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Abstract—A parallel Dynamic Programming algorithm, basing
on the matrix calculation, is used to develop the optimum
energy management strategy for a fuel cell and lithium-ion
battery hybrid train. In this paper, besides the state of charge
of the battery, the power from the fuel cell is defined as the
other state variable. Then, the control variable is the power
change rate in the fuel cell system. With the help of this
problem formulation, an efficient parallel Dynamic Programming
is easy to implement. The parallel calculation requires only
one loop over the time stages. To make the parallel Dynamic
Programming basing on the matriculated calculation successful, a
semi-physical soft constraints mechanism is developed to initialize
the cost function at the end time stage properly. With this
parallel Dynamic Programming, the effect of a weighting factor
between maximizing the fuel economy and avoiding high dynamic
power change of fuel cell, on the total hydrogen consumption is
investigated time efficiently.

Index Terms—fuel cell hybrid train, optimum energy man-
agement, parallel dynamic programming, soft constraints, fuel
economy, weighting factor

I. INTRODUCTION

The electrification of railway vehicles is an effective way
to save energy and reduce emissions. However, the cost of
complete electrification of the railway network, particularly for
lines with low traffic, is not cost-effective. For these railway
sections, the fuel cell hybrid train is an efficient alternative. In
a fuel cell hybrid train, a lithium-ion battery system is used
in addition to fuel cells, to provide and absorb high transient
power during acceleration and recuperative braking operation.
Moreover, the hybrid train operates in charge-sustaining mode.

Therefore, the fuel cell system meets the average power
requirement, and the battery system fulfills the transient peak
power demand. Fig. 1 shows the whole system configuration
of the hybrid train driveline. As a boundary condition, the final
state of charge (soc) of the battery is equal to the initial value.

The power distribution between the two energy storage
systems, the energy management strategy (EMS), provides a
degree of freedom to optimize the performance of the hybrid
train, including the driveability, the hydrogen consumption and
the fuel cell lifetime. Developing an energy management strat-
egy under many static and dynamic constraints, defined glob-
ally or locally, is a challenging task. In the literature, there are
three methods of developing energy management strategies:
rule-based, real-time optimization, and global optimization
methods. The rule-based method is based on the engineer’s
experience and implemented using conditional rules. Because
of the low computational effort, the rule-based strategy is
real-time capable. However, it does not guarantee optimal
performance [1]. The real-time optimization method is also
real-time capable because the power distribution is determined
basing on a predefined transient cost function. The most
famous of them is the equivalent consumption minimization
strategy (ECMS), which treats the battery power in a sense as
fuel consumption in the future using an equivalent factor [2].
This method does not guarantee an optimal power distribution
as well [3]. However, the optimal distribution is accessible if
the drive cycle of the vehicle is known in advance, which is a
reasonable assumption for railway transport. For this purpose,



the global optimization method is used. The most famous one
is based on Dynamic Programming (DP). The DP is based
on Bellman’s principle of optimality [4] and implemented
off-line. In [5], parallel dynamic programming basing on the
matrix calculation was used to optimally distribute the power
among three storage systems: a fuel cell system, a battery
pack, and an ultracapacitor. The power from the fuel cell
system and the capacitor are chosen as the state variables, with
dynamic power constraints in the fuel cell system ignored. In
most of the literature about energy management strategy for a
hybrid vehicle with dual storage system, DP is implemented
using multiple embedded loops [6], [7], including the loop
over time-stages, state-space, and control space. Therefore,
the exemplary implementation of Dynamic Programming is
very time-consuming. As a result, to reduce the computation
time, the SoC is defined as the single state variable. Then,
the control variable is the power from one storage system,
and power from the other storage system is passively de-
termined according to the energy conservation [8]. However,
under this one-dimensional framework, it is complicated to
implement parallel dynamic programming conveniently under
consideration of dynamic constraints on control variables. For
example, the change rate of fuel cell power cannot exceed
some certain limits [9], which is related to the fuel cell lifetime
[10]. Therefore, in works of literature on EMS using DP, the
dynamic constraints on the components are not considered.

In this work, to implement parallel dynamic programming
accessible, the power from the fuel cell is defined as the
other state variable besides the SoC, instead of as the control
variable. Then, the control variable is the rate of change in
fuel cell power. This transformed formulation by increasing the
dimension, that seems to make the problem more complicated
to solve, can make parallel Dynamic Programming easy to
implement, because the dynamic constraints on the control
variable (fuel cell power) under the one-dimensional frame-
work are replaced with static constraints on control variables
(power change rate) under the two-dimensional framework.

