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Deutsche Kurzfassung

Aufgrund hoher Kundenanforderungen an den Sicherheitsgrad im Automobil
haben Sicherheitsfunktionen in Fahrzeugen eine besondere Bedeutung. Dazu
gehört die Torque-Vectoring-Funktion als eine aktive Sicherheitsfunktion,
die mittels asymmetrischer Antriebskräfte an beiden Fahrzeugseiten ein
zusätzliches Giermoment erzeugt, um das Lenkverhalten entweder zu
verbessern oder zu korrigieren. Im Vergleich zu konventionellen Fahrzeugen
haben Elektrofahrzeuge den Vorteil, dass diese Funktion ohne spezifisches
Differentialgetriebe realisiert werden kann. Darüber hinaus zeichnet sich ein
elektrisches Antriebssystem durch hochdynamische Drehmomenterzeugung aus.
Die gesamte Torque-Vectoring-Funktion in Elektrofahrzeugen beinhaltet die
Regelungen der elektrischen Antriebe, der mechanischen Antriebsstränge und
der Fahrquerdynamik. Um eine leistungsstarke Applikation zu implementieren,
ergeben sich die Herausforderungen, dass die physikalischen Begrenzungen und
die Unsicherheiten des Systems berücksichtigt werden müssen und gleichzeitig
die Regeldynamik gewährleistet wird. Um einen zufriedenstellenden Kompromiss
zu erzielen, wird die modellbasierte Prädiktivregelung (MPC) als theoretische
Grundlage für diese Dissertation ausgewählt, in der Anwendung untersucht und
umgesetzt.

Die kritischen Regelungsprobleme in elektrischen Antriebssystemen, einschließlich
der bei Asynchronmotoren (ASM), lassen sich durch die Parametervariation
der ASM, die Totzeit und die Strom- und Spannungsbegrenzung des Systems
darstellen. Um die Parametervariation zu behandeln, werden zwei Lösungsansätze
implementiert. Im ersten Ansatz wird die Methodik der Min-Max-Regelung
verwendet. Das Regelsystem wird als ein lineares parameter-variierendes (LPV)
System mit polytopischen Unsicherheiten vorgesehen. Die Robustheit des Systems
wird dadurch gewährleistet, dass das Optimierungsproblem des schlimmsten Falls
(an einem Vertex des Polytopes) durch eine Lyapunov-Funktion begrenzt und
behandelt wird. Um eine echtzeitfähige Anwendung zu realisieren, wird der
Optimierungsvorgang durch multiparametrische semidefinite Programmierung
(mp-SDP) offline durchgeführt. Online wird ein effizienter Suchvorgang durch
den Quadtree-Search-Algorithmus vorgenommen. Der andere Ansatz basiert auf
sogenannter Tube-MPC-Methodik. Statt eines LPV-Systems wird das lineare
zeitinvariante (LTI) System verwendet. Die Abweichung zwischen dem LTI-System
und dem realen System wird durch einen robusten positiven invarianten (RPI)
Satz begrenzt. Durch die Bestimmung des minimalen RPI (mRPI) Satzes
werden sowohl die Robustheit als auch die Optimalität erzielt. Neben den
Parameterunsicherheiten werden die Systembegrenzungen behandelt. Im Gegensatz
zu anderen Ansätzen, in denen die Strom- und Spannungsbegrenzungen direkt
als Nebenbedingung des Optimierungsproblems vorgegeben sind, werden in dieser
Arbeit die Systembegrenzungen nach der Umformulierung durch das Drehmoment



repräsentiert. Der Vorteil besteht darin, dass keine Approximation für die
Darstellung der Nebenbedingungen vorgenommen werden muss und dadurch
die Optimalität des Systems erhöht wird. Im mechanischen Antriebsstrang
wird die primäre Regelungsaufgabe durch aktive Drehschwingungsdämpfung des
übertragenen Antriebsmomentes dargestellt. Durch einen MPC-Regler mit einer
Feedback-Kompensation kann die Drehschwingung an der Seitenwelle wesentlich
unterdrückt werden. Um die Torque-Vectoring-Funktion zu vervollständigen,
werden die Gierratenregelung als Hauptkomponente und die Reifenschlupfregelung
als Hilfskomponente implementiert. Durch die Reifenschlupfregelung kann
das Durchdrehen der Räder reduziert werden. Darüber hinaus wird eine
Betriebsstrategie implementiert, welche abhängig von Fahrbahnsituationen
eine zuverlässige Soll-Gierrate vorgibt. Da im Fahrzeugsystem lediglich
Standardsensoren verfügbar sind, wird eine Strategie implementiert, die die nicht
messbaren Signale abschätzt und sie der Regelsoftware zur Verfügung stellt.

Die oben genannten Subsysteme werden integriert und an einem
Hardware-in-the-Loop-Prüfstand (HiL) validiert. Dazu werden die in ISO
7401 spezifizierten Fahrmanöver durchgeführt. Die Ergebnisse zeigen, dass die
implementierte Funktion in der Lage ist, nicht nur das Lenkverhalten des Fahrzeugs
zu verbessern, sondern auch die Fahrstabilität bis zu den Systembegrenzungen zu
gewährleisten.
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Unterstützung beim Prüfstandsaufbau meiner Arbeit. Für die stete Hilfsbereitschaft
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1 Introduction

In the modern automotive market, design, active vehicle safety and dynamic
performance are amongst the most critical factors that influence consumers in
their decision to purchase a particular vehicle - especially when premium brands
are considered [47]. Safety systems for automotive context can be categorized by
passive safety and active safety. Passive safety systems, such as seat belts or airbags,
aim at moderating the implications of the occupants’ health in an accident. In
contrast, active safety systems prevent vehicles from accidents and thus minimize
the severity effect [185]. Currently, driver assistance systems based on intelligent
sensor technology monitoring the vehicle surroundings as well as driving behaviors
are the primary means for the active safety technology. They are achieved commonly
by control systems that deliberately influence the dynamic vehicle behavior, such
that collision is avoided. As a consequence, the chance that accidents occur is
lowered.

The first active safety system that entered the stage of serial production is the
Anti-lock Braking System (ABS) developed by the German supplier company Bosch
in the late 1970’s. It is dedicated to preserving the vehicle’s tractability during full
braking by inhibiting the wheels to lock and preventing skidding. Therewith, the
tire’s ability to produce a lateral force is maintained [163].

The next major innovation in active safety systems came to market in the 1990’s,
again designed by Bosch. The Electronic Stability Control (ESC) measures the
steering wheel angle and vehicle velocity. On that basis it estimates the trajectory
the driver wishes to follow. If the vehicle deviates from this path, wheel-individual
and targeted braking interventions would support the driver in negotiating the
vehicle backs on the desired path [29].

Also during the 1990’s, Honda and Mitsubishi were the first to introduce an
Active Yaw Rate Control (AYC) or Torque Vectoring (TV) system in commercially
available vehicles [170, 91]. These systems employed an electronically controllable
differential, which facilitated the asymmetric distribution of engine torque among the
wheels individually. Therefore, a reduction of the under-steering tendency could be
accomplished, which results in an enhanced cornering behavior. However, due to the
considerable extra costs raised by the auxiliary components [143], such TV systems
developed into a niche product for high performance sport vehicles [148], [21], [91].

1.1 Torque vectoring and E-mobility

The recent changes in the automotive industry have reset TV to modern attention.
Environmental and political constraints force the car manufacturers to increase
the number of emission-reduced or emission-free vehicles to the market. As a
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reaction, the E-mobility is prevailing again after over hundred years. E-mobility
describes a category of vehicles, which partially or even fully rely on electrified
drivetrains, and utilize electro-chemical batteries as energy storage devices. For TV
applications, those Electric Vehicles (EVs) are interested because of their featured
wheel individual drives unlike conventional vehicles with Internal Combustion
Engines (ICE). This class of vehicles requires no additional mechanical components
such as expensive active differentials. Indeed, TV can be implemented conveniently
by using additional software components and building on the existing power-train
architecture as well as sensors made available through the aforementioned ABS and
ESC systems.

Another advantage of EV compared to ICE vehicles regarding to TV is the high
toque dynamics. As an approximate value, the torque response time of an ICE is
around 1−2 seconds, while the electromagnetic torque of electrical machines (EMs)
can be produced in several milliseconds depending on the machine design and the
control strategy [95].

1.2 Motivation

TV applications require high dynamic torque distribution to adjust the drive
trajectory in time. According to this requirement, the motivation of the present
work is therefore to fully utilize the advantages of EM by means of advanced control
approaches.

In order to realize asymmetric torque distribution in EV, we adopted a configuration
in which two identically constructed Induction Motors (IMs) are mounted on the
same axle. In such a way, the wheels can be controlled individually to attain a
distributed propulsion system. The IM was firstly constructed by Nikola Tesla in
1883. However, it was sluggishly spread due to its asynchronous property and
therefore unsatisfying controllability. Thanks to the vector control, also called
Field Oriented Control (FOC) theory [183], proposed in the 1980’s, as well as
the development of power electronics technology during the recent decades, the
industrial applications of adjustable speed and high dynamic IM drives become
realistic. IM is nowadays prevalently used in electric drive systems because of
its simple and reliable structure, low material and manufacturing cost. On these
reasons, IMs are adopted in the EVs, such as Tesla Model S and Model X.

The simplest way to implement TV applications including entire drivetrain control
is employing the classical Proportional Integral (PI) controller. However, in the
present work, the studied system presents a system of high order. To achieve high
control performance, several PI controllers have to be applied, which constitute
a multilayer cascaded control structure. One of the drawbacks of such control
approach is, that the time constant of the inner control loop is contributed to the
outer control loop. To obtain a good control performance, the time constants of
the inner control loop and the subsequent external control loop should differ by a
factor of at least 7 − 10 [56]. Therefore, the dynamics achieved by cascading PI
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controllers cannot meet the requirement of high dynamic drive applications [117].
Another drawback of PI controllers is represented by the conditioned optimality
of the control system. The control parameters can be systematically optimized by
optimum methods such as modulus and symmetrical optimum [168]. Indeed, the
optimization can be restrictedly designed for a certain operation range, which will
be discussed in detail later.

Furthermore, the control approaches to be implemented should be sufficiently robust
against undesirable disturbances and system uncertainties. Among approaches
with PI controller such issues are tackled by means of precontrols or feedforward
compensation techniques to meet the control quality [117]. Another technique is
the so-called adaptive control, in which the behavior of the controller is modified in
response to system changes [155]. However, the parameter adjustment mechanism
of the controller slows down the system convergence when compared to the normal
feedback loop. Moreover, the adaptive control design depends strongly on the
uniqueness of the system, for this reason the proofs for stability are difficult to
be attained.

