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Abstract—In this paper a scaling methodology for the
solution of 2D FE models of electric machines is proposed.
This allows a geometrical and rotor resistance scaling of a
squirrel cage induction machine enabling an efficient numerical
optimization. The 2D FEM solutions of a reference machine
are calculated by a model based hybrid numeric induction
machine simulation approach. In contrast to already known
scaling procedures for synchronous machines the FEM solutions
of the induction machine are scaled in the stator-current-rotor-
frequency-map and then transformed into the torque-speed-
map. This gives the possibility to use a new time-scaling factor,
that is necessary to keep a constant field distribution. The
scaling procedure is validated by the finite-element-method and
used in a numerical optimization process for the sizing of
an electric vehicle traction drive considering the gear ratio.
The results show that the scaling procedure is very accurate,
computational very efficient and suitable for the use in machine
design optimization.

Index Terms—Induction machine, induction motor, scaling
laws, finite-element method analysis, loss-calculation, multi-
objective optimization, Evolutionary Strategy, efficiency map

I. INTRODUCTION

Energy optimization performed for example by an im-

provement in efficiency of electrical equipment is the glo-

bal trend today [1]. In developed countries the industrial

induction machines (IM) are the major consumers of electric

energy and globally account for about 40% if overall power

consumption [2]. To lead manufacturers to design and build

more efficient IMs the European Union specified the new

premium efficiency standard (IE3) for IMs operated at 50Hz
or 60Hz by the IEC 60034-30 standard [3]. Since January 1,

2015 this standard is valid for IMs with a rated power of 7.5
to 375 kW and since January 1, 2017 for IMs with a rated

power of 0.75 to 375 kW. The standard also reserves an IE4

class for the future.

Due to the low-cost, ruggedness and fault tolerance,

frequency-inverter-driven IMs are used as the main workhorse

in the rising market of electrical and hybrid drive trains

[4]. Here too, however, the main aim is to reduce the

energy consumption or with other words to improve the

efficiency of the drive train and particularly of the IM [5].

Moreover, in electric or hybrid vehicles minimum cost and

weight are further goals [5]. Proficient manufacturers have

the experience to design high premium efficient electrical

machines. But only mathematical optimization can handle the

complexity of the relations between the machine’s geometry

and it’s performance and nonlinearity [6] in short time.

With the mathematical optimization tool the limits can be
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pushed toward more efficient designs. For the design of high

efficient IMs, particularly for frequency-inverter-driven ones,

a detailed loss analysis is required. This requires local and

temporal highly resolved nonlinear field computation and can

be performed in the post processing of nonlinear transient

finite element simulations of the magnetic circuit [7]. For the

IM the finite-element-method (FEM) takes a large number

of simulation time steps to build up the machine’s rotor

flux matrix [7]. Hence, using the time-consuming FEM in

a mathematical optimization procedure would end up in an

extremely time-consuming calculation and therefore is not

suitable. Von Pfingsten, Nell and Hameyer [7], [8] proposed

a hybrid simulation approach for IMs 2D-finite-element (FE)

calculating that drastically decreases the simulation time by

shortening the transient build-up of the rotor flux. Neverthe-

less, this hybrid appraoch, that needs about 2000 core hours

for an efficiency map, is still not sufficient for the application

in a mathematical optimization procedure. Due to the fact

that the FEM and other numerical methods are very time-

comsuming scaling laws are a popular method in physics

and engineering. They are often used in numerous examples.

Wood [9] described the general scaling laws for electromag-

netic systems. His work was motivated by the constrain of the

system’s thermal stability. By using the electromagnetic and

thermal diffusion equation and the momentum and kinematic

equation Hsieh and Kim [10] presented a detailed derivation

of scaling laws for electromechanical systems.

Fig. 1. Machine scaling scheme.
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Žarko, Stipetič and Ramakrishnan published several pa-

pers about the scaling laws for synchronous machines (SM).