The paper is organized as follows: first, the basic principle
of DP and its application in EMS is introduced; second, the
parallelization of DP by increasing the dimension is detailedly
described; subsequently, the results of optimum energy man-
agement strategy using the parallel dynamic programming are
displayed and based on that follows an investigation of the
effect of a penalty factor. Last, the conclusion and the possible
outlook are given.
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Fig. 1: System configuration of hybrid train driveline.

II. ONE-DIMENSIONAL DP BASED ENERGY MANAGEMENT
STRATEGY

First, the general formulation of the optimal control problem
is introduced. Then, ”Bellman’s principle of optimality” is
described. Finally, this formulation is adapted to the case
of a fuel cell hybrid train. Notably, the static and dynamic
constraints related to the components of the hybrid system are
discussed.

A. General formulation of optimum control

The profile of the optimal control problem considered are
as follows: fixed time interval, multi-state multi-control, fixed
initial and desired final state, fixed definition interval of control
and state variables, a predetermined disturbance signal [11].
These characteristics are summarized as follows:

cost functional J = h (x (tf)) +

∫ tf

t0

g (x(t),u(t), t) dt

(1)
optimal control u∗(t) = arg min

u(t)

J(x0,u(t)), (2)

system dynamics ẋ(t) = f (x(t),u(t), t) , (3)
boundary conditions x(t0) = x0 x(tf) = xf , (4)
admissible controls u(t) ∈ U (t) ⊂ Rn, (5)

admissible states x(t) ∈X (t) ⊂ Rm, (6)

where h (x (tf)) is a penalty function in terms of the final
states; t0 and tf the start time and the end time respectively;
g (x(t),u(t), t) the transition cost in the time-variant function
of states and control variables; n and m are the numbers of
control inputs and state variables, respectively. Moreover, the
admissible control set in (5) is limited by both time-variant
static and dynamic constraints.

B. Principle of Dynamic Programming

Since DP is applied to solve a continuous-time problem, the
continuous model in (3) must be discretized in time. Then the
time-discrete model can be rewritten as:

x [k + 1] = F (x [k] ,u [k] , k) , k = 0, 1, 2, . . . , N −1 (7)

where N is the number of discrete time stages and k the index
of the k-th time instant. Let π = {u [0] ,u [1] , . . . ,u [N − 1]}
be a control policy. The discretized cost functional using the
policy π with an initial state x0 is calculated as follows [11]:

Jπ (x0) = hN (x [N ]) +

N−1∑
k=0

g(x [k] ,u [k] , k)∆t, (8)

where hN (x [N ]) and g(x [k] ,u [k] , k)∆t are the final
cost and transition cost, corresponding to h (x (tf)) and
g (x(t),u(t), t) in equation (1) respectively. The optimal con-
trol policy π∗ is the policy minimizing the cost J in terms of
π under a given initial state x0:

J∗(x0) = min
π∈Π

Jπ(x0), (9)

where Π is the set of all feasible policies.



Based on Bellman’s principle of optimality [4], the DP
algorithm calculates the optimal cost-to-go function J∗ (x [k])
at each node x [k] in the discretized state-time space by
backward calculation:
• cost for end state:

J∗(x[N ]) = hN (x [N ]), (10)

• iterative calculation for k = N − 1 to 0:

J∗(x[k]) = min
u[k]∈U [k]

(g(x [k] ,u [k] , k)∆t+J∗(x[k+1])),

(11)
where x[k + 1] is calculated using (7). After backward re-
cursion from k = N − 1 to k = 0, the optimal policy is
determined.

The exemplary implementation of DP uses embedded loops
over time-stages, state variables, and control inputs. The
computational complexity corresponding to that is in the order
of

O(N · pn · qm), (12)

where N is the number of time steps; p and q are the numbers
of discretization for state and control input; n and m is the
number of states and control inputs, respectively [7].