In consideration of both criteria hereinbefore, the principle of optimization-based
control theory, so-called model predictive control (MPC), is decided to be the
fundamental of the present work. The basic idea of MPC is to define an objective
function regarding the control objective, and to minimize this objective function
by means of solving diverse mathematical optimization problems. The system
constraints and the uncertainties are incorporated into the optimization problem
as well. In such a way, both the dynamics and the robustness can be ensured to a
certain degree. MPC algorithms are based on a solid mathematical foundation of
convex optimization theories, which are elusive at times. In addition to that, the
implementation is often complicated. Nevertheless, the control structure is simple,
the control design is universal. Therefore, the controller can oftentimes be easily
generalized to different systems.

1.3 Outline of the work

The studied control system is composed of a current control in the IM, an active
damping control in the mechanical drivetrain, and a TV control in the vehicle.
They constitute a complicated system and interact with each other. Therefore, a
systematical development and testing procedure is required. The V-model, which is
prevailing and often used as standard of automotive system development in Germany,
is employed as the development procedure for the present work. Figure 1.1 illustrates
the V-model concerning this work.

The entire development procedure is divided into system and software (SW)
development. On the left hand side of the V-model, the steps in the verification
phase are described, while on the right hand side the test processes denoting the
validation phase are given. The system and the SW components are specified
and designed before the implementation. After the implementation, the smallest
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Figure 1.1: Development procedure of the present work.

subsystem/component is first validated and then integrated into the system over
it. In this sequence, the location of the defects can be conveniently identified.
Furthermore, as shown in the figure, the verification step and the validation step on
the same level communicate with each other. This interaction avoids the downward
flow of the defects and enables efficient verification and validation processes.

Based on this development procedure, the present work is outlined as follows:
In chapter 2, the system verification is discussed. First, the functionality of TV
system is introduced. Second, a system analysis is performed by discussion of the
proper vehicle configuration for the TV application. Moreover, system requirements
and architecture as well as SW specifications are defined. In order to state the
up-to-date technologies based on optimization methodologies, which deal with the
same control system, the state-of-the-art methods are schematically reviewed in
chapter 3. Compared to these methods, the contributions of the present work are
highlighted. In chapter 4, the theoretical backgrounds of the convex optimization
methodology are introduced. Different MPC algorithms are detailed, which are
based on diverse optimization problems and are applied to the SW design and
implementation. The SW development is introduced in a bottom-up sequence:
In chapter 5, the development of the current control in IMs is discussed. Two
different robust current control approaches are implemented and validated. The
mechanical drivetrain is described in chapter 6. Due to its oscillation behavior, an
active damping control approach is implemented and validated. In chapter 7, the
vehicle dynamic system is analyzed. Moreover, the design of operation strategy,
control approaches and parameter estimation are clarified. The TV application
and the entire system are validated on a Hardware-in-the-Loop (HiL) test bench
introduced in chapter 8. Finally, this work is completed in chapter 9 and provides a
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perspective of the possible future work.





2 Torque vectoring in electric vehicles

In this chapter, an introduction will be given in section 2.1 to illustrate how TV
works. In order to apply and validate TV in a physical system, topology and
configuration of EV are analyzed and defined for the present work in section 2.2. In
section 2.3, the functional requirements on the control design as well as the software
specifications are given.

2.1 Functionality

TV, or more precisely active torque vectoring, can be implemented in EV with two
or four EMs, which produce individually engine torques transferred to the tires.
Therefore, no expensive active differential is required in contrast to ICE vehicles.
The principle and the effect of TV are well illustrated in Figure 2.1.

FRR

FFRFFL

FRL

ψ

(a) Principle of TV [22].

Without TV With TV

(b) TV in case of over-steering.

Figure 2.1: Illustration of TV application.

As shown in Figure 2.1a, the principle of TV diverges slightly from the one of ESC.
The only difference consists in the way of yaw moment generation. TV exploits the
possibility of producing additional yaw moment by applying asymmetric tire forces
on either vehicle side [91]. This additional yaw moment is oriented in a way to either
support or to correct the driver’s steering effort, always having a preferably neutral
steering behavior in mind.
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TV substantially facilitates the steering behavior of vehicles without deteriorating
drive dynamics, since the additional yaw moment is caused by the asymmetric drive
forces. Consequently, EVs with TV can achieve a faster cornering compared to ICE
vehicles.

Additionally, in certain critical situations, for instance over- or under-steering,
TV acts on adjusting the vehicle behavior before the driver senses that the
vehicle escapes the desired trajectory and overreacts in such a situation. In
Figure 2.1b the effect of TV in case of over-steering is presented. When the
vehicle without TV deviates from the desired trajectory, it can be very probably
operated by the over-strained driver into an instable state. In summary, asymmetric
torque distribution of TV facilitates the vehicle safety, vehicle performance, vehicle
agility [91] and vehicle maneuverability.

2.2 Vehicle configuration

Amongst the wide range of available vehicle designs a hypothetical compact class
car design is chosen for the present work.
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(a) 4-wheel drive.
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(b) Front-wheel drive.
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(c) Rear-wheel drive.

Figure 2.2: Possible topologies without differential for TV applications.

Figure 2.2 shows the possible topologies for TV applications in EV.

4-Wheel Drive (4WD) concept requires four EMs, while the other both concepts need
two EMs respectively. Therefore, EVs with 4WD are more expensive and heavier,
which means increased consumption and less drive range as well in case of the same
energy storage and the same power class.
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The installation of EMs in 4WD-EV is more complicated when compared to the
resting two topologies with 2 EMs. The front axle contains the steering system,
which makes the installation of Front-Wheel Drive (FWD) EVs different from that
of Rear-Wheel Drive (RWD) EVs. However, the complexity of both cases can be
roughly considered as identical.

Implementation of TV application in 4WD EVs is more complicated, since the torque
is individually distributed to each wheel. In comparison to RWD EVs, the steering
wheel angel has to be taken into account in TV application for FWD EVs due to
the steering system on the front axle.

It has to be analyzed, in which topology the TV application can be applied better.
An active TV application is implemented by exerting additional longitudinal forces
on the tires. Because of the side forces, the adhesion limit is at first reached on
the front wheels in under-steering vehicles. Therefore, there are less possibilities for
applying longitudinal forces in FWD EV. Moreover, in case of acceleration, the rear
wheels get higher force limitation because of axle load transfer and consequently
more vehicle load on the rear wheels. The same explanation can be given for
situations of upslope curving [81].

FWD vehicles show an under-steering behavior which does not cause instability [129].
In contrast, RWD vehicles may become instable in certain situations, e.g.
acceleration when cornering or on wet and icy surfaces. 4WD vehicles behave best
performance in adverse road conditions, since the full amount of vehicle forces is
available for friction.

In summary, the aforementioned topologies are collected in Table 2.1.

Criteria 4WD-EV FWD-EV RWD-EV

Cost − + +

Mass/drive range − + +

Installation complexity − + +

SW complexity − © +

TV adaptability + © +

Vehicle behavior / stability + + −

Table 2.1: Evaluation of vehicle topologies.

Based on the evaluations mentioned above, the RWD topology is employed in the
present work, since on the one hand it is well featured for TV application and the
disadvantage of vehicle behavior and, on the other hand stability in certain situations
can be overcome by means of TV.

In addition, to execute a TV application effectively, the drive motors should be
designed in such a way, so that it copes with driving resistances, acceleration
resistances and additional drive forces required by TV at the same time. The
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technical data of the hypothetical vehicle are given in Appendix F, which is mainly
based on the available data of the BMW i3 [22]. The IM applied in this thesis is not
specified for automotive applications, in other words, the ratio between drive speed
and drive torque does not match the one at the wheels. Therefore, no transmission
with fixed ratio is possible. Consequently, diverse ratios are defined in the present
work for the speed and the torque, respectively. The ratios are determined according
to the rated torque of the IM and the maximum force on the tires, as well as the
maximum speed of the IM and the assumed maximum vehicle velocity. They can
be found in Appendix F as well.

2.3 Requirements and specifications

Since TV serves as an application enhancing drive performance and it ensures
vehicle stability, high level software reliability is required. For this reason, the
safety aspects associated with the control design are addressed and discussed in this
section. Moreover, software specifications are defined in this section to guide the
implementation and the later validation.

2.3.1 Functional requirements and test standards

Based on the functionality of TV introduced in the previous section the following
functional requirements should be fulfilled:

� TV is capable of enhancing the steering dynamic of the vehicle by means of
an additional yaw moment, so that an abrupt avoidance of obstacles can be
achieved.

� TV can recognize and correct the behavioral deviation in time.

� TV should not overreact, so that the driver is not terrified and the vehicle
instability should not be led.

� TV should take physical limitations into account and diminish the risk of
skidding.

In order to validate these functional requirements, meaningful test cases should be
defined. In this work, only standardized test maneuvers are applied, which cause
diverse critical drive situations. The test maneuvers are listed as follows:

� lateral transient response test (ISO 7401) [3]

� sine-steer test (ISO 7401) [3] and

� sine-steer test with dwell (National Highway Traffic Safety Administration
(NHTSA)) [5].

Detailed information about these test maneuvers are referred to in Appendix H.
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2.3.2 Boundary conditions

Albeit TV application can enhance the vehicle stability, no arbitrary drive situation
has to be considered for the software design. To gain a physically meaningful design
a ’normal’ driver is assumed, who represents statistically 95% of all drivers and
driving situations [129]. The following conditions are specified in the present work:

� TV will be activated for a speed larger than 30 km/h.

� TV strategy is based on driving traction forces. Therefore, TV is deactivated
if the brake pedal is applied.

� A normal driver steers smaller than 90◦ with the corresponding lateral
acceleration of 2m/s2. In the present work, the maximum lateral acceleration
is defined by 7m/s2.

� The maximum admissible change of the steering wheel angle is 300 ◦/s in case
of small friction coefficient μ and 400 ◦/s in case of large μ.

� The maximum vehicle sideslip angle is 6◦.

� A normal driver reacts to the vehicle movement change not earlier than one
second [31]. Therefore, the maximum execution time of TV is 1 s.

� The vehicle behaves linearly by means of the Linear Single Track Model
(LSTM) in 95% of all times.

Some of these conditions are adopted from the requirements of ESC design described
in [86]. These conditions arise from the response of normal drivers and vehicle
stability. They are considered as the thresholds in the control design.

2.3.3 Software specifications

Figure 2.3 illustrates the software structure of the implementation of this work.
The control of high dynamic torque distribution for TV consists of electrical drive
control (1), oscillation damping control of the mechanical drivetrain (2), vehicle
dynamic control containing yaw rate control (3) as well as the operation strategy (4)
in consideration of the driver demand (5).

To attain a TV application employed in EVs, we assume only the commonly
in production vehicles used sensor equipments being available for the control
approaches. Signals and values transferred amongst the software modules are
depicted in Table 2.2.
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Operation Driver
strategy demand

Vehicle
dynamics
control

Oscillation
damping
control

Drivetrain

+ vehicle

Electrical
drive
control

S32

(0)(1)(2)(3)

(4) (5)

S21

S01

S10

S02S03

S43

S54

Figure 2.3: Software structure.