In [11] and [12] the procedures of radial and axial geometrical

scaling and of rewinding for a SM are introduced. In [13] the

efficiency maps of a SM are calculated by using a scalable

saturated flux-linkage and loss model of a SM. In [5] and

[14] the scalable SM models are used to find the optimal

sizing of a SM traction motor. Moreover, Žarko presented

a method to design premium efficiency IM using scaling

laws for its equivalent circuit parameters in [2]. He assumed

that the temperature rise in the slot of the original and the

scaled motor are similar. An other method to improve the IM

efficiency classes useing the method to scale the core axial

lengthening was described by Alberti, Bianchi, Boglietti and

Cavagnino in [15]. The influence or rotor diameter and length

on the rating of IMs was presented by Bone in [16]. His

scaling laws for IMs is not as exact as the ones derived in

this paper because the field solutions change. Nonetheless,

they are well applicable for machine designers.

In this paper a more sophisticated methodology for a mat-

hematical optimization of squirrel cage IMs is discussed. It is

based, one the one side, on the hybrid simulation approaches

for induction machine calculation from von Pfingsten, Nell

and Hameyer [7], [8] and on the other side on the scaling

laws for IMs proposed in this paper. The procedure of this

method is illustrated in Fig. 1. The I1-f2 - operation-maps

of a reference machine design are calculated with the hybrid

simulation approach of von Pfingsten, Nell and Hameyer [7],

[8]. To obtain a new scaled motor design the solutions are

scaled in the I1-f2 - map without changing the field solution

of the IM. Taken into account requirements, such as dc-

link voltage, maximum inverter current, and the operation

strategy, such as Minimum-Torque-Per-Ampere (MTPA) or

Minimum-Torque-Per-Electrical-Losses (MTPEL), the I1-f2
- maps are transformed into T -n - maps. Finally, the proposed

method is used in an evolutionary optimization strategy to

find the optimized IM size for a electric vehicle.

II. MODELING OF AN INDUCTION MACHINE

A. IM operating points in terms of the I1-f2 - plane

The fundamental wave T-equivalent-circuit of an IM is

presented in Fig. 2. It demonstrates the allocation of the

stator current I1 into the magnetizing current Iμ and the rotor

current related to the stator side Is2. Moreover, it illustrates

that all reactances and the rotor resistance Rs
2 are proportional

to the synchronous angular frequency ω1. According to von

Pfingsten, Nell and Hameyer in [8], [17] and [7] the allocation

of the stator current I1 into the magnetizing current Iμ and

the rotor current Is2 is independent of the stator frequency

f1 by subtracting the voltage drop on the stator resistance

R1. As a result, this allocation only depends on the rotor

frequency f2 and the saturation of the main inductance LM.

The saturation has to be considered in highly utilized traction

drives and occurs at high values of Iμ that is reached at

low values for f2 and high values for I1 [17]. Therefore,

the current allocation of I1 into Iμ and Is2 only depends

R1 jω1L1,σ jω1L
s
2,σ

Rs
2
s

=
Rs

2ω2

ω1

jω1LM (Iμ)

I1

V 1

Is2Iμ

Fig. 2. Equivalent circuit diagram of a squirrel cage induction machine.

on the amplitude of the stator current I1 and the rotor

current frequency f2, as long as the rotor resistance and the

inductances are assumed to be constant. All torque-speed-

operating points of an IM with a constant rotor resistance

Rs
2 can be mapped in the stator current - slip frequency plane

(I1-f2 - plane).

B. Induction machine calculation applying the hybrid
simulation approach

To accelerate the FE-calculation of the IM the hybrid

simulation approach presented in [7] and [8] is used. With the

hybrid simulation approach the entire I1-f2 and T -n - map

respectively can be calculated 50% faster than the transient

FEM. In combination with the hereafter introduced scaling

scheme it provides a fast procedure to calculate and scale

IMs, that leads to the possibility of the use for numerical

optimization. The main aspects of it will be described in the

following.