C. Formulation of one-dimensional DP to solve EMS

To keep the computational time affordable, in most of the
literature using DP to implement the optimal power distribu-
tion between two storage systems, the state of charge (SoC) of
the battery is defined as the single state variable. Then the fuel
cell power is the control input, and the corresponding hydrogen
consumption is the cost. Generally, the cost functional in EMS
problem for a fuel cell hybrid vehicle is defined like following
[9]:

J =wbt (x(tf)− x(t0))
2︸ ︷︷ ︸

charge sustaining Penalty

+ ∆t

N−1∑
k=0

ṁH2
(Pfc[k])︸ ︷︷ ︸

fuel cell consumption

+

λ

(
N−1∑
k=0

|Sign(Pfc[k])− Sign(Pfc[k + 1])|)

)
︸ ︷︷ ︸

fuel cell on/off penalty

,

(13)

where the weighting factor wbt enforces the SoC to return to
the expected final value and the λ provides a healthy tunnel
for the fuel cell to avoid frequent on/off operations. Moreover,
the constraints considered are summarized as follows:
• model dynamics:

ẋ = −
1

Qbatt

Vocv
2R0
−

√√√√(Vocv
2R0

)2

−
Pbatt

R0

 , (14)

• energy conservation:

PBT[k] = Pload[k]− Pfc[k], (15)

• fuel cell power static limits:

Pfcmin(t) 5 Pfc[k] 5 Pfcmax(t), (16)

• fuel cell power dynamic limits:

Rdown−fc∆t 5 Pfc[k]− Pfc[k − 1] 5 Rup−fc∆t, (17)

• battery power limits:

PBTmin 5 PBT[k] 5 PBTmax, (18)

• battery current limits:

IBTmin 5 IBT[k] 5 IBTmax, (19)

• battery SoC limits:

socmin 5 x[k] 5 socmax. (20)

Among them, Pload[k] is derived from the predetermined
drive cycle; according to (15), the battery power is calculated
passively, depending on the control input Pfc[k]. To protect
the battery, the SoC should be between the low and high
boundary as (20). (16)-(19) are related to constraints on the
control inputs. Notably, (17) is a dynamic constraint, and the
others are static constraints.

In the implementation of one-dimensional DP, as can be
found in most of the literature about fuel cell vehicle, the
dynamic constraint on fuel cells (17) is not considered. As a
result, the implementation is straightforward. However, it is
necessary to keep the power change rate of fuel cells under
certain limits to make fuel cells operates healthily [9]. With
that considered, the DP is implemented using embedded loops
over state and control space, besides the loop over the time-
stages. The computational time is then O(N ·p·q) according to
(12) with n = m = 1. Correspondingly, this simulation takes
enormous time, which is in the praxis not desired. Another
drawback to using one-dimensional DP to solve EMS, with
die dynamic constraints on the control variable considered,
is that the precondition of no aftereffect for using DP is not
fulfilled since the actual control input determines the range
of control variable in the next time interval according to the
equation (17).

III. PARALLEL DYNAMIC PROGRAMMING

In this part, firstly, the underlying thoughts behind imple-
menting parallel dynamic programming under MATLAB is
introduced. Then, a semi-physical mechanism for designing
soft constraints is discussed, which is crucial for the success
of parallel dynamic programming. Finally, the two dimensional
DP to solve EMS using the parallel dynamic programming is
displayed.

A. Parallel Dynamic Programming

MATLAB software has optimal routines for matrix-based
algorithms, which significantly improve the performance by
eliminating iterative loops. Unfortunately, there are not inte-
grated works about this field, only [5], [12] noted to imple-
ment the DP basing on matrix calculation. However, both do
not consider the dynamic constraints on system components.
Because of the matrix calculation, the loops over the state and
control space can be eliminated. As a result, the computational



performance is significantly improved, but need higher mem-
ory storage. In fact, during matrix calculation, all operations
on elements performed in one step. Correspondingly, the
computational time is in the order of O(N). Fig. 2 shows the

control input u 

state matrix in stage k 

A
B

C

state matrix in stage k+1 

SoC

P
fc

Fig. 2: The parallel dynamic programming transition pattern
in each time stage.

transition from the discretized states in the time stage k to
state space in the time stage k + 1 under different discretized
values of the control input. After the transition, there are three
different situations:

1) The new state locates between discretized states as the
Point A shows.

2) The new state locates just in discretized states as the
Point B shows.

3) The new state locates outside of the feasible discretized
states as the Point C shows.

For situation A, the cost-to-go J∗(x[k+1]) of the resulted state
is interpolated. For situation C, the cost-to-go J∗(x[k + 1])
is allocated a vast number. According to (11), the cost-to-go
J∗(x[k]) can be determined. If the new state cannot end in a
feasible state under all of the discretized control values, the
corresponding cost-to-go value J∗(x[k]) is equal to the same
huge number, to exclude those control policy, that leads the
state trajectory to pass through this node in state-time space.

