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Abstract
Purpose – The purpose of this paper is to use different model order reduction techniques to cope with the
computational effort of solving large systems of equations. By appropriate decomposition of the
electromagnetic field problem, the number of degrees of freedom (DOF) can be efficiently reduced. In this
contribution, the Proper Generalized Decomposition (PGD) and the Proper Orthogonal Decomposition (POD)
are used in the frame of theT-X-formulation, and the feasibility is elaborated.
Design/methodology/approach – The POD and the PGD are two methods to reduce the model
order. Particularly in the context of eddy current problems, conventional time-stepping algorithms can
lead to many numerical simulations of the studied problem. To simulate the transient field, the T-
X-formulation is used which couples the magnetic scalar potential and the electric vector potential. In
this paper, both methods are studied on an academic example of an induction furnace in terms of
accuracy and computational effort.
Findings – Using the proposed reduction techniques significantly reduces the DOF and subsequently the
computational effort. Further, the feasibility of the combination of both methods with the T-X-formulation is
given, and a fundamental step toward fast simulation of eddy current problems is shown.
Originality/value – In this paper, the PGD is combined for the first time with the T-X-formulation. The
application of the PGD and POD and the following comparison illustrate the great potential of these
techniques in combination with theT-X-formulation in context of eddy current problems.

Keywords Model order reduction, Proper generalized decomposition,
Proper orthogonal decomposition, T-X-formulation, Finite element method

Paper type Research paper

1. Introduction
Because of its accurate representation of field quantities, the Finite Element Method (FEM)
is commonly used to solve transient electromagnetic field phenomena by using the magnetic
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vector potential formulation. However, another approach can be used by introducing the
electric vector potential T and the magnetic scalar potential X, which lead to a smaller
system while maintaining the accuracy. For eddy current problems, such as
nondestructive testing, the T-X-formulation is particularly suitable and superior to the
magnetic vector potential formulation (Henneron et al., 2007). To overcome the
computational effort that arises owing to the solving of numerous linear equation
systems, the model order reduction (MOR) is used. The Proper Orthogonal
Decomposition (POD) is a widely used technique for MOR of large-scale systems and
has been applied to electromagnetic field problems, among others, by Farzamfar et al.
(2015), Henneron and Clenet (2013) and Henneron et al. (2015). A comparison between
the commonly used magnetic vector potential formulation and the magnetic scalar
potential formulation in combination with the POD can be found in Henneron et al.
(2015). The Proper Generalized Decomposition (PGD) originates from the field of
mechanical and fluid-dynamic problems (Nouy, 2010) (Chinesta et al., 2011). It has
shown its usefulness in facing numerous numerical challenges (Nouy, 2010), (Chinesta
et al., 2011), (Chinesta et al., 2014), (Qin et al., 2016a, 2016b) and has recently been
applied to electromagnetic field computation in context with the magnetic vector
potential formulation, inter alia, by Henneron and Clenet (2013), Qin et al. (2016a,
2016b) and Mueller et al. (2019a, 2019b). Owing to the advantages in terms of eddy
current computation, using the PGD to the T-X method is yet to be done, and a first
step toward fast simulation of eddy current problems such as nondestructive eddy
current testing. To underline their importance and their processes, the PGD and the
POD are declared in detail. Finally, the convergence and the computational effort of
the two methods are exhibited.

2. Magnetodynamic finite element formulation
To apply the magnetic scalar potential formulation, the magnetic field strength needs to be
defined by a combination of the magnetic scalar potential X and the electric vector potential
T (1).

H ¼ T �rX; (1)

T is given by the sum of the exciting vector potential T0 and the eddy current constituentTe
(2).

T ¼ T 0 þ Te (2)

By including Faraday’s law, equations (1) and (2) result in equation (3) containing the
unknown variablesTe andX.

r� 1 sr�T e= Þþ@mTe=
@t
�@mr X=

@t
¼�m@T0=

@t

�
(3)

The second equation of interest, as stated in equation (4), originates from the junction of the
magnetic flux density and thematerial equation for the magnetic field strength.

r � mT eð Þ � r � mr Xð Þ ¼ �r � mT 0 (4)

The exciting current vector potential is given by a spanning tree (Boehmer et al., 2013). If a
domain G contains a simply connected conductive region Gc, equations (3) and (4) can be
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applied. The magnetic scalar potential is realized by nodal elements, whereas the electric
vector potential is implemented in the edge element space. The Galerkin method is
furthermore applied to obtain the weak formulation. A tree–cotree gauge is used in the
conductive subdomain (Manges and Cendes, 1995).