Signal Quantity Unit Description

S01
Iabc A Stator current of the IM

Ωr rpm Mechanical rotor speed of the IM

S02
Ωr rpm Mechanical rotor speed of the IM

Ωwheel rpm Wheel speed

S03
ψ̇ rad/s Yaw rate of the EV

ay m/s2 Lateral acceleration of the EV

S10 Tel Nm Electromagnetic torque of the IM

S21 Tel
∗ Nm Electromagnetic torque reference value

S32 Tshaft
∗ Nm Shaft torque reference value

S43 ψ̇∗ rad/s Yaw rate reference value

S54

pgp % Gas pedal position

pbrk % Brake pedal position

δH rad Steering wheel angle

Table 2.2: Signal specification.

Operation strategy

Depending on the current drive situation, an intelligent operation strategy
computing a reference yaw rate should be implemented, which takes driver demands
and vehicle states as well as road effects (friction, cross slope) into account.
For improved handling the computed yaw rate set point changes the vehicle’s
under-steering behavior towards a neutral one.
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Furthermore, due to limited measurable quantities, An observer is required, which
estimates all control-relevant information, such as tire forces, lateral velocity,
longitudinal slip, tire slip angle and road friction coefficient, etc.

Vehicle dynamics control

In order to enhance vehicle agility by means of vehicle dynamics control, an
intelligent strategy for facilitating the full use of the tire’s potential to produce
a force should be implemented. Another reason for implementing this strategy is to
mitigate the risk of skidding. It is achieved in such a manner, that the ’weaker’ tire
is taken into account and an excessive slipping can be therefore avoided.

To monitor the physical limitation of tires mentioned above, the nonlinearity of tires
has to be considered in the control design. For this reason, an inversed tire model
should be implemented, which translates the required longitudinal tire forces into
corresponding slip values based on the vehicle velocity and the friction coefficient.
Moreover, depending on the drive situation the tire radii vary, which can impact the
computation of physical limitations. Therefore, a function should be introduced to
provide the dynamic tire radii.

Additionally, according to the boundary conditions a control logic should be
implemented to determine under which circumstances the control strategy becomes
active or inactive.

Oscillation damping control

Due to the oscillation behavior of drive shafts, a damping control is necessary to
ensure the performance of torque transmission. Since the measurable quantities are
merely the rotor speed of the machine and the wheel speed, an observer should be
implemented to estimate the actual shaft torque.

Electrical drive control

Both drive motors are considered as actuator in the entire TV system. To achieve
a high dynamic torque distribution, the current control in IM is essential. In
order to transform the torque requirement from the damping control into the
reference value of the current control, the nonlinearity magnetic property should
be identified. Furthermore, over-current and -voltage issues should be considered
for safety reasons.

Summary

As illustrated in Figure 2.3, these software modules constitute a cascade structure.
Hence, the implementation of TV will be performed thereinafter by an introduction
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from the innermost control loop (between module 1 and module 0 in the figure) to
the outermost control loop (between module 3 - and module 0 in the figure). This
corresponds to the bottom-up sequence in the V-model. The validation of the entire
TV system is performed on a HiL test bench, which will be detailed in chapter 8.



3 State of the art and novelties of the
work

As has been mentioned, the MPC framework is decided as fundamental solution in
the present work. In the previous chapter, the general problem was specified onto
the functional level. In this chapter, an overview is given on solving the problem
on the technical level. The historical background and conceptual idea of MPC are
introduced in section 3.1. In section 3.2 the state of the art techniques of solving the
subproblems specified in section 2.3.3 are discussed. In section 3.3 the objectives
and academic contributions of the present work are presented.

3.1 MPC history and concept

The idea of model predictive control and receding horizon control has been developed
since the 1960s [119]. MPC made its first appearance in industrial applications in the
petrochemical process industry in the 1970s [160]. This field of applications was a
natural starting point, as the hundreds of inputs and outputs being present in typical
systems inhibited the application of classical control theory. It was shown in [158]
that MPC is an effective way to handle multi-variable constrained control problems.
Furthermore, the large time constants involved in many chemical processes allowed
the control system a sufficient amount of time to process challenging computations
inherent to MPC.

As suggested by its name, MPC is a predictive control strategy, where the predictions
on the future system state are derived from a prediction model based on the physical
system. The basic concept of MPC is to solve an open-loop constrained optimization
problem at each time instant and implement only the first control action of the
solution.

Figure 3.1 illustrates the concept of MPC methodology. Starting from the system’s
current state at any time instant k, MPC seeks to find an optimal control sequence
over the control horizon Nu with U = [uTk|k, u

T
k+1|k, . . . , u

T
k+Nu−1|k]

T which drives
the deviation of the system output yk+i|k to the reference towards zero. This is
achieved implicitly by solving an open-loop control problem over a finite or an infinite
prediction horizon Np. It is assumed that after Nu steps the control action remains
constant and after Np steps the system converges to the reference. Although U
contains a sequence of optimal control actions for the next Np steps, only the control
action for the next time instant uk is applied to the system by u∗ = uk|k. The rest of
the control actions are discarded. At the next time instant k+1, the system state is
updated in accordance to either measurement or estimation. The system is therefore
shifted one step ahead and such procedure is repeated over the same prediction
horizonNp, which yields the next optimal control value for u∗ = uk+1|k+1. Therefore,



16 State of the art and novelties of the work
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Figure 3.1: Receding horizon control.

MPC is also referred to as Receding Horizon Control (RHC). [159] and [157] give
extensive general information about MPC methodology.

MPC has been intensively developed during the last three decades [152, 130, 109] and
it becomes one of the most important advances in the processing industry, especially
in chemical process control such as petrochemical, pulp and paper control. However,
the procedure of determining the optimal control action represented by solving a
mathematical optimization problem requires relatively large computational effort in
comparison to classic control methods. Hence, the application of MPC was restricted
to low dynamic systems.

With the development of micro-controller techniques in the last few decades, MPC
is increasingly discussed for high dynamic control applications. In [116, 118], MPC
was firstly systematically proposed for power electronics and electrical drive control.
Since then, an increasing number of MPC strategies have been adopted in this area.
In [93, 184, 94] the applications of MPC in power electronics and alternative current
(ac) drives are comprehensively depicted. Simultaneously, the theories of MPC
stability, feasibility, optimality as well as robustness are developed. The proofs
are oftentimes investigated strategy-dependently. Nevertheless, the general theories
are explained and derived in [156, 36, 125, 119, 122, 112, 23]. Since most MPC
strategies handle discrete time systems, they can be easily employed in the modern
Digital Signal Processor (DSP) systems. MPC shows several apparent advantages,
such as design simplicity, explicit inclusion of design criteria and constraints, high
dynamics and inherent robustness. Furthermore, MPC strategies are essentially
based on optimization problems, wherefore the development of MPC theories has
not been accomplished yet and can be still expanded hereafter.
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3.2 Technical reviews

In this section, state of the art techniques, primarily optimization-based MPC
approaches are introduced, which are used to tackle similar problems as in this
work. This technical review places emphasis on the applications of MPC in diverse
physical systems. The theoretical control issues associated with control design will
be discussed in the corresponding sections respectively.

3.2.1 Electrical drive control

Since the 1980s the FOC has been developed for the practical use of ac machines
and represents nowadays the state of the art [183]. In most cases, the requirements
of drive applications can be met by dint of field-oriented cascaded PI controllers.
Nevertheless, due to the drawbacks of such approaches introduced in section 1.2, new
approaches are searched for high dynamic drive systems. The development of MPC
theories in the last three decades stimulates the applications of MPC in electrical
drive systems.

In [105], it was firstly proposed to apply MPC for the current control in IM. The idea
of vector control was used to obtain decoupled linear systems for the d- and q-axis
quantities. The underlying optimization problem of MPC can be moved off-line and
solved by means of multi-parametric Quadratic Programming (mp-QP), which was
derived in [18]. In this manner, MPC in consideration of system constraints can be
applied for high dynamic systems, such as current control in IM, in real-time. In [46],
MPC was applied for speed control in IM. The performances of the MPC controller
and the conventional PI controller were compared. In [60], the cascade structure
of FOC with PI controllers was introduced for continuous-time MPC. Depending
on the control structure, an observer was applied to the system with an integral
term to diminish the impact of disturbance. In [61], the disturbance issue was
further investigated. Integrators were embedded in both inner and outer loop control
systems to completely reject the disturbance and thus enhance the robustness of the
entire system. Furthermore, the current constraint of IM was formulated in such a
way, that d-current was assumed to be constant and the constraint of q-current can
be therefore derived from the maximum admissible dq-current.

In [45], observers were employed for the purpose of sensorless control of MPC in IM.
An adaptive full-order observer was implemented to estimate the stator currents
and rotor flux. The dynamics and the robustness of MPC against parameter
uncertainties as well as load changes were studied in that work. In [44], the
advantage of MPC concerning dynamics and robustness was emphasized by means
of comparison to the conventional PI controllers.

[58] proposed a predictive speed control for electrical drives without cascade
structure. A single optimization problem was formulated in the control design by
means of minimum-time control problem for a double integrator. The computational
effort was reduced significantly by using Finite-Control-Set MPC (FCS-MPC), which
is based on enumeration of switching possibilities of the inverter.
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In [132], the issue of delay time compensation was discussed for MPC approaches in
IM. Delay time compensation was obtained in such a way, that instead of one step
prediction in FCS-MPC, two steps are considered to improve the system performance
against delay time.

In the last two approaches, the controller tackles directly with the finite possible
switching states of combinations of the inverter over the prediction horizon,
and generates ready-to-use switching states for the inverter without translating
voltage space vectors by using modulators. In contrast to other aforementioned
MPC approaches combined with modulation techniques named Continuous Control
Set MPC (CCS-MPC), these approaches have a relatively simple architecture
because no modulator is required and it is well-designed for digital power inverter
control systems.

Among those FCS-MPC schemes, the one based on enumeration is one of the
most well established and widely adopted method. In [102], the application of
enumeration-based FCS-MPC approach in power converters was introduced in
detail. The drawback of such approaches is that the general problem to be optimized
is NP-hard and it is practically only applicable for a limited number of switching
sequences and length of the prediction horizon due to its exhaustive computation.
For the sake of complexity reduction, some modified enumeration-based strategies
eliminate certain switching sequences, which violate the upper limit of switch change
per sampling period, from the candidate set [151].

As an alternative, FCS-MPC based on extrapolation is tailored for emulating a
long prediction horizon while being computationally efficient [70, 69]. The basic
idea of extrapolation-based FCS-MPC is to compute control sequences over the
switching horizon that is significantly shorter than the prediction horizon, which
is determined by linearly extrapolating the promising state trajectory within their
constraints. However, the accuracy is compromised. There are other emerging
strategies targeted at enabling long-horizon FCS-MPC such as move-blocking [94]
and event-based horizon strategies [65].

