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Abstract: Ferromagnetic poles in a magnetic transmission
gear require particular attention during their design pro-
cess. Usually, during the numerical simulation of these de-
vices the effects of hysteresis for loss estimation are ne-
glected and considered only during post-processing calcu-
lations. Since the literature lacks hysteresis models, this
paper adopts a homogenized hysteretic model able to in-
clude eddy current and hysteresis losses in 2D laminated
materials for iron poles. In this article the results related to
the hysteresis in a magnetic gear are presented and com-
pared to the non-hysteretic approach.

Keywords:Magnetic gear, hysteresismodels, homogeniza-
tion

PACS: 75.60.-d, 84.50.+d, 41.20.-q, 02.70.Dh, 85.70.-w

1 Introduction
Magnetic transmission gears are gaining particular atten-
tion, since they may offer performances similar to those
of conventional gearboxes with the advantages of lower
maintenance and losses. Several topologies have been
proposed as shown in [1] and depending on the applica-
tion the best candidate could be different.

In magnetic gears, the magnetic fields produced by
the inner and the outer rotor are modulated by the action
of ferromagnetic poles. These components play a crucial
role on overall device behavior. Several papers in the liter-
ature discuss analytical models for magnetic field compu-
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tation in the gears. For example, in [2] a simplified analyt-
ical approach is used within an optimization loop provid-
ing an approximated first design of an optimal magnetic
gear. To achieve a higher accuracy, the detailed magnetic
gear design should be finite element based. In particular,
iron poles require an accurate model to assess losses and
torque. However, the problem results numerically chal-
lenging because of the rotational nature of the magnetic
flux density and the nonlinear hysteretic behavior in the
ferromagnetic poles.

Li et al. in [3] discuss the role of hysteresis on the
torque waveforms of a permanent magnet machine, while
in [4] the intrinsic dependence between eddy currents and
hysteresis is highlighted: hysteresis should be included for
accurate machine modelling.

This paper analyzes the hysteresis effect on a coaxial
magnetic gear using a homogenized model embedded in-
side a finite element model. A simple post processing im-
plementation based on the non-hysteretic FEM results (re-
ferred as open loop) is discussed and compared to a direct
implementation (referred in the paper as closed loop im-
plementation).

2 FEM implementation
To overcome convergence problems of the simulation due
to magnetic material models, a differential reluctivity ten-
sor can be applied to solve the finite element formulation
of the magnetic vector potential [5].
Using the 2D A formulation, the magnetic flux density B
is defined as B = ∇ × A and the magnetic vector potential
A = (0, 0, Az) is discretized through linear piecewise func-
tions:

Az(x, y, t) =
Ne∑︁
j=1

αj(t)βj(x, y) (1)

where Ne is the number of nodes, αj(t) is the nodal value
of the vector potential z component, βj(x, y) is the shape
function. The vector associated to the shape function is
ωj = (0, 0, βj) since in the 2D formulation only the z com-
ponent of the magnetic vector potential is not zero.
Assuming negligible eddy currents in the permanent mag-
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nets, the weighted residual approach is applied on Am-
pere’s law, leading to the weak formulation:∫︁

Ω

H ·∇ × ωi +
∮︁
∂τ

H × ωidτ =
∫︁
Ωs

Js · ωidΩs (2)

where Js is the source current in a subspace Ωs of the
entire domain Ω. The closed integral on the boundary is
equal to zero due to homogeneous Neumann or Dirich-
let boundary conditions. To solve (2) in the time domain,
a time-stepping technique is applied: this is due to the
time dependencies of the hysteretic materials. If A(tn) is a
given state of the magnetic problem the state at the next
time instant tn+1 = tn + ∆t is calculated using iterative
Newton-Raphson (NR)method. For each NR iteration Ak =
Ak−1 + ∆Ak the increment ∆Ak must be calculated. There-
fore Eq. (2) is linearized around Ak−1. This linearization is
obtained deriving the equation with respect to αj, which
can be achieved through the differential reluctivity:

dH
dαj

= dHdB ·∇ × ωj = νd∇ × ωj (3)

Substituting (3) in (2), Ampere’s law becomes:
Ne∑︁
j=1

∆αkj
∫︁
Ω

(νd ·∇ × ωj) · (∇ × ωi)dΩ = (4)