3. Model order reduction
The methods of the POD and the PGD are based upon the theory that unknown potentials
can be decomposed into products of functions, which depend on a spatial or temporal
variable as shown in equation (5) (Henneron and Clenet, 2013), (Nouy, 2010), (Chinesta et al.,
2011), (Mueller et al., 2019a, 2019b). In equation (5), Te, as well as X, are each represented by
a vector U, and a finite amount m of terms, which are also frequently referred to as modes
(Mueller et al., 2019a, 2019b).

U �
Xm
i¼1

Ri xð ÞSi tð Þ (5)

R(x) is defined in the edge or nodal element space depending on the potential to be
represented. S(t) is defined on the studied time interval.

3.1 Proper orthogonal decomposition
The a-posteriori reduction approach of the POD is based on taking necessary
information from previous solutions in the reference system and the consecutive
construction of a projection operator. This projection is applied onto the reference
system to receive a reduced representation (Henneron and Clenet, 2013), (Henneron
et al., 2015), (Montier et al., 2017).

3.1.1 Building the projection. To achieve a reduction in terms of degrees of freedom
(DOF), the solution vector X, which contains Te and X, is estimated with a new solution
vector Xr of smaller size (Farzamfar et al., 2015).

X � PXr; (6)

where P denotes the projection operator which projects the system of size number of
unknown n into a reduced system with the size m (m � n). The projection P is
constructed by using the method of snapshots. The reference system is solved for k
time steps, and the solutions are stored in the snapshot matrix AS = [X1, X2, . . ., Xk]
of size n � k, where k is equal to the number of snapshots (NoS). Furthermore, there
are different strategies which m of those k calculated solutions should be taken to
create the projection, shown in subsection 3.1.2. Consecutively, the resulting snapshot
matrix AS of size m has to be evaluated in terms of a singular value decomposition
(SVD). For systems with many DOF, this leads to an ambitious computational effort.
Using the relation between SVD of a given matrix AS [equation (7)] and the
eigenvalue decomposition of the correlated quadratic matrix CS [equation (8)]
(Henneron and Clenet, 2014), the computational effort is significantly reduced. Finally,
the projection operator can be achieved by equation (9).

AS ¼ VRWt (7)
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CS ¼ 1
m

WDWt (8)

P ¼ ASW (9)

Subsequently, to achieve the reduced system, the projection has to be applied to the
reference equation:

PtMPXr ¼ PtF tð Þ; (10)

where M is the system matrix and F(t) is the right hand side, given by the weak forms of
equations (3) and (4).

3.1.2 Snapshot method. A direct consequence of the projection creation [equation (9)]
is the influence of the snapshots on the accuracy of the reduced system. By applying the
SVD on the snapshot matrix, the solution space is explored. If the computed solutions,
for example, contain the same vector twice or just a few very similar ones, the
decomposition will not produce accurate results. The SVD extracts rotation and scaling
given in the matrix AS, and for this reason mutually different snapshots are preferable.
Two common routines for taking snapshots are illustrated in the following. The method
with less computational effort is given by subsequently taking snapshots for a certain
amount of time steps. As previously delineated, this method can lead to inaccuracies, if
the snapshots are very similar.

The second method is the system-based approach. Owing to the transient behavior, the
first m time steps will probably not sought all relevant information into the reduced model;
therefore, taking evenly distributed snapshots will produce more accurate results. A trade-
off between computational effort and accuracy is achieved by distributing the snapshots
only in the first current period. For static problems, greedy algorithm-based snapshot
methods can be used to further improve the decomposition but are unfeasible in terms of
computational effort in context of eddy current problems (Mukherjee et al., 2017). The two
methods are exemplary depicted in Figure 1.

The snapshot method and the consecutive decomposition to achieve a projection
operator do not depend on the formulation. In some cases, systems with multiple
potentials such as the T-X-formulation might suffer from bad representation by a
single projection operator. To cope with this problem, one projection operator for each
physical entity needs to be computed (Montier et al., 2017). However, this issue did not
occur in this research.