B. Soft Constraints

As seen in (10), before the iterative loop over the time stages
for k = N − 1 to k = 0, the cost-to-go function should be
initialized. Because of the transition, as shown in Fig. 2, is
not the type of point-to-point, the soft constraints must be
used. Moreover, the design of soft constraints is crucial for the
success of DP. If the penalty is small for the states violating the
boundary condition as in (4), the soc trajectory does not result
in the target soc. However, if the penalty is too substantial,
the cost-to-go function loses the physical meaning, because
the cost-to-go is defined as the sum of the transition cost and
the cost-to-go of the new state, which start from the final time
stage.

In this study, the soft constraint is designed by using a semi-
physical approach. The state-space in the final time stage is
divided into two parts. The one covers a narrow range of soc in
the neighboring of the target soc (part ”narrow”), and the rest
is the other one (part ”rest”). The initial cost is determined
to base on the fuel cell specific consumption curve and the
position, in which the end states locate. The end states with
soc, that is larger than the target value of soc and locates in the
part ”narrow”, are allocated the negative value of the hydrogen
consumption, required to charge the battery from the target soc
to the current soc using the maximum efficiency of the fuel
cell. For the states outside of the part ”narrow”, the hydrogen
consumption amount calculated using the method before is
multiplied with a gradually decreasing penalty factor smaller
than one, as the state is further away over the target value.
On the contrary, the end states with soc, that is smaller than
the desired value of soc and locates in the part ”narrow”, is
allocated the value of the hydrogen consumption, required to
charge the battery from the current soc to the target soc using
low efficiency of the fuel cell. For the state outside of the
part ”narrow”, the hydrogen consumption amount calculated
is multiplied with a gradually increasing penalty factor higher
than one, as the final state is further away under the target
value. In this way, the target state inside the part ”narrow”
is favored, and the soc trajectory ends in this part ”narrow”
indeed, if it is possible under given drive cycle. Moreover, if
the load demand is too high or small, so that the target value to
reach is impossible, this initialization mechanisms can make
the final state as close as possible to the target. As additional
benefits, this soft constraints can determine the reachable final
states under a given load demand profile and a given initial
soc. Then the target soc can be adjusted if necessary.

Summarily, the try-and-error tunning is avoided, and the
soc is enforced to end in the neighboring of the target value
if possible under given load profile and initial conditions.

C. Two-dimensional DP to solve EMS

In solving EMS for fuel cell hybrid vehicle, using two-
dimensional DP, the fuel cell power is chosen to be the other
state variable, besides the soc. Then, the power change rate of
fuel cells is defined as the control variable. The EMS problem
is reformulated as follows:
• state vector: x = [x1, x2] = [soc, Pfc],

• control input: u =
dPfc

dt
,

• system dynamics:

ẋ1 = −
1

Qbatt

Vocv
2R0
−

√√√√(Vocv
2R0

)2

−
Pload − x2

R0

 ,

ẋ2 = u,
(21)

• state constraints:

socmin 5x1 5 socmax,

Pfcmin 5x2 5 Pfcmax,
(22)



• control constraint:

Rdown−fc 5 u 5 Rup−fc. (23)

The constraints on battery power and current remain the same
as before.

The cost functional from (13) can be rewritten and expanded
like the following:

J =wbt (x1(tf)− x1(t0))
2︸ ︷︷ ︸

charge sustaining Penalty

+ ∆t

N−1∑
k=0

ṁH2
(x2[k])︸ ︷︷ ︸

fuel cell consumption

+

λ

(
N−1∑
k=0

|Sign(x2[k])− Sign(x2[k + 1])|)

)
︸ ︷︷ ︸

fuel cell on/off penalty

+

∆t

N−1∑
k=0

σ|u[k]|︸ ︷︷ ︸
fuel cell power change penalty

,

(24)

where the introduced factor σ in the last term penalizes high
dynamic power change from the fuel cell system, to keep the
fuel cell operating with harmony between fuel economy and
fuel cell lifetime. For σ = 0, the cost function returns to the
form defined in (13).

With the dimension increased, the dynamic constraint on the
control input under the one-dimensional framework is replaced
by a static constraint on the new control input under the two-
dimensional framework, that makes parallel dynamic program-
ming convenient to implement. Besides that, the aftereffect
under the one-dimensional framework is eliminated, because
the control variable under the two-dimensional framework in
the stage before does not influence the range of control input
in the next time interval.