=
∫︁
Ωs

J(tn+1) · ωidΩ −
∫︁
Ωs

Hk−1 ·∇ωidΩ

In the discrete time-stepping scheme the differential reluc-
tivity can be expressed as νd = ∆H

∆B = ∆H·∆B
∆B·∆H with ∆H =

Hk+1(tn+1) −H(tn) and ∆B = Bk+1(tn+1) − B(tn).
In all elements where hysteresis is considered, the homog-
enized parametric algebraic model (PAM) described in [6]
is adopted to include eddy currents and hysteresis:

H(B, Ḃ, pk) = (p0 + p1|B|2p2 ) · B + p3Ḃ + p4Ḃ√︁
p25 + |Ḃ|2

(5)

Ḃ is the timederivative of themagnetic fluxdensity and the
parameters p0 − p5 are material constants that have been
found through the identificationprocedure in [6]. Inpartic-
ular, the parameters p0, p1 and p2 are related to the anhys-
teretic magnetization curve, p3 is related to eddy currents
in the laminated sheets, p4 and p5 are linked to the hys-
teresis phenomena. Since the term B2·p2 is not asymptotic,
Eq. (5) has been applied below the saturation flux density
|B| = Bs, while above saturation the BH curve is assumed
to be linear with a slope equal to the vacuum permeability
µ0. Bs is computed as:

Bs =
2p2

√︃
1
µ0 − p0

p1 · (2p2 + 1)
(6)

Since the waveforms in the magnetic gear are sinusoidal
in first approximation, the set of parameters chosen from
[6] is the one reported in Table 1.

Table 1: List of parameters for the PAM model retrieved by [6]

p0 p1 p2 p3 p4 p5 Bs
95.9 0.29 11.4 0.041 28.6 8.03 1.67 T

Eq. (4) is computed elementwise for the hysteretic re-
gions providing Hkelem = f (Bkelem(tn+1), Belem(tn)) which is
subsequently substituted in the differential reluctivity ex-
pression. In the proposed strategy, (4) is directly imple-
mented in the FEM model, constituting a closed loop in-
tegration of the PAMmaterial model in the FEM algorithm.
The open loop implementation consists of the simple im-
plementation of (5) as post processing, while the nonlin-
ear BH curve adopted for the FEM simulation is the one
extracted by the anhysteretic part in (5).

3 Magnetic gear test case
Figure 1 shows the test case geometry (1/4th of the entire
model) and dimensions. The iron poles are modelled us-
ing the hysteresis model, while for the yoke area the clas-
sical nonlinear BH curve is adopted. The rotational speed
of the inner rotor is set to vin = 955 rpm and to vin = 3180
rpm, thus the outer rotor speed is vout = 545.7 rpm and
vout = 1817 rpm respectively. The magnets use a linear
model with magnetic remanence Br = 1.2 T on both in-
ner and outer rotors and unitary relative permeability. As
test case geometry, a magnetic transmission gear with low

ωinner

ωouter

R0 R1 R2 R3 R4 R5 R6 R7

Yoke

Yoke

Inner rotor:
Pi pole pairs

Iron pole: PAM
hysteretic model

Outer rotor:
Po pole pairs

P1

P2

P3

Parameter Value
R0 0.02 m
R1 0.04 m
R2 0.05 m
R3 0.052 m
R4 0.062 m
R5 0.064 m
R6 0.074 m
R7 0.094 m

Axial length 0.1 m
Inner poles Pi 4
Outer poles Po 7

Iron poles q 11
Gear ratio 1.75

1Figure 1:Magnetic gear test geometry and query points P1, P2, P3.
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fractional gear ratio and a high number of inner pole pairs
(Pi = 4) is adopted, hence the lowest order of harmonics
of the cogging torque on the inner and outer rotor are h1 =
154 and h2 = 286 respectively according to [7]. These har-
monics are due to the combined interaction between per-
manent magnets magneto-motive force and reluctances
due to iron poles. In this paper, the open and closed loop
application of Eq. (5) are compared: the resulting lossmag-
nitude’s order is validated through the dynamic version
of the typical loss separation method applied for the steel
M330-35HS with density δ = 7650 kg/m3:

PSt = khyst fBα + keddy
(︁dB
dt

)︁2
+ kexc

(︁dB
dt

)︁1.5
(7)

where f is the frequency and the material parameters cal-
culated through the fitting are: khyst = 0.0194Wm−3T−αs,
keddy = 6.78 · 10−5 Wm−3T−2s2, keddy = 8.77 ·
10−6 Wm−3T−1.5s1.5, α = 2. Eq. (7), referred as Bertotti’s
equation, is only used to compare the results of the PAM
model with the most diffused semi-empirical method for
loss calculation, but could lead towrong estimationswhen
applied to rotational loci or with frequencies f > 400 Hz
according to [8]. The validity of (5) has been extensively
discussed in [6].

