PMP result.  

Data source Pfc  Ref.Pfc  mH2  Ref.mH2   

(kW) from PMP (g/km) from PMP 

PMP 110.92 – 160.30 – 
Test bench 112.89 1.78% 162.05 1.09%  

Fig. 29. Different fuel cell specific consumption curves utilized in test bench.  

Fig. 30. Measured results of APMP-based strategy with inaccurate estimation of fuel cell.  
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Fig. 31. Pfc trajectories from the APMP-based strategy under inaccurate estimation of fuel cell in reference to the PMP-based strategy.  

Fig. 32. SoCtrajectories from the APMP-based strategy under inaccurate estimation of fuel cell in reference to the PMP-based strategy.  

H. Peng et al.                                                                                                                                                                                                                                    



Energy Conversion and Management 229 (2021) 113734

22

References 

[1] Communication from the commission to the european parliament, the council, the 
european economic and social committee and the committee of the regions, 
https://ec.europa.eu/energy/sites/ener/files/hydrogen_strategy.pdf, accessed July 
4, 2020. 

[2] Alstom’s hydrogen train coradia ilint completes successful tests in the netherlands, 
https://www.alstom.com/press-releases-news/2020/3/alstoms-hydrogen-train- 
coradia-ilint-completes-successful-tests, accessed July 4, 2020. 

[3] Development and validation of a high-power-fuel-cell-drive-train for hybrid-emu- 
railways, https://www.isea.rwth-aachen.de/cms/ISEA/Forschung/Projekte/ 
Oeffentliche-Projekte/Laufende-Projekte/ qate/X-EMU/?lidx=1, accessed July 4, 
2020. 

[4] Wang Y, Moura SJ, Advani SG, Prasad AK. Power management system for a fuel 
cell/battery hybrid vehicle incorporating fuel cell and battery degradation. Int J 
Hydrogen Energy 2019;44(16):8479–92. 

[5] Ahmadi S, Bathaee S, Hosseinpour AH. Improving fuel economy and performance 
of a fuel-cell hybrid electric vehicle (fuel-cell, battery, and ultra-capacitor) using 
optimized energy management strategy. Energy Conv Manage 2018;160:74–84. 

[6] Fu Z, Zhu L, Tao F, Si P, Sun L. Optimization based energy management strategy for 
fuel cell/battery/ultracapacitor hybrid vehicle considering fuel economy and fuel 
cell lifespan. Int J Hydrogen Energy 2020;45(15):8875–86. 

[7] Wu Y, Tan H, Peng J, Zhang H, He H. Deep reinforcement learning of energy 
management with continuous control strategy and traffic information for a series- 
parallel plug-in hybrid electric bus. Appl Energy 2019;247:454–66. 

[8] Xu B, Rathod D, Zhang D, Yebi A, Zhang X, Li X, Filipi Z. Parametric study on 
reinforcement learning optimized energy management strategy for a hybrid 
electric vehicle. Appl Energy 2020;259. 114200. 

[9] Peng H, Li J, Deng K, Thul A, Li W, Löwenstein L, Sauer DU, Hameyer K. An 
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