IV. RESULTS

Firstly, the optimum energy management solution corre-
sponding to minimum hydrogen consumption is displayed.
Then, the effect of the weighting factor σ in (24) on the
balance between fuel economy and fuel cell working condition
is investigated and based on that follows a discussion.

A. Time Analysis of the optimum power distribution

The setup parameters of two dimensional DP are summa-
rized in Tab. I. The penalty factor λ is allocated an enormous

TABLE I: Setup parameters of the two-dimensional parallel
dynamic programming algorithm

Parameter Min. Max. ∆ Num. of stages
Time (s) 0 9520 1 9521
Pfc (kW) 0 200 5 41
soc 0.2 0.9 0.0001 7001

dPfc

dt
(kW/s) -20 20 5 9

number to enforce that the fuel cell is not cut off during the

whole drive cycle. Moreover, at first, the penalty factor σ in
(24) is set to be zero. The drive cycle is shown in Fig. 4a and
the whole range is 198.8 km. From the drive cycle, the power
demand is calculated. Alongside with that, the time history
of relevant variables is displayed in Fig. 4. The power plots
in Fig. 4b correspond to optimal power distribution history.
The battery power and the fuel cell power are limited in
the range of (−1000 kW – 1000 kW) and (0 kW – 200 kW)
respectively. The soc plot in Fig. 4c shows that the end value of
soc reaches the initial value of 0.8 and the charge sustenance
is satisfied. From the control input plot in Fig. 4d, a highly
frequent change of fuel cell operating point can be observed,
and the maximal permitted change rate is ±20 kW/s. Because
the penalty factor σ here is zero, the substantial dynamic
change in the fuel cell power is allowed, as long as the
minimization of hydrogen consumption benefits from that. The
total hydrogen consumption is 24.22 kg using the efficiency
map and the fuel cell power history. The total simulation time
is 37 min under the discretization shown in Tab.I. Compared
with 1354 h for the exemplary implementation of DP using
embedded loops over time stages, states, and control variables,
the computational time is reduced to only 0.05% of that. From
this, the computational efficiency of the parallel algorithm is
proved, which is suitable to apply for the parameter analysis
in the next part.

Fig. 3: Drive cycle.

B. Investigation of the effect of penalty factor

To investigate the effect of the penalty factor σ on the
fuel economy, the above displayed 2d DP is executed for
the different penalty factors σ. The corresponding results
and comparisons are shown as follows. The soc trajectories
for different penalty factors in Fig. 6 show a negligible dif-
ference. The fuel cell power history shown in Fig. 7, with
the penalty factor increasing, clearly show less significant
dynamic change. At some instants, high fuel cell power peaks
occur to meet the high power demand during acceleration or
recuperative braking operation. Moreover, Fig. 8 compares the
distribution of the power change rate of the fuel cell under
different penalty factors. There is much less frequent power
change in the fuel cell system under higher penalty factor, from



(a) Battery and fuel cell power history.

(b) soc trajectory.

(c) Control trajectory.

Fig. 4: Variable histories under σ = 0.

that the lifetime of fuel cell benefits [10]. As the cost for that,
more hydrogen is consumed as shown in Fig. 5. To realize the
optimal compromises between the hydrogen consumption and
fuel cell lifetime, a precise aging model of the fuel cell needs
to be developed firstly, which is beyond the scope of this work
here.

V. CONCLUSIONS

In this paper, a two-dimensional parallel dynamic pro-
gramming algorithm is implemented for the energy manage-
ment problem in the fuel cell hybrid train. Under the two-
dimensional framework, the dynamic constraint of the control
input is converted into the static constraint of the state variable,
which makes the precondition of no aftereffect for using DP
satisfied. Besides that, a semi-physical soft constraint mecha-
nism is designed to enforce the soc sustenance. Moreover, both

Fig. 5: Hydrogen consumption under different penalty factors.

(a) σ = 0.025

(b) σ = 0.05

Fig. 6: soc trajectories under different penalty factors.

static and dynamic limits in fuel cell system are considered.
With the parallel computation, the simulation time is reduced
to only 0.05% of that using embedded loops. Furthermore, the
effect of the weighting factor σ between minimizing hydro-
gen consumption and avoiding frequent changes in fuel cell
operating points is investigated using this parallel algorithm.
Under a proper penalty factor, the fuel cell system works in
much less dynamic condition under the cost of consumption
increase. This factor should be considered in developing a real-
time strategy in future work.
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(a) σ = 0

(b) σ = 0.025
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