4 Results
Figure 2 shows the x and y components of the magnetic
flux density in the points P1, P2 and P3 depicted in Figure
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Figure 2:Magnetic flux density waveforms evaluated in the points
P1, P2 and P3 of Figure 1. The results for both nonlinear BH curve
without and with hysteresis are reported at inner rotational speed
vin = 955 rpm.

1. Since the differences between the waveforms with hys-
teresis and without hysteresis are hardly distinguishable,
two different zooms have been depicted in Figures 3 and 4.
In particular Figure 4 shows the multiple inflection points
of By computed in P1; multiple minor loops are therefore
expected in the ByHy plane when the the flux density is
maximum.

Figure 5 shows the rotational flux loci computed at the
points P1, P2, P3 again in both cases with and without
hysteresis.

Figure 6 shows the Bx versus Hy waveform at P1. Sim-
ilar results are obtained for P2 and P3. Thus in this paper
only the results relative to P1 has been reported.

Figure 7 shows the results for the y component of P1.
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Figure 3: Zoom of Figure 2. The difference between the magnetic
flux density waveforms is only due to the closed loop implementa-
tion of the PAM model. A small inflection point on the Bx component
on the point P1 is depicted.
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Figure 4: Zoom of Figure 2. Multiple inflection points are shown in
the By waveform of the point P1.
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Figure 5:Magnetic flux density loci at points P1, P2, P3 with and
without hysteresis. The rotational behavior of the flux density in the
iron poles is clearly visible.
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Figure 6: Bx versus Hx in point P1 calculated without hysteresis
and with the PAM model applied in closed loop and in open loop as
post processing. Minor loops are highlighted in the low flux density
region.

Figure 8 shows the torques developed on inner and
outer rotors and on the iron poleswhen the gear load angle
is maximum.

5 Discussion
As depicted in Figure 2, the field waveforms are composed
of the fundamental harmonic with some additional higher
order harmonics, due to the interaction between inner and
outer magneto motive forces.
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Figure 7: By versus Hy in P1 calculated without hysteresis and with
the PAM model applied in closed loop and in open loop as post
processing. Minor loops are highlighted in the high flux density
region.

The implementation of the PAM model rather than its
anhysteretic part during the FEM calculation affects only
slightly the magnetic flux density (Figure 3). This small
difference justifies the application of hysteresis models as
post processing (or in open loop), in an effort to combine
the accuracy of the hysteresismodels with the efficiency of
the nonlinear FEM [9].

The flux loci in Figure 5 is strongly rotational in all the
nodes of the iron poles and the influence of the closed loop
implementation is clearly visible.

The analysis of Figures 6 and 7 is the key point in this
paper that allows us to compare the open loop and closed
loop implementation of the hysteresis models. In the case
without hysteresis the component wise BH characteristics
enclose an area in the first quadrant that is opposite to the
one on the third quadrant: this is due to the fact that the
nonlinear BH curve is applied at the absolute values of B
andH, thus when looking at the x components the y com-
ponents effects are implicitly included. In the cases with
hysteresis the difference between open and closed loop
has a remarkable impact on the BH loops: in particular
with the closed chain the loop area is bigger than the other
case. Some minor loops are also visible, as expected from
Figure 3 and 4 where Bx and By have an inflection point:
minor loops have been observed in both implementations.

The same consideration of Figure 6 applies with the
exception of the minor loops that appear at high flux den-
sities again due to the inflection points visible in Figure 2.