Figure 1.
Snapshots taken for
the two presented
methods: circle =
sequential; cross =
system-based
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3.2 Proper generalized decomposition
The PGD is an a priori approach to achieve a separated form [equation (5)]. To use the
general methodology developed in Nouy (2010), Chinesta et al. (2011) and Chinesta
et al. (2014) to the T-X-formulation, the two unknowns Te and X must be substituted
by the approach outlined in equation (5) (Mueller et al., 2019a, 2019b). In case of the
weak formulation, the basic functions are substituted by equations (11) and (12). The
nodal test function is indicated by a, whereas b typifies the edge element test
functions.

a x; tð Þ ¼ R X xð Þ0S X tð Þ þ R X xð ÞS X tð Þ0 (11)

b x; tð Þ ¼ RT xð Þ0ST tð Þ þRT xð ÞST tð Þ0 (12)

By presuming that the spatial or temporal function is known, the computation of the
single modes is possible by applying an alternative direction scheme (Chinesta et al.,
2011). The test function, belonging to the known component vanishes in equations
(11) and (12). As the modes up tom � 1 are assumed to be known, the evaluation of the
spatial function is done by using the FEM to solve the differential algebraic
equations (13) and (14). T0,x/T0,t indicate the spatial and temporal part of the
excitation as follows:

Xm
i¼1

 ð
Gc

1=s r�RT;ir�R
0
TdGc

ð
t

ST;iST ;mdtþ
ð
Gc

mRT ;iR
0
TdGc

ð
t

dST ;i
�
dtST ;mdt

�
ð
G

mrR X;iR
0
TdG

ð
t

dS X;i
�
dtST;mdt

!

¼ �
ð
G

mT 0;xdG
ð
t

dT0;t
�
dtST ;mdt

(13)

Xm
i¼1

ð
Gc

� mrR X
0RT;idGc

ð
t

S X;mST;idtþ
ð
G

mrR X;irR X
0dG

ð
t

S X;iS X;mdt

0
@

1
A

¼ �
ð
G

mrR X
0T 0;xdG

ð
t

SX;mT0;tdt

(14)

When identifying the time functions, the beforehand calculated space functions are set
as being fixed, and the time functions are declared as unknowns, which results in a
system of ordinary differential equations (ODE). The space test functions vanish and a
combination of equations (11) and (12) with the T-X-formulation results in
equations (15) and (16).
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Xm
i¼1

ð
Gc

1=s r� RT;ir� RT;mdGc ST;i þ
ð
Gc

mRT;iRT;mdGc
dST ;i
�
dt

0
@

�
ð
G

mrR X;iRT;mdGdS X;i
�
dt

1
A

¼ �
ð
G

mT 0;xdGdT0;t
�
dt (15)

Xm
i¼1

ð
Gc

� mrR X
0RT ;idGc ST;i þ

ð
G

mrR X;irR
0
XdG S X;i

0
@

1
A

¼ �
ð
G

mrR X;mT 0;xdG T0;t

(16)

To solve the ODE, an implicit Euler method can be a suitable. The algorithm is shown in the
following (PGD-Enrichment process)

PGD-Enrichment process
RT = {}, RX = {}initialization of the space related reduced basis
ST= {}, SX = {}initialization of the time related reduced basis
While m<= maxMode and PGD-Enrichment is not converged
Initialize ST,m, SX,m
Repeat

Solve space problem: RT,m, RX,m/(13), (14)
Solve time problem: ST,m, SX,m/(15), (16)
Normalizetimefunctions:ST,m/ST,m/||ST,m||2,SX,m/SX,m/||SX,m||2

Until eT(17)and eX (18)convergedormaxNLismet
AddRT,mtoRTandRX,mtoRX
AddST,mtoSTandSX,mtoSX
Endwhile