In [66, 67], a long prediction horizon of FCS-MPC was achieved by setup and solving
a Constrained Finite-Time Optimal Control (CFTOC) problem. This problem
can be reformulated into an integer least-squares problem and efficiently solved
by the sphere decoding algorithm. Such approach was evaluated and compared
with other FCS-MPC methods in [68] in respect of control performance and
computational complexity. Although this algorithm can be improved by further
complexity-reducing techniques, it cannot meet the real-time requirement in the
present work.

In summary, due to the expensive on-line computational effort and the notable
current as well as torque ripples [35], CCS-MPC is decided to form the basis of this
work for the development of new electrical drive control approaches.
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3.2.2 Oscillation damping control

The topic of oscillation damping in electrical drive systems was handled in [128]. It
was studied, which physical parameters/mechanical factors can impact the dominant
eigenvalue of the mechanical system. Based on this investigation, the controllers
are designed in terms of a physical meaning. By means of the controllers, these
influencing parameters can be mathematically modified by manipulating the control
parameters. The drawback of this approach was the stationary torque deviation.
In [175], diverse approaches with cascaded PI controllers and different additional
feedbacks were reviewed for electrical drive systems with elastic joint. The classic
pole-placement method was applied to calculate control parameters. The concept
of additional feedbacks frees the pole-placement and therefore improved the control
performance of such linear controllers.

A comparison of different damping control approaches was given in [180]. The
performance of the classic PI controller was unsatisfying due to constricted
pole-placement, while PI controllers with additional feedbacks and generalized
predictive control (GPC), which is a sort of MPC, require high computational
efforts. In [43], an oscillation damping control by means of Explicit MPC (EMPC)
was proposed for a two-mass drive system with elastic coupling. The system
constraints were considered in the control design. By means of multi-parametric
Quadratic Programming (mp-QP), the most computational effort was moved off-line
and the on-line computation was represented by the search for the optimal control
action stored in a lookup table. The simulation and experiment results showed
quite satisfying control performance. The robustness of EMPC against parameter
variation in electrical drive systems with elastic coupling was studied in [178].
Results showed that by a proper selection of control parameters, a robust and reliable
control strategy can be obtained.

In [188], the so-called EMPC-PI switching control, was applied for the vibration
suppression with shaft torque limitation in electrical drive systems. By means of
this approach, the high requirements for the control module memory caused by
Look Up Tables (LUTs) containing off-line solutions can be avoided, which makes
this approach more attractive for industrial applications.

To ensure the control performance of MPC-based approaches, an observer has to be
implemented, which estimates the unmeasurable state variables such as shaft torque
and varying system parameters. In [176], an adaptive Nonlinear Extended Kalman
Filter (NEKF) was introduced. It was aimed to design an adaptation strategy to
obtain higher dynamic observer in case of parameter variation. The initial values of
observer parameters were selected by using genetic algorithm. Based on these values,
the adaptation strategy was proposed in form of a mathematical formula associated
with a so-called correction factor. Although good performance was observed in the
experimental results, no mathematical derivation was given for the determination of
this adaptation formula. In [177], a systematical analysis was given to present the
control performance of the electrical drive system with elastic coupling by means
of nonadaptive and adaptive EKF. The results showed that the application of the
adaptation mechanism facilitated a faster convergence to the real values.
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3.2.3 Vehicle dynamics control

In [91], the control objective of active TV was investigated and TV applications were
categorized as follows: First of all, the reference yaw rate ψ̇, which is determined
by steering wheel angle and vehicle velocity, is selected as control objective. Such
strategy is used in most TV systems [150, 32, 153, 62, 51, 135]. Another common
alternative is to control the combination of yaw rate and vehicle sideslip angle β as
applied in [64, 191, 179, 92, 38]. Besides both concepts, longitudinal vehicle velocity
vx and tire slip λ can be applied as the control objective as well [140, 135, 37]. As in
most applications the yaw rate is determined as the control objective in the present
work as well.

The conventional control approaches of vehicle dynamics control, or rather active
yaw rate/moment control, are based on Proportional Integral Derivative (PID)
technique. The control structure consists of a feedforward controller combined with
PID controller and multi-parametric gain scheduling depending on vehicle velocity
and estimated vehicle behavior [74]. The drawback of such approaches is the weak
robustness against variation of vehicle parameters [74].

In order to improve the stability and robustness of the system, the concept of
sliding mode control [53] was introduced to the yaw rate control of TV. By means
of this technique, the system insensitivity to parameter variations and external
perturbations is kept on the so-called sliding surface. In [135], two different
formulations of two second-order sliding model control was proposed. However, the
first- and second-order sliding mode control approaches have the drawbacks, that the
robustness can be ensured restrictedly or the performance is significantly affected by
signal discretization and actuation dynamics [74]. Therefore, integral sliding mode
control was introduced in [74], and it showed a good tracking performance with a
smooth control action.

In [55], an optimization-based TV control was proposed. The control objective is
to minimize the control errors of forces on the vehicle’s Center of Gravity (CoG).
The optimization problem was formulated in a Semi-Definite Programming (SDP).
However, due to the computational burden, only simulation results were presented.
In [98] the driver’s effects was involved in the control design as uncertainties in
order to enhance the drive-in-the-loop stability. The robust H∞ control method was
applied in that work. Analogous to the previous approach, the on-line computational
effort was expensive, since the feasible solution was found by an iterative algorithm
including underlying optimization problems. In [172, 173, 96], the control objective
was formulated by a quadratic objective function with linear constraints, which can
be numerically solved by quadratic programming (QP) solvers. Although efficient
numerical solver was employed in [96] and experimental results were presented, the
on-line computation was still emphasized.

In [171], the limitation of lateral acceleration was investigated to stabilize the vehicle
behavior during cornering. By means of comparing the required and minimum
feasible turning radii according to the actual velocity and applied steering command,
it was able to be checked if the vehicle was stable. In critical cases, the controller
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braked the vehicle in such a way, so that the feasible minimum radius was reduced
and the required radius became stable. Based on this knowledge, the system
constraints are explicitly expressed and incorporated in the control design [172].
The system constraints consist of yaw rate, vehicle sideslip angle, longitudinal slips
on the drive wheels as well as the motor torque.

So far, diverse yaw rate control approaches are discussed for vehicle dynamics
control. It is important to note that most TV applications are merely implemented
by yaw rate control. In these approaches [185, 192, 91], the control variables
of the yaw rate loop – mostly an asymmetric longitudinal tire force distribution
– was translated into corresponding wheel torques directly applied to the wheel
shafts. A major drawback of those systems is their inability to systematically
consider the conditions of excessive tire slip, which leads to a degenerated control
performance [165]. Another disadvantage of a lacking tire slip control is the potential
force oscillations on the tires, especially at low speed.

3.3 Objectives and contributions

The main objective of the present work is represented by the implementation of the
specifications defined in section 2.3.3 and the validation of the software according
to the functional requirements, which was given in section 2.3.1. Besides, advanced
control approaches will be pursued, which enhance the performance of the entire
system in such a manner, so that a good trade-off between robustness and optimality
can be achieved.

Most of the aforementioned optimization-based approaches are based on the robust
nature of MPC to attain so-called robust control performance. However, no
mathematical derivation can be given here to guarantee the global robustness of
the control system. In other works, systematical incorporation of the system
uncertainties was introduced. However, the algorithms introduced were based on
numerical solution of optimization problems, which impedes its real-time application
in dynamic systems. Furthermore, in order to achieve a feasible optimal control
action in consideration of system constraints, the constrained MPC method with
underlying QP problem was applied in many other works. However, due to the
property of some system constraints, which are not able to be expressed in the
standard form of the QP problem, an approximation has to be accepted, which yields
that the system resource cannot be fully utilized. This causes the deterioration of
the system optimality.

Therefore, it will be studied in the present work to further exploit the potential
benefit of MPC theories and how to apply these theories to the control
system/subsystems. Moreover, systematical analysis of system uncertainties and
constraints, which can influence control performance, will be performed. In
summary, to the best knowledge of the author, the novel contributions of the present
work are highlighted by
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� implementation of the min-max control theory and an efficient search algorithm
for current control in IM to enhance the system’s robustness,

� adaptation and implementation of the tube-based MPC theory for current
control in IM in order to guarantee the robustness and simultaneously reduce
the computational effort,

� handling the system constraints in IM without any approximation, so that the
system optimality is not deteriorated,

� applying the explicit MPC in combination with a torque compensation to
obtain a high dynamic damping control in mechanical drivetrain systems,

� implementation of an optimization-based robust tire slip control to prevent
skidding and to provide the TV application an offset-free slip.

� implementation of a comprehensive operation strategy to ensure the TV
performance in different drive situations.

In the next chapter, the topic will be concentrated more on MPC theories on the
mathematical level.



4 Theoretical backgrounds of model
predictive control

In this chapter, an overview is given to introduce the fundamentals of MPC
employed in the present work. Since the basic idea of MPC is to specify the
control problem by means of a mathematical optimization problem, the definitions of
convex optimization are introduced in section 4.1. To understand the optimization
problems introduced in this chapter, some definitions and notations of the key
elements consisting the MPC approaches are given in Appendix A. In section 4.2,
the basic formulation of MPC and its extended descriptions are explained. One
of the significant advantages of MPC is to incorporate the system constraints and
uncertainties explicitly in the optimization problems. Depending on the way, how
these issues are handled, different optimization problems can be defined, which are
discussed in section 4.3 and section 4.4.

4.1 Backgrounds

An optimization problem is a mathematical description of a problem, which helps
find the best solution out of all feasible solutions. Therefore, MPC with underlying
optimization problem is able to achieve a good performance once the optimization
problem is properly set up.

4.1.1 Standard convex optimization problems

In this section, formulations of different convex optimization problems are given.
The general form of a convex optimization problem is described by minimizing an
objective function with constraints as follows:

min
x

f0(x)

s.t. fi(x) ≤ 0, i = 1, . . . ,m

aT
j x = bj , j = 1, . . . , p,

(4.1)

where f0, ..., fm are convex functions. To obtain a convex optimization problem the
following requirements have to be fulfilled [27]:

� the objective function is convex,

� the inequality constraint functions are convex and

� the equality constraint functions are affine.
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Linear Program (LP)

One of the most widely used convex optimization problem is linear program, which
is defined by

min
x

cTx+ d

s.t. Ax ≤ b,

Aeqx = beq,

(4.2)

where d ∈ R, the vectors c ∈ R
n, b ∈ R

m, beq ∈ R
p, the matrices A ∈ R

m×n

and Aeq ∈ R
p×n. In most cases, the constant d is removed from the objective

function, since it affects neither the optimal solution nor the feasible set. The linear
constraints in (4.2) describes a polyhedron P. Therefore, LP is an optimization of
a linear objective over P.