In a first step, a non-linear no-load static finite-element-

analysis (FEA) with one simulation time step is conducted

k = 1...K times, where k marks a certain saturation state

[8], [7]. The stator current I1 is the only excitation. For

each non-linear no-load FEA the inductance matrix L(k)
of the IM is extracted in accordance with [18]. From these

extracted matrices L(k) the rotor current Is2 is calculated

with the analytical fundamental-wave equations derived from

the equivalent circuit diagram in Fig. 2 for every saturation

state k. With the stator current vector �I1 and the saturation

dependent rotor current vector �I
s

2 the stator flux linkage

vector �Ψ1(k) for every saturation state k is calculated. By

comparing the amplitude of this stator flux linkage and the

no-load stator flux linkage of the no-load FEA �Ψ1,nl(k) the

valid saturation state is found. With a numerical interpolation

the value of the rotor current for each operating point in the

I1-f2-map is found and used as excitation for the second,

now transient, FE-simulation [8], [7]. The calculation steps

are performed in the I1-f2-plane with a fixed stator frequency

f1 and a fixed rotor resistance Rs
2 and rotor conductivity σ2

respectively. By considering an operation strategy, such as

MTPEL, and by scaling the loss power of the IM according

to different synchronous speeds f1 as described in [4] the

I1-f2-map is transformed into the T -n-map. A change of the

rotor resistance Rs
2 by temperature can be considered with

the scaling laws of the rotor resistance due to temperature

changes described in section III-C.
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III. SCALING LAWS FOR AN INDUCTION MACHINE

The previous scaling laws for IMs introduced by Bone

in [16] are not exact due to the fact that the field solution

is changed. The IM scaling laws of Žarko in [2] deal with

scaling the IM’s equivalent circuit parameters assuming equal

temperature rise in the slots of the original and reference

motor. For the SM Stipetič, Žarko and Popescu derived

scaling laws that consider the same field solution. This is the

basis for the IM scaling laws in this paper. In the following

the scaled parameters are marked with (′).

A. Geometrical scaling

The geometrical scaling in cylindrical systems is subdi-

vided into radial and axial scaling with the radial scaling

factor kr and the axial scaling factor ka. The effect of the

geometrical scaling is pictured in Fig. 3 described with

l
′
= lka (1)

A
′
cross = Acrossk

2
r (2)

A
′
surface = Asurfacekrka (3)

V
′
= V k2rka (4)

where l is the axial length, Across the cross-section areas,

Asurface the radial surface area and V the volume of the

active part of the machine. The cross-section of the short-

circuit ring also increases with k2r and is independent to

ka to preserve a constant relation to the bar cross-section.

The conductor cross-section also changes with k2r . For the

endwindings it is assumed that the conductor length increases

quadratically with kr since conductor cross-sections increase

and thus the axial extent becomes larger and the arc length

increase linearly with kr.

B. Scaling of the electrical and magnetic parameters

Due to the fact that the magnetic permeability μ is in

non-linear relation to the magnetic field strength �H one as-

sumption of scaling the FE-solutions is that the magnetic field

strength distribution inside the IM does not change. There-

fore, (5) is applicable. In accordance with Ampères Law (6)

the scaling dependence of the electric current density �J (7)

follows, with the polar coordinates ρ and φ and the unit

vector �ez. Here, the assumption that the geometrical dimensi-

ons are clearly shorter than the magnetic wave length is used

to get the simplified Ampères Law

�H ′(ρ
′
, φ) = �H(ρ, φ) (5)

�J ′ = ∇′ × �H ′
(6)

=
1

ρ′

[
∂

∂ρ′ (ρ
′
H

′
φ)−

∂H
′
ρ

∂φ′

]
�ez

�J ′ =
1

kr

(
∇× �H

)
=

1

kr
�J (7)

Aringk
2
r

Asurfacekrka

lka

Acrossk
2
r

Aslot Abar

Aring

dkr

Fig. 3. Scaled machine parameter.