To improve the relative convergence of the enrichment process, one of the functions of each
potential should be normalized to prevent cases in which one part of the decomposition
tends to become infinitely small, while the other one diverges toward infinity. In this
contribution, we arbitrarily choose the time functions to be normalized. This is particularly
important for the T-X-formulation owing to two unknown potentials. The alternative
direction scheme is repeated until convergence or a maximum number of nonlinear
iterations are met. The convergence of the single mode in the kth nonlinear iteration
is computed by equations (17) and (18). The number of modes (NoM) is increased until
the complete enrichment is converged or a maximum NoM (maxMode) are met. The
convergence of the complete enrichment process is given by assessing the information
content, which is enriched by the new mode compared to the previous enriched modes
(Mueller et al., 2019a, 2019b).
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eT ¼ jjRT
kST

k � RT
k�1ST

k�1jj2
jjRT

k�1ST
k�1jj2

(17)

e X ¼ jjR X
kS X

k � R X
k�1S X

k�1jj2
jjR X

k�1S X
k�1jj2

(18)

3.3 Error evaluation
After the reduced representations have been achieved, the error compared to the reference
simulation needs to be evaluated. Therefore, a physical error criterion, based on the Joule
losses in the sample [equation (19)], is applied. Owing to the necessity of reference values,
this is an a posteriori criterion.

e J ¼ PJ ;ref � PJ ;MOR2

PJ ;ref 2
(19)

4. Application
In this context, theT-X-formulation is applied to solve an academic example of a conducting
sample located inside a short coil (Figure 2). The model is computed with two different
conductivities of 4 and 40 MS/m. Therefore, this example is similar to an induction furnace,
in which the eddy currents can be used for heating a probe. The occurring eddy currents are
proportional to the frequency and conductivity and will diffuse from the outside into the
probe. To properly model the eddy currents, the skin depth has to be accurately discretized.
The simulation frequency is arbitrarily set to 50Hz and the sinusoidal current has an
arbitrary magnitude of 100A. The magnetic permeability is set to m0, and the reference
solutions are obtained by a classic time-stepping simulation. The number of time steps
(NoT) for the studied interval is set to 300.

4.1 Results – Proper Orthogonal Decomposition
In Figure 3, the evolution of the Joule losses are shown. For the sequential snapshot method
(Figure 3a), six snapshots are sufficient to receive an error smaller than 2% for a given
conductivity of 40 MS/m. It is obvious that the Joule losses are not accurate for lower

Figure 2.
Academic example of

an eddy current
problem (coil =

yellow, sample =
grey, airgap = blue)

Model order
reduction

techniques



numbers of snapshot. The Joule error [equation (19)] for the sequential snapshots is shown in
Figure 3b. Owing to the transient eddy currents, which are proportional to the conductivity,
less snapshots are necessary for an accurate representation of the losses for 4 MS/m
compared to 40 MS/m. The convergence is given for both conductivities and is
approximately linear.

The system-based approach produces a decomposition, which shows higher accuracy
with less modes. The evolution of the system-based POD Joule losses behaves differently
compared to the sequential approach. In Figure 3c, the corresponding losses for 40 MS/m are
illustrated versus the time of two current periods. The convergence rate of the POD with
system-based snapshots is much faster compared to the sequential snapshots. It can be

Figure 3.
Joule losses of the
POD
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depicted from Figure 3d that three snapshots are enough to reproduce the eddy current
losses for a conductivity of 4 MS/m with an error smaller than 3e-5, and for four snapshots
the error drops below 2e-5. Also, the losses for the higher conductivity of 40MS/m are more
accurate than those of the sequential snapshots approach. While the error of the sequential
approach with four modes is higher than 20%, the error of the system-based approach is
smaller than 1e-4. Comparing the Joule losses of the two different snapshot methods, it is
noticeable that the system-based approach captures more relevant information of the
transient effect with less NoS (Figure 1). This improvement in terms of accuracy comes with
the price of more computations in the reference system. For the sequential approach, only
NoS computations in the reference system have to be done, while the system-based approach
needs the full first current period simulated in the reference system.

4.2 Results – Proper Generalized Decomposition
Owing to the direct decomposition of the PGD, the space and time modes can be analyzed
directly. The first four computed space modes for a conductivity of 40 MS/m are shown in
Figure 4. It can be depicted that the first mode is a uniformly rotating eddy current, while
the second mode only has an eddy current on the side, which is decreasing toward the center
of the sample.