Quadratic Program (QP)

The convex optimization problem is called quadratic program if the problem is
formulated by:

min
x

1

2
xTQx+ cTx,

s.t. Ax ≤ b,

Aeqx = beq,

(4.3)

where the matrixQ ∈ S
n
+, which means it is symmetric positive definite. The vectors

c ∈ R
n, b ∈ R

m, beq ∈ R
p. The matrices A ∈ R

m×n and Aeq ∈ R
p×n. As in (4.2),

the feasible set of QP is a polyhedron P, over which a convex quadratic function is
minimized.

Semidefinite Program (SDP)

A further convex optimization problem is semidefinite program, which has the
general form

min
x

cTx

s.t. F (x) � 0,
(4.4)

where vector c ∈ R
n and F (x) � 0 denotes a Linear Matrix Inequality (LMI).

Definition 4.1.1 (Linear Matrix Inequality [42]) A linear matrix inequality in
the variable x ∈ R

n is an expression of the form

F (x) = F0 +

m∑
i=1

xiFi � 0, (4.5)

where Fi with i ∈ {0, ...,m} are symmetric matrices in R
n×n.
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The LMIs describe a positive semidefinite cone, over which a linear objective function
in (4.4) is minimized. In case that all matrices Fi are diagonal, the LMI is equivalent
to a set of n linear inequalities, which means the optimization problem expressed
in (4.4) returns to a LP in (4.2).

4.2 Basic principles of model predictive control

In this section, the concept and the fundamental elements of MPC are introduced.

4.2.1 MPC startup

Prediction model

The prediction model is considered as the basis of MPC design. In the following a
discrete-time Linear Time Invariant (LTI) unconstrained system without dead time
in the simplified form is considered at first:

xk+1 = Axk +Buk

yk = Cxk +Duk ,
(4.6)

where xk,xk+1 ∈ R
n,uk ∈ R

m and yk ∈ R
p are the state, input and output

vectors of the system with k denoting the time instant, respectively. A ∈ R
n×n,

B ∈ R
n×m, C ∈ R

p×n and D ∈ R
p×m are state matrix, input matrix, output matrix

and feedforward matrix, respectively. In order to control the outlined system, the
following assumption should be fulfilled:

Assumption 4.2.1 (Controllability) The objective system is controllable, in
other words, controllability matrix

[
B AB A2B · · · An−1B

]
has full rank.

Objective function

Regarding to different MPC algorithms, various objective functions are proposed.
The objective function J is also known as cost function. In the most control
problems, the reference value should be tracked. Therefore, the following objective
(cost) function is applied for the purpose of reference tracking

J =

Np∑
i=1

(rk+i − ŷk+i)
TQ(rk+i − ŷk+i) +

Nu−1∑
i=0

uT
k+iRuk+i , (4.7)

where Np and Nu represent the prediction and control horizon length, respectively.
The prediction horizon can be much longer than the control horizon. rk+i, ŷk+i

and uk+i are the reference, predicted output and control vectors at time instant
k + i, where uk+i = uk+Nu−1 for Nu ≤ i < Np. Q, R are symmetric positive
definite weighting matrices, which penalize the tracking offset and control effort,
respectively. The control law is computed by minimizing J at each time instant.
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Control law

From (4.6) the predictions in next Np steps at time k are computed by

Y =

⎡⎢⎢⎢⎢⎣
CA

CA2

...

CANp

⎤⎥⎥⎥⎥⎦ x̂k +

⎡⎢⎢⎢⎢⎣
CB . . . 0

CAB . . . 0
...

. . .
...

CANp−1B . . . CANp−Nu+1B

⎤⎥⎥⎥⎥⎦U , (4.8)

where the vectors Y = [ŷT
k+1 . . . ŷT

k+Np
]T ∈ R

h and U = [uT
k . . . uT

k+Nu−1]
T ∈ R

l

with h
Δ
= pNp and l

Δ
= mNu. Equation (4.8) can be expressed by

Y = Ψx̂k +ΘU . (4.9)

By substituting (4.9) into (4.7), the cost function (4.7) is rearranged to

J =(W −Ψx̂k)
TQ(W −Ψx̂k)− 2UTΘTQ(W −Ψx̂k) +UT(ΘTQΘ+R)U ,

(4.10)

where W
Δ
= [rTk+1 . . . rTk+Np

]T ∈ R
h. Independent on the case, whether x̂k is

corrected by the observer or not, this value is known at time instant k. Therefore,
the only unknown variable of the cost function at time instant k is U . In the absence
of the constraints, an analytical solution exists by which the optimum yields

∂J

∂U

!
= 0

U∗ =
(
ΘTQΘ+R

)T
ΘTQ (W −Ψx̂k) .

(4.11)

Thus, the optimal control action at the next time instant is determined by applying
the first element of U∗:

uk = u∗
k , (4.12)

which is applied as input to system (4.6), while the resting part of the control
actions is discarded. At the next time instant k+1 the optimization (4.11) is shifted
one step ahead and the whole procedure is repeated with the updated information.
Therefore, MPC is also called Receding Horizon Control.

4.2.2 State estimation and disturbance modeling

As aforementioned, in order to minimize the objective function, it is assumed that
all state variables are known. In reality however, the system states are always either
unmeasurable or measured with noises. Thus, MPC is often combined with an
estimator / observer. Furthermore, disturbance and uncertainties occur, which lead
to undesired tracking offset. To tackle these issues, a Kalman filter with extended
disturbance modeling is introduced in the following.



4.2 Basic principles of model predictive control 27

A LTI system in consideration of noises can be modeled by

xk+1 = Axk +Buk +wk

yk = Cxk + vk ,
(4.13)

where w and v represent the process and measurement noises respectively. w
is the process noise, which is a zero mean multivariate normal distribution with
covariance Qk defined by

Qk = E
[
wkw

T
k

]
. (4.14)

v is the zero mean Gaussian white noise and has the covariance

Rk = E
[
vkv

T
k

]
. (4.15)

In Figure 4.1, the structure of a Kalman filter is illustrated. The estimation model
of a Kalman filter is expressed according to the system matrices by

x̂k+1|k = Ax̂k|k +Buk

ŷk = Cx̂k|k−1 .
(4.16)

It is assumed, that the system is observable, and it can be examined by means of
Hautus Lemma given in [174].

B + +

+

+

+
−

C

C

K

B

A

A

z−1

z−1
uk xk ykxk−1

x̂k+1|k x̂k|k−1 ŷk

x̂k|k

System

Observer

vkwk

ỹk

Figure 4.1: Block diagram of discrete-time Kalman filter.

The principle of a Kalman filter is to correct the estimated state value at time
instant k by means of the measurement residual:

x̂k|k = x̂k|k−1 +Kk(yk −Cx̂k|k−1) (4.17)

where K denotes the Kalman gain and ỹk = yk − Cx̂k|k−1 represents the
measurement residual. The Kalman gain is obtained by

Kk = Pk|k−1CS−1
k , (4.18)
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where Pk|k−1 is the predicted estimate covariance and calculated by

Pk|k−1 = APk−1|k−1A
T +Qk , (4.19)

and Sk describes the residual covariance and is given by

Sk = CPk|k−1C
T +Rk . (4.20)

The correction of estimate covariance is expressed by

Pk|k = (I −KkC)Pk|k−1 . (4.21)

Therefore, the estimation procedure is recursive and can be summarized as shown
in Figure. 4.2.

Pk−1|k−1

backwards
time shift

xk−1|k−1

prediction
step

correction
step actual

measurement

yk

Pk|k

k ← k + 1

Pk|k−1
xk|k−1

xk|k

Figure 4.2: Estimation procedure of Kalman filter.

In [131], the nominal Kalman filter is extended with unmeasured disturbance models
to suppress tracking error due to the disturbance. To simplify expressions, the
predicted values are replaced by x̂k+1. The state-space representation is given as
follows: [

x̂k+1

d̂k+1

]
=

[
A E

0 I

][
x̂k

d̂k

]
+

[
B

0

]
uk

yk =
[
C G

] [x̂k

d̂k

]
,

(4.22)

where the variable d denotes the unmeasured disturbance. It is assumed, that the
unmeasured disturbance in the system has much lower dynamics and can therefore
be considered as constant within the prediction horizon, i.e. d̂k+1 = d̂k.

The matrices E and G describe the kind and the dynamics of the disturbance
respectively. In case that the output disturbance is dominant, which means
d̂k = yk − Cx̂k, matrix G is set by I. Alternatively, If the input disturbance is
determining, matrix E is simply configured by B, since x̂k+1 = Ax̂k +B(uk + d̂k).
In this way, the estimated disturbance is compensated in the corresponding position,
i.e. to input or output variable.

Besides the importance of both kinds of disturbances, another criteria which has
to be considered is the selection of the critical constraint for the system. In case
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that the input constraint should not be violated, the output disturbance has to be
modeled and compensated to the system output to avoid the modification of the
input value decided by the controller. Same principle holds for output constraint as
well. In the present work, the nominal Kalman filter is applied to the controllers by
default. It will be explicitly mentioned if any extension such as disturbance modeling
exists.

4.3 Constrained model predictive control

Almost all real-world physical systems have their constraints, whether they are input,
output or state limits. As has been stated, one advantage of MPC when compared
to PI controllers is the incorporation of system constraints in the control design.
Hence, MPC provides a good instrument to handle constrained system control.

In PI control approaches, the system constraints are handled by means of
the saturation of the corresponding values and anti-windup mechanism, which
suppresses output overshooting. However, saturation is not the best way for optimal
control approaches. The reasons for this are clarified in the following.

umax

uk+1

uc u

umax
uk

J

(a)

uk+1

umax

uc u

umax
uk

J

(b)

Figure 4.3: Computation of control signals with and without incorporation of input
constraints [33].

Figure 4.3 illustrates the difference between saturation and constraint incorporation
in MPC. To give a direct insight to the expression, the MPC problem is defined
with a control horizon in two steps. The annular curves represent the values of cost
function J . Figure 4.3a shows the scenario, in which uk, uk+1 > umax. By means of
saturation, uk is forced to its limiting value umax, while by constraint consideration
uc is applied to reach the minimum of J . In the case of Figure 4.3b, the value of
the next control action uk does not violate the constraint and is therefore applied
to the system. However, the input uk+1 exceeds the limit after uk is applied. As
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a consequence, the value of the cost function deviates from the one of the optimal
solution in consideration of constraints, where uc is applied to the system.

4.3.1 On-line optimization problem

The example shown in Figure 4.3 gives a good explanation, why constraints have
to be considered in MPC design to ensure the optimality. Now the unconstrained
optimization problem of MPC is recalled. Minimizing the cost function described in
(4.10) is equivalent to the following problem:

min
U

J ′ =
1

2
UTHU + cTU , (4.23)

where H = ΘTQΘ+R and c = −ΘTQ(W −Ψx̂k). It can be easily obtained that
the Hessian matrixH is symmetric positive semi-definite. Thereby, the optimization
problem is specified as a convex optimization. The control horizon is set by two steps.
In this example there exists a unique globally optimum.