In [10] it is described that a scaling factor kt1 has to

be used to satisfy that the magnetic flux density B is kept

constant B (ρ, φ) = B
′
(
ρ

′
, φ

′
)

and therefore the equality

of the magnetic field strength (5) is satisfied. With Faraday’s

law of induction (8), (9) can be transformed in (10), where σ
is the electric conductivity and �E the electric field strength.

The assumption that the magnetic field strength and therefore

the magnetic flux density do not change during scaling lead

to (11). Hence, the time scaling factor kt1 corresponds to

the square of the radial scaling factor kr. As a result, all

time depending parameters have to be scaled by the total

time scaling factor kt, which is the product of the first time

scaling factor kt1 and the second one kt2. The second time

scaling factor is a result of the rotor resistance scaling and

will be discussed in detail in section III-C. The time scaling

leads to the proportionality of the reactances to the reciprocal

time scaling factor shown in Fig. 4.

∇× �E =
∂�B

∂t
(8)

∇× �H = σ�E (9)

kt1
∂�B

′

∂t′
+ k2r∇

′ × 1

σ
(∇′ ×

�B
′

μ
) = 0 (10)

kt1 = k2r (11)

The magnetic flux Ψ, which is proportional to the induc-

tance (ka) and the current (kr), changes with kakr (see (12)).

From (2) and (7) it follows that the current changes with kr
(see (13)). The machine’s torque Telec is dependent to the

flux and current. Hence, the torque is scaled in accordance

to (14).

Ψ
′
= krkaΨ (12)

I
′
= krI (13)

T
′
elec =

3

2
p(Iq,1krΨd,1krka − Id,1krΨq,1krka)

= Teleck
2
rka (14)

∝ 1
kt

∝ 1
kt f (ϑ,mat, geo)

∝ 1
kt

I1

V 1

Is2Iμ

Fig. 4. Scaling factor dependencies of the elements of the equivalent circuit
diagram of a squirrel cage induction machine.
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C. Rotor resistance scaling due to geometric changes

The equivalent circuit of the IM in Fig. 2 shows that the

rotor resistance related to the stator side Rs
2 and therefore

the rotor resistance R2 has a major impact on the machine’s

behavior. In contrast to the scaling of the SM done by

Žarko, Stipetič and Ramakrishnan in IMs the scaling of

the rotor resistance is an important step. In addition to the

changed rotor resistance due to the geometrical scaling the

resistance can vary due to temperature and material and

electric conductivity variations respectively. The consequence

of the geometrical scaling has to be considered separately in

terms of the bar resistance Rbar and the resistance of the

short-circuit ring R∗
ring. The resistance of a rotor bar can be

described with

Rbar =
lFe

σ2Abar
∝ ka

k2r
, (15)

where lFe is the active length of the IM, Abar the area of

a rotor bar and σ2 the conductivity of the rotor cunductors,

and is proportional to ka/k2r . The resistance of a short-circuit-

ring-segment ΔRring can be described by

ΔRring =
2πrring

σ2AringQ2
∝ kr

k2r
=

1

kr
, (16)

where rring describes the middle radius of the short-circuit

ring, Aring the area of the short-circuit ring and Q2 the

rotor bar number. According to [19] this resistance can

be transformed into an equivalent series resistance ΔR∗
ring

described by

ΔR∗
ring = ΔRring · 1(

2 sin
(

πp
Q2

))2 ∝ 1

kr
, (17)

with the number of pole-pairs p, which is used in the 2D-

FEM. As outlined in section III-A the cross-section area of

the short-circuit ring increases with k2r and is independent

to the axial scaling. Therefore, ΔR∗
ring is proportional to the

inverse of the radial scaling factor kr as in (17). The addition

of the bar resistance and the equivalent series resistance of

the short-circuit ring lead to the total resistance of the rotor

R2 = Rbar + 2ΔR∗
ring. (18)

By defining a compensating conductivity

σ2,comp =
lFe

AbarR2
∝ ka

k2r · k (R2)
(19)

it leads to a rotor resistance scaling factor

kR1 =
σ2,comp

σ
′
2,comp

= 1 +

(
kr
ka

− 1

)
κ2 (20)

with κ2 =
1

lFe

πrring

Aring

Abar
Q2 sin

2(πp/Q2) + 1

as the rotor geometry constant that is defined for the unscaled

machine.