The third mode shows an interesting phenomenon – the eddy currents at the top and
bottom of the sample are rotating clockwise with a maximum at half of the sample radius.
Moreover at the side of the sample, a counterclockwise rotating eddy current is visible. This
can be interpreted as follows: the first mode acts like an eddy current in low conductive
samples, while the second mode increases the eddy current in the edge region. The third

Figure 4.
Eddy current modes

of the PGD
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mode decreases the field in the middle of the sample. In combination with the enriched time
functions, shown in Figure 5, the diffusion of the eddy current into the sample can be
modeled by the linear combination given by equation (5). All functions show a transient
behavior. In combination with the decreasing amplitude of the space modes, it can be
assumed that the first two modes have a large impact on the overall behavior of the eddy
currents, while the third and later diminish smaller errors of the transient simulation. The
Joule losses of the PGD, depending on the NoM, are shown in Figure 6.

In contrast to the Joule losses computed with the POD, the first mode of the PGD contains
the most dominant information of the electric vector potential T. The latter modes correct
the amplitude and phase. The convergence of the error between the PGD and the reference
losses is not as smooth as the convergence of the POD, but still a quasi-linear convergence
rate can be depicted. For a conductivity of 4 MS/m, the first mode produces an error of
approximately 20%, while the error of both PODmethods with two snapshots is bigger than

Figure 5.
Time functions of the
PGD

Figure 6.
Joule losses of the
PGD
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100%. Similar to the POD methods, it can be seen that the error for the lower conductivities
decreases faster than for the higher one.

4.3 Comparison of Proper Orthogonal Decomposition and Proper Generalized Decomposition
Consecutively, to the Joule loss evaluation, a direct comparison of the three MOR methods
for a conductivity of 40 MS/m shall be done here. In Figure 7, the error [equation (19)] for all
methods is illustrated, and two fundamental aspects can be recognized; first, the PGD
produces accurate results with less modes than the sequential POD, and second, the overall
accuracy of the POD is linearly improving, while the PGD does not converge as smoothly as
the POD methods. The POD, regardless of the snapshot method, includes most relevant
information of the solution space in the projection and thus is able to converge to the
reference after enough modes are enriched. As the PGD does not use reference solutions, its
convergence might be worse than the POD’s because the basis of the PGD does not have to
be orthogonal. However, the PGD has its advantages in terms of computational effort shown
in Table 1. It only has to solve NoM·maxNL equation systems in the offline stage and
consequently NoT·NoMmultiplications in the online stage. For an even larger reduction, the
decomposition can be improved leading to a better accuracy with less modes, as well as a
better nonlinear convergence in the enrichment process by orthogonalization of the basis
(Chinesta et al., 2011), (Henneron and Clenet, 2016), (Mueller et al., 2019a, 2019b). The POD
nonetheless has fewer operations in the offline stage for sequential snapshot method and
more operations in the online stage because the reference load vector has to be built and four

Figure 7.
Error of theMOR

techniques for s = 40
MS/m

Table 1.
Computational effort

of a transient
problem

Operation Ref PGD POD

Build ref. O(n2) NoT NoM·maxNL NoT
Solve ref. O(n2) NoT NoM·maxNL NoS
Solve red. O(NoS2) 0 0 (NoT–NoS)
Multiplication O(n) 0 NoT·NoM 4·(NoT–NoS)
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projection operations are necessary. The first three projections are associated with equation
(10), and the last is necessary to project the reduced solution back into the reference system.
Furthermore, the PGD is able to cope with the “curse of dimensionality” by adding the
material parameter of the conductivity to the decomposition (Chinesta et al., 2011), (Chinesta
et al., 2014), (Krimm et al., 2019).

5. Conclusions and further work
In this work, two MOR techniques have been used in context of an academic eddy current
problem. By applying the POD and the PGD on the T-X-formulation, an accurate reduced
system could be achieved. The solutions for the eddy current losses and the distribution of
the field quantities are equivalent to the reference solution. Further, a direct comparison
between both methods is conducted. The influence of the selected snapshot and the influence
of the conductivity on the convergence process are shown in detail, leading to the conclusion
that both methods are well suited in this context. In future work, the conductivity will be
directly added to the PGD and the movement, which is required for simulation of electrical
machines and nondestructive eddy current testing.
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