The optimization problem of MPC (4.23) under consideration of constraints is then
depicted as follows:

min
U

1

2
UTHU + cTU

s.t. GU ≤ b+Ex̂k ,
(4.24)

where the vectors G, b and E depend on the constraint formulation. For constant
constraints E is zero. Since the box-constraint can be converted to a one-sided form,
this form is generally valid for all inequality constraint expressions. Therefore, the
optimization problem with constraints is a standard QP as expressed in (4.3). Since
the problem changes at each time instant k (the matrix cT and the constraints are
state-dependent), an on-line solution is required for MPC to solve the problem at
each time instant.

Commonly, the QP problems are solved by efficient numerical solvers based on active
set methods or interior-point methods. With active set methods, only the active
constraints are considered at each iteration step. Therefore, the active set varies
slightly from step to step. One remarkable disadvantage of the active set algorithms
is, that the algorithm may become inefficient near to the optimum point. With
interior-point or Primal Dual (PD) interior-point methods, the QP is converted
to a Lagrangian. The constraints are replaced by barrier functions. By means of
Karush-Kuhn-Tucker (KKT) conditions [27] the system is converted to nonlinear
equations, whereat at each iteration the system is linear. Thus, the computation
can be accomplished by iterative linear algebraic solvers. The PD interior-point
methods feature fast convergent properties. However, the on-line computational
effort for obtaining the control law is tremendous despite of the efficient numerical
solvers. Apparently, this does not meet the real-time requirement in the present
work. Therefore, in the following, the approach proposed in [18] is introduced to
attain a real-time application of MPC for constrained LTI systems.
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4.3.2 Multi-parametric QP

In the on-line optimization of problem (4.24), the value of x̂k is given at each time
instant k for the solution. Therefore, the control law u = u(k) is defined implicitly as
a function of x̂k. To reduce the computational effort, the explicit MPC is introduced.
The explicit MPC based on mp-QP, which is proposed in [18]. The QP is solved for
all feasible states x off-line, to find the control law u = u(x) explicitly. According
to the current value of x(k), the solution is calculated on-line in the explicit form.

The standard QP can be converted into mp-QP in such a way, that state variables
are treated as a vector of parameters. According to the system constraints, the space
of the parameters can be represented by a set of regions, which are convex polyhedral
and in which the QP is feasible. By solving the optimization problem the control
law can be expressed piecewisely with respect to the vector of the parameters. It is
proved that the linear MPC controller is a continuous piecewise affine function of
the parameters [18].

To introduce the algorithm of mp-QP, we consider at first the QP of regulation
problem with measurable state variables and the cost function

J̃ = xT
k+Np

Pxk+Np +

Np−1∑
i=0

(xT
k+iQxk+i + uT

k+iRuk+i) . (4.25)

From (4.25) we obtain the following QP:

V (x) = min
U

1

2
UTHU + xT

kFU

s.t. GU ≤ b+Exk .
(4.26)

By defining z = U+H−1FTxk and substituting it in (4.26), we obtain an equivalent
problem:

Vz(x) = min
z

1

2
zTHz

s.t. Gz ≤ b+ Sxk ,
(4.27)

where S
Δ
= E + GH−1FT and Vz(x) = V (x) + 1

2x
T
kFH−1FTxk. Compared to

(4.26) the parameter vector xk in (4.27) appears only on the right hand side of the
inequality. In [18], it is proved that z is also an affine function of parameter vector
x. Since it fulfills both primal and dual feasibility, the constraints can be converted
to linear inequalities of the parameter vector. According to these inequalities, the
parameter vector space can be partitioned into a set of convex polyhedral regions
called critical regions, in each of these regions the problem is feasible. They are
described by

CRi = {x ∈ R
n |Hix ≤Ki} . (4.28)

Finally, the optimum solution can be obtained as a piecewise affine function in the
following form:

u∗ = fix+ gi . (4.29)
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4.4 Robust model predictive control

Besides the system constraint handling, another essential advantage of MPC is to
deal with the system uncertainties. Possible sources of uncertainties are represented
by modeling mismatch, unknown parameter variation in the system, at last but not
least the external disturbances. These uncertainties can be considered in the MPC
design to achieve a good trade-off between robustness and optimality. In this section,
two different concepts concerning Robust Model Predictive Control (RMPC) will be
introduced.

4.4.1 Min-max control

The robust MPC with explicit incorporated system uncertainties based on
min-max optimization, also called min-max MPC, was firstly introduced 1996
in [100]. The plant model is described as a Linear Parameter-Varying (LPV)
system with polytopic uncertainties. The objective function is formulated as a
quadratic Lyapunov function in infinite horizon and minimized by solving the LMIs
on-line. This approach is improved in [39] and corrected in [123] by applying
parameter-dependent Lyapunov functions. In such a way, the control performance is
improved since the conservativeness of the optimization problem is reduced. In [34]
and [85], the RMPC subjected to input saturation is presented. RMPC in finite
horizon was introduced 2004 in [49]. The parameter-dependent Lyapunov function
is divided into two parts: the first N − 1 steps and the terminal step. In [146]
the performance of the RMPC in finite horizon was further improved by defining
Lyapunov function for each prediction step.

Fundamental method

In general, the system uncertainty can be incorporated in the optimization problems
by means of two methods. One is modeling the uncertainty by adding a disturbance
to the system as described in the following equation:

xk+1 = Axk +Buk +Gwk, wk ∈W , (4.30)

where wk is the unknown disturbance and W is the disturbance constraint set.
Another method is modeling the uncertainty as a polyhedron, which is named
polytopic uncertainty [16]. The system is described as a LPV system by:

xk+1 = A(θ)xk +B(θ)uk

yk = Cxk

[A(θ),B(θ)] ∈ Ω ,

(4.31)

where Ω is a convex hull (polytopic set) defined by

Ω = Co{[A1, B1], [A2, B2], ... [AL, BL]} . (4.32)
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[AL, BL] [A1, B1]

[A2, B2]

Figure 4.4: Two dimensional polytopic uncertainty.

[Al, Bl] denote the vertices of the convex hull with l ∈ L. Therefore, for any
[A(θ), B(θ)] ∈ Ω there exists

[A(θ), B(θ)] =

L∑
l=1

θl[Al, Bl], ∀θl ∈ Θ , (4.33)

where Θ is the unit simplex with Θ = {∑L
l=1 θl = 1, θl ≥ 0}. Figure 4.4 illustrates

a simple two-dimensional example of polytopic uncertainty.

For simplicity, it is imposed hereinafter that the control horizon and the prediction
horizon are N ( Np = Nu = N). Therefore, the cost function of finite horizon
min-max control is defined by

Jk(x,U) = ‖xk+N‖2P +

N−1∑
i=0

{‖xk+i‖2Q + ‖uk+i‖2R
}
. (4.34)

The optimal control laws are obtained by minimizing this cost function in the worst
case

J∗
k (xk) = min

U={uk...uk+N−1}
max
θ∈Θ

Jk(xk,U , θ) , (4.35)

wherefore it is also called min-max control.

In [100], it is proved that if the following inequality is satisfied

V (xk+i+1|k)− V (xk+i|k) ≤ −xT
k+i|kQxk+i|k − uT

k+i|kRuk+i|k (4.36)

for any [Ak+i, Bk+i] ∈ Ω and all xk+i|k, uk+i|k at time instant k, the cost function
of infinite horizon min-max control has an upper bound

max
[Ak+i,Bk+i]∈Ω, i≥0

J∞(k) ≤ V (xk|k) , (4.37)

where V (xk|k) = xTPx describing a quadratic Lyapunov function. Therefore, (4.35)
can be represented by:

min
γ,S

γ (4.38)
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s.t.

[
1 xT

k

xk S

]
� 0 (4.39)

with xTPx < γ and S = γP−1. The inequality (4.36) can be replaced by the LMI⎡⎢⎢⎢⎣
S (AlS +BlY )T SQ

1
2 Y TR

1
2

AlS +BlY S 0 0

Q
1
2S 0 γI 0

R
1
2Y 0 0 γI

⎤⎥⎥⎥⎦ � 0,

l = 1, . . . , L

(4.40)

where Y = FS and uk+i|k = Fxk+i|k. Thus, the unconstrained min-max control
problem can be transformed to the optimization of a linear objective (4.38) subject
to LMIs (4.39), (4.40).

Moreover, the satisfaction of inequality (4.36) implicates that

xT
k+i+1|kPxk+i+1|k ≤ xT

k+i|kPxk+i|k , i = 0, . . . , N − 1 , (4.41)

since Q 	 0 and R � 0. Therefore, there exists an invariant ellipsoid at each time
instant k defined by

E =
{
z | zTS−1z ≤ 1

}
, (4.42)

where z denotes the worst case

max
[Ak+i,Bk+i]∈Ω, i=1...N

xT
k+i|kSxk+i|k . (4.43)

This invariant ellipsoid is illustrated in Figure 4.5. It gives the feasible domain of
all xk+i , i = 1, . . . , N , which means that all predicted states across the prediction
horizon at time instant k should be located within this ellipsoid.

xk+i|k, i > 0

invariant ellipsoid

x

x

for xk|k

Figure 4.5: Illustration of invariant ellipsoid.
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Considering the input constraint of the system, the following inequality should be
satisfied

|(uk+i|k)j | ≤ (umax)j , i = 1, . . . , N , j = 1, . . . ,m . (4.44)

Since uk+i|k = Fxk+i|k, it yields

max
i≥0

‖(uk+i|k)j‖22 = max
i≥0

‖(Fxk+i|k)j‖22
≤ max

z∈E
‖(Y S−1z)j‖22

≤ ‖Y S− 1
2 ‖22

≤ (Y S−1Y T)jj , j = 1, . . . ,m .

(4.45)

By means of Schur-complements the input constraint (4.45) is transformed in the
following LMI: [

X Y

Y T S

]
� 0, Xjj ≤ u2

j,max, j = 1, . . . ,m , (4.46)

where m represents the dimension of the input vector. In analogy, the following
LMIs are given for state and output constraints:[

S (AlS +BlY )T

AlS +BlY Γx

]
� 0,

(Γx)rr ≤ x2r,max, r = 1, . . . , n, l = 1, . . . , L

(4.47)

[
S (AlS +BlY )TCT

C(AlS +BlY ) Γy

]
� 0,

(Γy)ss ≤ y2s,max, s = 1, . . . , p, l = 1, . . . , L

(4.48)

and they can be extended to the optimization problem (4.38). In (4.47) and (4.48), n
and p denote the dimension of input and output vector, respectively. To summarize,
the constrained min-max control problem based on LMIs is defined as a SDP
problem:

min
γ,S,Y ,X,Γ

γ

s.t. (4.39), (4.40), (4.46), (4.47), (4.48) .
(4.49)

According to this optimization problem, the fundamental min-max controller
proposed in [100] is implemented by means of the following algorithm:
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Algorithm 1 Kothare’s RMPC [100]

1: Measure the state xk at time instant k
2: Compute the optimization problem (4.49) and obtain the optimized parameters
{γ∗,S∗,Y ∗,X∗,Γ∗}

3: Apply u∗
k = Y ∗S∗−1xk in the system

4: Set k ← k + 1 and restart over.