D. Rotor resistance scaling due to rotor conductivity varia-
tions

The scaling of the rotor resistance in accordance to

the scaling of the compensating rotor conductivity leads to

further possibilities of rotor resistance scaling. The rotor

conductivity and resistance respectively can vary due to a

change of the material or by temperature. Hence, a second

rotor resistance scaling factor kR2 is introduced in (21). It is

dependent on the old and new conductivity, σ2 and σ2,new,

the old and new temperature coefficients α and αnew, the old

and new reference temperatures ϑref and ϑref,new and the old

and new simulation temperatures ϑsim and ϑsim,new.

kR2 =
σ2

σ2,new

1 + αnew (ϑsim,new − ϑref,new)

1 + αϑ (ϑsim − ϑref)
(21)

The resulting scaling factor for the rotor resistance can be

calculated by the the total scaling factor of the rotor resistance

kR and leads to the scaled rotor resistance:

R
′
2 = R2kR with kR = kR1kR2

ka
k2r

. (22)

Fig. 4 shows that the rotor resistance is dependent on the

temperature, material and geometry of the IM. To satisfy (5)

the allocation of Is2 and Iμ must not vary. As long as the rotor

resistance is kept constant and the calculation of the machine

is done in the I1-f2 - plane as described in section II-A (5)

is valid. With a change in R2 the allocation changes. To keep

the same current allocation a second time scaling factor

kt2 =
ka

kRkt1
=

1

kR1kR2
(23)

is established. Thus, the total time scaling factor results in

kt = kt1kt2. (24)

With these rotor scaling factors it is possible to scale the

IM due to a change of the rotor resistance. This change can

be a result of a variation in the conductivity of the rotor

conductor by different materials, such as copper or aluminum,

or by their different qualities, as well as by an alternating

temperature. Differences in the machine’s behavior due to a

changing quality of the rotor bar material can be calculated

very fast with the proposed scaling process. In addition a

change of the rotor resistance due to the skin effect can be

taken into account by using analytical formula to recalculate

the rotor resistance. This scaling process can also be used

in combination with a thermal model of the IM to simulate

the machine in different operating points with changing

temperature conditions.

E. Scaling of the IM losses
The losses of an IM can be distinguished in Ohmic

losses PL,ohm and iron losses PL,Fe. The Ohmic losses are

proportional to k2rkR as in (25).

P
′
L,ohm,2 = PL,ohm,2k

2
rkR (25)

The iron losses, in turn, can be separated into hysteresis, eddy

current and excess losses [17]. All three parts have a different

dependency on the frequency f .
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Hence, different scaling relations for the three iron loss

components exist. The iron loss power density pL,Fe is

p
′
L,Fe (26)

=

(
khystB

α f

kt
+ keddyB

2 f
2

k2t
+ kexcessB

1.5 f
1.5

k1.5t

)

where khyst, keddy and kexcess are the hysteresis loss, eddy

current loss and excess loss coefficient respectively. With the

iron loss power density and the iron mass mFe, scaled with

k2rka, the scaled iron loss power P
′
L,Fe is

P
′
L,Fe = p

′
L,FemFek

2
rka. (27)

All scaling laws for the IM are summarized in table I.

parameter variable ∝
length l ka
lateral surface Asurface ka kr
cross sectional area Across k2r
volume V kak2r
magnetic field strength H 1
magnetic flux density B 1
magnetic flux linkage Ψ kakr
current density J 1

kr
current I kr
time t kt
frequency f 1

kt

speed n 1
kt

torque T kak2r
voltage V kakr

kt
inductance L ka
reactance X ka

kt
rotor resistance R2 kR

mechanical power Pmech
kak

2
r

kt

mechanical power density pmech
1
kt

=
kR
ka

TABLE I
SCALING FACTORS FOR THE MACHINE’S PARAMETER.