According to Figure 8, the torque ripple is lower than
∆R = 0.5% for all the rotors because of the high number
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Figure 8: Computed torques on the inner, outer and iron poles rotor
when the magnetic gear is at his maximum load capability. The
torque ripple is lower than 0.5% because of the high number of
pole pairs. The difference due to the hysteresis model is negligible
on the torque waveforms in this case. The torque ripple harmonics
are in accordance with the predictions in [7].

of pole pairs of the test case geometry. The shift due to the
different model adopted is of the order of ∆T = 0.07%.
The shift is directly linked to the power losses obtained in
the ironpoleswhenusing the closed loophysteresis imple-
mentation. In order to estimate the power loss, the areas of
the BH loops have to be calculated:

Ploss = Px + Py = f
∮︁
HxdBx + f

∮︁
HydBy (8)

In order to improve the integral calculation, the H com-
ponents are interpolated through piecewise cubic Her-
mite polynomial functions and then the integration is per-
formed. This procedure allows us to estimate area of arbi-
trary loops accurately when the number of data points is
reduced or crowded in certain regions of the BH space. The
minor loop calculation is automatically included.

In Table 2 the results relative to two different gear
speeds are reported. Eq. (8) is used using the magnetic
field H calculated from FEM in the first column of Table 2
or through (5) using the magnetic flux density B from FEM
in the second column. In the case of open loop, Ploss is
zero since both the integrals are zero. When adopting the
closed loophysteresis, thepost processing calculationofH
is performed through the same law adopted in the finite el-
ement implementation, thus the calculation will yield the
same results: as expected in the open loop case direct in-
tegration gives approximatively zero (*) and in the closed
loop hysteresis model direct integration and post process-
ing calculation are in agreement (∧ and ∧∧). The most in-

Table 2: Comparison between closed and open loop loss calcula-
tion. Hp stands for the post processing magnetic field while H is
the one adopted in the finite element model. No hyst means that
only the anysterecic part of the material model is implemented in
FEM, while Hyst means that the FEM material model is the one in (5)
with both hysteretic and anhysteretic parts.

W
∫︀
HdB

∫︀
HpdB Physt Peddy Pexc PSt

No hyst −0.01* 3.12** 3.33 1.66 0.16 5.15
Hyst 4.91∧ 4.95∧∧ 3.31 1.65 0.16 5.12

No hyst −0.03* 24.29** 11.1 18.41 0.99 30.5
Hyst 36.2∧ 36.3∧∧ 11.01 18.1 0.98 30.1

teresting comparison is the one between the losses com-
puted through the open loop and closed loop application
of the PAM equation (** and ∧). In Table 2 the losses com-
puted through closed loop are respectively 60% and 50%
higher than the ones computed with open loop approxi-
mation. This implies that applying the PAM equation as
post processing calculation could lead to very misleading
results, even if the magnetic flux density B variation due
to the closed loop implementation is limited.

The losses computed through (7) and (8) are in agree-
ment, thus the procedure based on the PAM model pro-
vides physically meaningful results and the material co-
efficients p0 − p5 are reliable. In the high speed case,
the losses computed through Bertotti’s equation are 20%
lower than the closed loop implementation while in the
low speed case the discrepancy is less noticeable. Themis-
match occurs since the loss separation method is a simple
procedure normally introduced in the linear material case
[8]. Several modifications to the standard equation have
been introduced in order to adapt the loss model to the
more general cases such as waveforms with minor loops,
DC biases and non linearities as shown in [10, 11]. In the
magnetic gear case, where theB loci are rotational andmi-
nor loops are present, (7) provide a poor estimate of losses.
The theoretical rigorous approach for loss computation is
the one in (8), where B andH take into account hysteresis,
eddy currents and material non linearities. Assuming that
the material coefficients p0 − p5 are exactly fitted for the
case under investigation, (8) should provide a better loss
estimation than (7).

The discussion presented in this paper is based on the
magnetic gear test case but the results can be extended to
the general case: in fact the BH curves only affect the ma-
terial coefficients p0 − p5 while all the other comparisons
between the open and closed loop implementations still
hold.
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6 Conclusions
In this paper a hysteresis model is applied to the magnetic
transmission gear iron poles for a more accurate and real-
istic numerical device simulation. In particular, the open
and closed loop results related to the application of a prag-
matic homogenized hysteresis model are compared and
the resulting losses match the approximated values com-
puted through the well-known Bertotti’s equation. This
paper highlights that simple post processing application
of PAM model could lead to loss underestimation. Thus,
othermodels should be adoptedwhenhysteresis is not im-
plemented in closed loop in the finite element algorithm.
This consideration is valid not only for the case of mag-
netic gears but is generally true for arbitrary BH wave-
forms as well.
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