Optimality improvement

So far, the min-max method introduced presents an approach with open-loop feasible
domain determination, since the invariant ellipsoid (see (4.42)) is calculated at each
time instant k with prediction horizon N = 0. Therefore, this approach has high
conservativeness. In order to enhance the optimality, a min-max control approach
based on close-loop predictions is introduced in [146] and [42], which is considered
as a special case of extended invariance concept introduced in [110].

In this approach, the invariant ellipsoid for each prediction step
Ek+i|k = xT

k+i|kSk+ixk+i|k is studied, which means that instead of unique Sk,
a sequence of Sk+i should be determined. In order to ensure the property of
invariant ellipsoid described in (4.42), (4.43) and Figure 4.5, a so-called robust
one-step set [97] should be fulfilled, which means

xk+i+1|k ∈ Ek+i+1|k if xk+i|k ∈ Ek+i|k . (4.50)

The conditions are given as follows:

S−1
k+i − (Ak+i +Bk+iFk+i)

T
l Sk+i+1(Ak+i +Bk+iFk+i)l ≥ 0, ∀l = 1, . . . , L

Sk+i − Sk+i+1 ≥ 0

Fk+ix ∈ U, ∀x ∈ Ek+i|k
Ek+i|k ⊂ X .

(4.51)

The sufficient conditions of (4.51) in the LMI formulation are given by[
Sk+i (AlSk+i +BlYk+i)

T

AlSk+i +BlYk+i Sk+i+1

]
� 0, l = 1, . . . , L

Sk+i − Sk+i+1 ≥ 0[
X Yk+1

Y T
k+1 Sk+1

]
≥ 0, Xjj ≥ u2j,inf, j = 1, . . . ,m[

Sk+i (AlSk+1 +BlYk+1)
T

AlSk+1 +BlYk+1 Γx

]
� 0, (Γx)ss ≥ x2s,inf,

s = 1, . . . , n, l = 1, . . . , L ,

(4.52)

where uj,inf = min {uj,min, uj,max} and xm,inf = min {xm,min, xm,max}.
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However, conditions (4.52) guarantee only the property (4.50) for i ∈ {1, . . . , N − 1}.
In order to ensure the general feasibility over the infinite horizon, further LMI to
fulfill xk+1|k ∈ Ek+1|k and xk+N+i|k ∈ Ek+N |k, i ≥ 1 should be defined as well. The
LMI, which satisfies the former condition, is straightforward:[

1 (Alxk +Bluk)
T

Alxk +Bluk Sk+1

]
� 0, l = 1, . . . , L . (4.53)

Here, the input and state constraints for time instant k+1 should be satisfied, which
means

umin ≤ uk ≤ umax and xmin ≤ xk+1 ≤ xmax . (4.54)

Both constraints are summarized in one LMI with

Gb(xk+1,uk)− hb ≥ 0 , (4.55)

where Gb and hb are the matrices corresponding to (4.54).

In order to ensure that all states beyond the prediction horizon are located in the
terminal region Ek+N |k, the standard robust stability requirement, similar as the
one given in (4.40) for one prediction step, is imposed:

⎡⎢⎢⎢⎣
Sk+N (AlSk+N +BlYk+N )T (Q

1
2Sk+N )T (R

1
2Yk+N )T

AlSk+N +BlYk+N Sk+N 0 0

Q
1
2Sk+N 0 γNI 0

R
1
2Yk+N 0 0 γNI

⎤⎥⎥⎥⎦ � 0, l = 1, ..., L .

(4.56)

Moreover, the worst case of the cost function (4.34) in finite horizon can be
formulated by:

max
θ∈Θ

Jk(x,U) = max
[Ak+i,Bk+i]∈Ω, i=1...N

‖xk+N |k‖2P +

N−1∑
i=0

‖xk+i|k‖2Q + ‖uk+i|k‖2R

= ‖xk‖2Q + ‖uk‖2R + max
xk+N|k∈Ek+N|k

‖xk+N |k‖2P

+

N−1∑
i=1

max
xk+i|k∈Ek+i|k

‖xk+i|k‖2Q + ‖Fk+ixk+i|k‖2R .

(4.57)

According to (4.57) the upper bound of the cost function γ in the worst case is
composed of

γ0 ≥ ‖xk‖2Q + ‖uk‖2R , (4.58a)

γN ≥ ‖xk+N |k‖2P , (4.58b)

γi ≥ ‖xk+i|k‖2Q + ‖uk+i|k‖2R . (4.58c)
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Therefore, instead of minimizing the unique γ in (4.49) the sum of the upper bounds
γ0 +

∑N−1
i=1 γi + γN should be optimized. As a consequence, the following LMI are

given as further constraints:⎡⎢⎣γ0 xT
k uT

k

xk Q−1 0

uk 0 R−1

⎤⎥⎦ � 0 , (4.59a)

⎡⎢⎣ Sk+i (Q
1
2Sk+i)

T (R
1
2Yk+i)

T

Q
1
2Sk+i γiI 0

R
1
2Yk+i 0 γiI

⎤⎥⎦ � 0, ∀i ∈ {1, . . . , N − 1} . (4.59b)

The optimization problem is summarized as follows:

min
uk,γ0,γ1...γN ,X,Γ

S1,S2...SN ,Y1,Y2...YN

γ0 +

N−1∑
i=1

γi + γN

s.t. (4.52), (4.53), (4.55), (4.56), (4.59) .

(4.60)

Besides this prediction-step-dependent extension, the conservativeness can be
further reduced by parameter-dependent extension as well, and this strategy is
introduced in [42]. The evaluation result in [42] shows that the optimality of
the approach including both refinements is only slightly better than the one with
prediction-step-dependent extension, whereas the computational effort increases
significantly due to additional LMI constraints. Therefore, the approach with only
prediction-horizon-dependent extension is applied in the present work.

4.4.2 Tube-based MPC

Another method to cope with system uncertainties is called tube-based robust model
predictive control, which is initially proposed in [106]. In the following, the state
feedback tube-based robust MPC with underlying regulation problem is introduced.

State feedback tube-based robust MPC

First issue to be discussed is the derivation of the optimal control from initial state
x0 across the prediction horizon N . The system is described by a constrained,
discrete-time linear system with a bounded, additive disturbance, which is given by

xi+1 = Axi +Bui +wi , (4.61)

where xi ∈ R
n, ui ∈ R

m andwi ∈ R
n denote the state, the input and the disturbance

at the time instant i ∈ {0, . . . , N − 1}, while xi+1 the successor state of the system
at the next time instant. To simplify the description, (4.61) is expressed by

x+ = Ax+Bu+w (4.62)
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with the following system constraints

x ∈ X ,u ∈ U ,w ∈W , (4.63)

where X ⊂ R
n, U ⊂ R

m and W ⊂ R
n are all polyhedral sets containing the origin.

The disturbance set W is as stated unknown but bounded. Furthermore, a nominal
system without exogenous disturbance is considered in the control design, which is
given as follows:

x̄+ = Ax̄+Bū , (4.64)

where x̄ and ū denote the state and input value of the nominal system.

In [126], the robust attractivity and robust exponential stability of a robust positively
invariant set have been proven. These theories are fundamentals of tube-based
robust MPC. As proposed in [111], the applied control law consists of two separated
parts: the first part is a feedforward control with input calculated from the nominal
system (4.64), and the second part is a linear feedback control of the error between
the real state x and the nominal state x̄, which is formulated by

e := x− x̄ . (4.65)

Therefore, the control law can be expressed as

u = ū+Ke = ū+K(x− x̄) . (4.66)

K ∈ R
m×n in (4.66) is called disturbance rejection control parameter and it is

obtained under the condition that AK := A+BK is Hurwitz.

In [126], the relationship between systems (4.62) and (4.64) is given. It is proposed, if
the set Ω is robust positively invariant for the system x+ = AKx+w with x ∈ x̄⊕Ω,
u = ū+K(x− x̄), then x+ ∈ x̄+⊕Ω for any admissible disturbance w ∈W, where
x+, x̄+ satisfy the formulation of systems (4.62) and (4.64), respectively. This
proposition indicates that the control law (4.66) keeps the state of the real system
x+ close to the state of the nominal system x̄+. In other words, for any admissible
disturbance w ∈ W, if x0 ∈ x̄0 ⊕ Ω, then xi ∈ x̄i ⊕ Ω, where x0 and x̄0 are initial
states of the real and the nominal systems, while xi and x̄i are the states of (4.62)
and (4.64) at time instant i, respectively. Therefore, the system constraints of the
nominal system can be tightened by

x̄i ∈ X̄ := X Ω , i ∈ {0, . . . , N − 1} , (4.67)

ūi ∈ Ū := UKΩ , i ∈ {0, . . . , N − 1} and (4.68)

x̄N ∈ X̄f . (4.69)

X̄f denotes terminal constraint set and it ensures the stability as well as the feasibility.
Furthermore, X̄f has to satisfy the assumptions discussed in [125] and [87]. With
these tightened constraints, the optimization problem is set up as follows:

min J(X̄, Ū) =

N−1∑
i=0

{‖x̄i‖2Q + ‖ūi‖2R
}
+ ‖x̄N‖2P

s.t. (4.67), (4.68), (4.69) .

(4.70)
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In [126], a modified optimal control problem P∗
N (x) has been proposed, which aims

to minimize J∗
N (x) and thus it is unnecessary to keep the coincidence between initial

states of the nominal system and the real system. The main difference between
the conventional optimal control problem (4.70) and the modified optimal control
problem (4.71) is that the latter one applies x̄0 instead of the complete sequence of
the states X̄ as a decision variable:

J∗
N (x) = min

x̄0,Ū

{
JN
(
x̄0, Ū

) | Ū ∈ U (x̄0) , x̄0 ∈ x⊕ (−Ω)} , (4.71)

where Ū is the control sequence containing control actions from the initial state to
the current state. U(x̄0) is the admissible nominal control set, which is depicted by

U (x̄0) :=
{
Ū | ūi ∈ U, φ̄

(
i; Ū , x̄0

) ∈ X̄
}
, for i = 0, . . . , N − 1, φ̄

(
N ; Ū , x̄0

) ∈ X̄f .
(4.72)

Moreover, the state feedback control law is defined by

κ∗ (x) := ū∗
0 (x) +K(x− x̄∗

0 (x)) , (4.73)

where x is the current state, ū∗
0 (x) and x̄∗

0 (x) are obtained by solving the modified
optimal control problem P∗

N (x) described in (4.71). Clearly, the relationship
between domains of region of attraction for the real system X and the nominal
system X̄ satisfies X = X̄ ⊕ Ω.