F. Validation of the scaling laws

To validate the scaling laws for IMs a reference motor is

calculated with FEM in a first step via the hybrid simulation

approach described in section II-B. In a second step, the

geometry and the rotor resistance of the IM are scaled and a

second FE-simulation is performed with the scaled machine.

The scaling factors in this steps are, kr = 1.2, ka = 1.1 and

kR = 1.05. In a third step, the FE-solutions of the scaled IM

are rescaled in the I1-f2-plane to the parameters of the refe-

rence machine regarding the procedure described in Fig. 1.

The results of FE-solutions of the reference machine (first

step) and the rescaled FE-solutions of the scaled machine

(third step) are compared. The comparison is done in the I1-

f2-plane. Fig. 5 shows the calculated deviation of the loss

power in %. The maximum error is −17 ·10−3%, that proves

the correctness of the proposed scaling scheme.

300
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Fig. 5. Total loss deviation of the reference and the rescaled FE-solutions
in the I1-f2-plane.

In Fig. 6 the total losses transformed to the T -n-map

of the scaled and the rescaled IM machine FE-solutions

are shown. For the transformation of the FE-solutions into

the T -n-map the same requirements, such as the maximum

frequency inverter current and the maximum dc-link voltage

and the operation strategy MTPEL, are taken into account.

The comparison of the reference loss power and the loss

power of the IM rescaled in the I1-f2-map and transformed

into the T -n-map is presented in Fig. 7. It also shows a very

accurate performance of the proposed scaling procedure.
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Fig. 7. Total loss deviation of the reference and the rescaled FE-solutions
in the T -n-map.
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IV. OPTIMIZATION OF AN INDUCTION MACHINE FOR

TRACTION APPLICATION

Due to its very fast performance the proposed machine

scaling scheme can be used in numerical optimization proce-

dure. In [20] Stipetič and Žarko present an overview of the

methodology using mathematical optimization procedures to

achieve an optimal design of an electrical machine. They

suggest meta-heuristic algorithm, such as Evolution Strategy

or Differential Evolution, for the complex electrical machine

design. In [14] a mixed integer distributed ant colony optimi-

zation is used to optimize a traction drive with a permanent

magnet motor calculated by using FEM and geometrical

scaling. In [21] a multi objective optimization in combination

with the scaling laws of a SM is used to find the optimal size

of the traction motor as it is done in [5] with the gear ratio

as an additional design variable.

A. Methodology
To show the potential and usability of the proposed IM

scaling scheme an IM in an electric vehicle is optimized.

Changes of the machine configuration, like number of stator

slots, are not considered to focus on the radial and axial sca-

ling. As the design parameters the gear ratio, the axial length

and the radius of the IM are used. The objective function

that is minimized in the optimization process considers the

costs of the machine and the produced loss energy of the IM

in the Worldwide harmonized Light vehicles Test Procedure

(WLTP). Here, the costs of the machine and the loss energy

are weighted with different factors.

Start

g = 1

Initialization of a ”parent”

parameter set and its step size

Θg
E,1−μ =

{
iggear,1−μ, k

g
r,1−μ, k

g
a,1−μ

}
δgE,1−μ

Averaging the parent step size

δgE = 1
μ

∑μ
i=1 δ

g
E,i

Step size adaptation
δgN,k = δgE · ξ

Variation
Θg

N,k = Θg
E,j + z · δgN,k

Scaling of the machine data

Objective function J

Selection
Θg+1

E,1−μ = Θg
N,B1−Bμ

δg+1
E,1−μ = δgN,B1−Bμ

g = g + 1

g = gmax

scaling factors = 1
μ

∑μ
i=1 Θ

g
E,i

Stop

Yes
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Fig. 8. Evolutionary Strategy.
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Fig. 9. Pareto front of the proposed optimization process.

It starts with the initialization of the parameter set Θg
E,1−μ

and the step size of the parameters δgE,1−μ, where μ is the

number of the parents and g the generation number. For the

initial parameters the radial and axial scaling factor are set

to kr = ka = 1 and the gear ratio is set to igear = 8. The

initial step size is set to a fourth of the initial parameter

values. The step size is averaged in the second step and

adapted by a logarithmic distributed random number. With

the normal distributed random number z and the step size the

new parameter sets Θg
N,k, named progenies, are calculated in

the variation step.

With the new parameters the machine is scaled, the gear

ratio changed and the objective function is calculated. In

the selection the best progenies become the new parents

parameter and the calculation of the next generation is started.

The process ends after a certain number of generations.

B. Results

The results of the design optimization with the Evolu-

tionary strategy is shown in Fig. 9. It shows the pareto

front in dependence of the radial scaling factor kr, the

axial scaling factor ka and the gear ratio igear. All different

parameter sets are marked with a gray point. The pareto

optimum is marked by black dots. It can be seen that the

optimization algorithm varies the three variable parameters in

a wide range and converge fast towards an optimum region.

The calculation of the objective function for every single

parameter set, including the scaling of the IM’s FE-solutions,

in Matlab takes a processor time of ca. 0.8 s, using an Intel(R)

Core(TM) i7-6500U CPU @ 2.5GHz and a 8 GB RAM.

V. CONCLUSIONS AND FURTHER WORK

In this paper an IM scaling procedure for the machine’s

2D-FE-solutions is proposed. Besides the geometrical scaling

of the IM, the scaling laws for changes in the rotor resistance

is presented. The reference FE-solutions of an IM, calculated

by a hybrid IM simulation approach, are scaled in the

I1-f2-map and transformed into the T -n-map, by considering

boundary condition, such as maximum current, and taking

into account an operation strategy. The results of the scaling

process show a very good agreement with the FE-results of a

scaled IM. The scaling procedure is tested in an optimization
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of a traction drive. The results of the optimization show

that the proposed scaling process is suitable for the use in

numerical optimization processes. It can be well applied in

the design optimization of traction drive or other application-

related optimizations including driving cycles. The rotor

resistance scaling can be used to analyze the machine’s

behavior for different rotor bar materials or their quality

differences. It can also be used in combination with a thermal

model of the IM to calculate the IM in difference temperature

conditions. The proposed scaling methodology is a rapid and

very accurate tool to scale entire operation maps of IMs. In

further work, the scaling laws for rewinding and for changes

in the electrical steel due to temperature differences or the

quality of the material will be studied. Furthermore, the limits

of this method will be analyzed and the scaling will be

validated for different machine configurations and designs,

such as closed rotor slots. A validation with experimental

results will be conducted. The focus of further publications

can also be the optimization process itself, the searching

algorithm and including different machine configurations in

the optimization procedure.

REFERENCES

[1] S. Mallik, K. Mallik, A. Barman, D. Maiti, S. K. Biswas, N. K. Deb,
and S. Basu, “Efficiency and cost optimized design of an induction
motor using genetic algorithm,” IEEE Transactions on Industrial
Electronics, vol. 64, no. 12, pp. 9854–9863, Dec 2017.

[2] D. ZARKO, “Design of premium efficiency (ie3) induction motors
using evolutionary optimization and scaling laws,” vol. 1, pp. 183–
186, 12 2016.

[3] S. Einfuegen, “Efficiency and cost optimized design of an induction
motor using genetic algorithm,” IEEE Transactions on Industrial
Electronics, vol. 64, no. 12, pp. 9854–9863, Dec 2017.

[4] G. V. Pfingsten, S. Steentjes, and K. Hameyer, “Operating point
resolved loss calculation approach in saturated induction machines,”
IEEE Transactions on Industrial Electronics, vol. 64, no. 3, pp. 2538–
2546, March 2017.
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