Figure 4.6 illustrates the tube of the state trajectory. The dotted line represents
the trajectory of the nominal system, whereas the gray line describes the real states
trajectory. Because of the disturbance sequence w, system states trajectory x stays
inside of the sets sequence {Ω(0), Ω(1), . . .}, where Ω(i) = x̄∗

0(xi)⊕ Ω, which builds
the tube around the nominal state trajectory as shown in the figure, and it ensures
the feasibility and accuracy of the objective system.

The parameter determination of tube-based RMPC consists of several elements.
Among of them, calculating the terminal set X̄f, choosing the disturbance rejection

x
x̄

x

Ω

t

Figure 4.6: Illustration of principle of tube-based RMPC.
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control parameter K and computing the approximated minimal Robust Positively
Invariant (mRPI) set of Ω are the most important issues. To calculate these control
parameters, it is assumed that the other control parameters, such as weighting
matrices, are predefined. In the following, fundamental theories and algorithms
are given, according to which these parameters are obtained.

Calculation of the terminal set X̄f

The terminal set X̄f should satisfy the following axiom [125]:

AKXf ⊂ Xf,

Xf ⊂ X Ω,

KXf ⊂ UKΩ .

(4.74)

Meanwhile, the terminal constraint set X̄f is a constraint admissible positively
invariant set under the control law κ(x̄) = KLQRx̄, where KLQR is the gain of
a linear quadratic regulator (LQR) without considering constraints. Therefore, the
system (4.64) can be written as

x̄+ = ALQRx̄ , (4.75)

where ALQR := A + BKLQR represents the state matrix of the nominal system
controlled by the unconstrained optimal infinite horizon controller KLQR. Besides,
the nominal system is completed with the constraints stated in (4.67) and (4.68),
i.e.

x̄ ∈ X̄ = X Ω

KLQRx̄ ∈ Ū = UKΩ .
(4.76)

To procure a sufficiently large region, the terminal set X̄f should be determined by the
maximal Robust Positively Invariant set (MRPI). The MRPI Ω∞ is mathematically
defined by

Ω∞(ALQR,KLQR, X̄, Ū) := {x ∈ R
n |Ai

LQRx ∈ X̄,KLQRA
i
LQRx ∈ Ū, ∀i ≥ 0} .

(4.77)
Before the MRPI is calculated, the predecessor set P(Ω) for a set Ω has first to be
defined, which is given in [25] by

P(Ω) := {x ∈ X̄ |ALQRx ∈ Ω,KLQRALQRx ∈ Ū} . (4.78)

Furthermore, the target set Ω, tightened state constraint set X̄ and tightened input
constraint set Ū can be transformed into a H-polyhedral representation by

Ω = {x ∈ R
n |HΩx ≤ kΩ} ,

X̄ = {x ∈ R
n |Hxx ≤ kx} and

Ū = {u ∈ R
m |Huu ≤ ku} .

(4.79)
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Considering the definition of predecessor of a set Ω in (4.78), P(Ω) can be naturally
represented in H-polyhedron by

P(Ω) =

⎧⎪⎨⎪⎩x ∈ R
n |

⎡⎢⎣HΩALQR

Hx

HuKLQR

⎤⎥⎦x ≤

⎡⎢⎣kΩkx
ku

⎤⎥⎦
⎫⎪⎬⎪⎭ (4.80)

as well. However, the predecessor representation in (4.80) may contain redundant
inequalities, which have to be discarded. Otherwise, the computational complexity
becomes extremely high, or demands significant computational effort. Computing
the minimum representation of a polyhedron P means solving a LP for all
half-spaces, which defines its non-minimal representation [25]. The algorithm to
compute the MRPI set Ω∞ is proposed in [71] and applied in [97]:

Algorithm 2 Computation of MRPI set Ω∞
1: set i = 0
2: set Ω0 = X̄

3: let the intersection of set P(Ω) and set Ω0 be Ω1

4: while Ωi+1 �= Ωi do
5: i = i+ 1

Ωi+1 = P(Ωi) ∩ Ωi

6: end while
7: return Ω∞ = Ωi+1

However, Algorithm 2 may not be terminated in finite time. In [71], several necessary
conditions are stated to guarantee the finite termination of Algorithm 2, which are
revisited below:

Theorem 4.4.1 (Finite determination of MRPI set [71]) The MRPI set is
finitely determined if the following assumptions hold:

1. System matrix A is asymptotically stable.

2. The pair (A,C) is observable, i.e. the system is observable.

3. The output constraint set Y is bounded and includes origin.

Disturbance rejection controller

The robustness of a tube-based robust MPC is essentially based on the disturbance
rejection controller K, which determines the size and shape of the RPI set Ω
describing the difference between the real and the nominal states. Additionally,
the disturbance rejection controller is also a trade-off between disturbance rejection
capability and control performance. The simplest way to obtain the disturbance
rejection controller K is to choose the unconstrained LQR gain KLQR as K.
However, the unconstrained LQR gain can not satisfy the requirement of K
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explicitly: First, the presence of an admissible RPI set Ω should be ensured. In
this way, the tightened constraint sets X̄ and Ū are not empty. Second, the size of
Ω should be minimized [11]. In [8] and [11], a method to determine the disturbance
rejection controller K is presented, which is based on minimizing the size of a
constrained admissible ellipsoidal invariant set in accordance to the closed-loop
system with u = Kx. The ellipsoidal invariant set is defined by

E(P ) := {x ∈ R
n | xTPx ≤ 1}, (4.81)

where P is a positive definite matrix. E(P ) is uniquely defined by P and allows
the utilization of LMI-based optimization method to find the control law. Moreover,
the state constraint set X and the input constraint set U can be written into the
normalized H-representation by

X = {x ∈ R
n | |fT

i x| ≤ 1, i = 1, . . . , L},
U = {x ∈ R

m | |gTj u| ≤ 1, j = 1, . . . , J} , (4.82)

where L and J denote the number of facets of corresponding constraint sets. To
obtain the minimized ellipsoidal E(P ) regarding to the control law u = Kx,
the state constraint, input constraint, invariance constraint should be satisfied
simultaneously. To satisfy the state constraint, E(P ) must be fully contained in
X, which means

max
i=1,...,L

|fT
i x| ≤ 1, ∀x ∈ E(P ) . (4.83)

Moreover, (4.83) can be represented by fT
i P

−1fi ≤ 1 [26]. By means of Schur
complement, the state constraint is transformed into LMI formulation:[

1 fT
i

fi P

]
� 0, i = 1, . . . , L . (4.84)

In the similar way, the input constraint can be transformed into LMI formulation as
well. However, in order to guarantee a sufficiently large tightened input constraint
set Ū, it is beneficial to introduce an additional relaxation parameter ρ ∈ (0, 1], which
determines the size of tightened constraint set. Therefore, the input constraint is
reformulated by

|gTj Kx| ≤ ρ, j = 1, . . . , J, ∀x ∈ E(P ), (4.85)

which can be expressed by a set of LMIs[
ρ2 gTj K

KTgj P

]
� 0, j = 1, . . . , J . (4.86)

In addition to the state and input constraints, the invariance constraint should be
considered because of the presence of the exogenous disturbance w. The invariance
constraint is presented by

(x+)TP (x+) ≤ 1, ∀x ∈ E(P ), ∀w ∈W. (4.87)
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It is given in [26], that constraint (4.87) is satisfied if there exists a parameter α
fulfilling (

(AKx+wv)
TP (AKx+wv)− 1

)
− α(xTPx− 1) ≤ 0,

∀wv ∈Wv,
(4.88)

where Wv is the set of vertices in W. The parameter α is the factor, which describes
the contraction from E(P ) to the mapped ellipsoid E(P )+. The value of α denotes
the size difference between E(P ) and E(P )+, i.e. large α means that E(P ) and
E(P )+ approach the same size. The inequality (4.88) can be rewritten into LMI by

α

[
P 0

0 −I

]
−
[
AT

KPAK AT
KPwv

wvPAT
K wT

v Pwv − I

]
� 0, ∀wv ∈Wv . (4.89)

It can be reformulated by⎡⎢⎣ αΔ 0 ΔTAT +ΦTBT

0 I − α wT
v

AΔ+BΦ wv Δ

⎤⎥⎦ � 0, ∀wv ∈Wv , (4.90)

where Δ = P−1 and Φ = KP−1.

The computation of the disturbance rejection controller K is represented by
minimizing the associated invariant ellipsoid E(P ), whose size is proportional to
det(P−1). As suggested in [8] and [11], the disturbance rejection controller can be
obtained by solving the following optimization problem:

min
Δ,Φ,γ

γ

s.t.

[
γ fT

i Δ
T

fiΔ Δ

]
� 0, i = 1, . . . , L[

ρ2 gTj Φ

ΦTgj Δ

]
� 0, j = 1, . . . , J .

(4.91)

To guarantee the admissibility of the solution, γ should satisfy 0 < γ ≤ 1. The
disturbance rejection control parameter K is then calculated by K = ΦΔ−1.
Moreover, the parameter α is chosen in such a manner that 0 ≤ α ≤ α∞ can be
satisfied, where α∞ is the solution of (4.89) with AK = A+BKLQR and P = PLQR.

Approximation of mRPI set

The explicit computation of the mRPI set F∞ is only possible if the system is
nilpotent [108]. Nevertheless, several methods have been proposed to calculate the
approximation of the mRPI set of Ω, such as the ones presented in [63] and in [19].
In [154], an invariant outer approximation of mRPI set algorithm is proposed, which
solves the problem remained in the former works. The following assumption is given
to calculate the approximation of the mRPI set:
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Assumption 4.4.1 (Properties of disturbance set) The disturbance set W is
convex, compact and includes origin in interior.

Definition 4.4.1 (ε-Approximation [154]) Given a scalar ε > 0 and a set
Ω ⊂ R

n, the set Ωε ⊂ R
n is an outer ε-approximation of set Ω if Ω ⊂ Ωε ⊂ Ω⊕ εBn

and it is an inner ε-approximation if Ωε ⊂ Ω ⊂ Ωε⊕εBn, where B
n denotes the unit

ball in R
n.

Regarding the calculation of the set F∞, the set Fs is essential and this set is defined
by

Fs :=
s−1⊕
i=0

Ai
W, F0 := {0} . (4.92)

Moreover, Fs is convex and compact if W is convex and compact. As suggested
in [99], the accurate mRPI set F∞ is defined by

F∞ :=
∞⊕
i=0

Ai
W. (4.93)

Furthermore, it is proposed in [14], that F∞ exists and is unique over the class of
the closed RPI sets. However, it is not sufficient to apply (4.93) to compute the
mRPI set. In [101], a plausible method is proposed to obtain an invariant outer
approximation of F∞.

Theorem 4.4.2 (Relationship between F∞ and Fs [99]) If A is Hurwitz,
then there exists a compact set F∞ ⊂ R

n with following properties:

1. Origin is contained in the set Fs in its interior. Besides, Fs ⊂ F∞, ∀s ∈ N
+.

2. Fs approaches to F∞ if s approaches to ∞, i.e. for any ε > 0 there exists
s ∈ N

+ that F∞ ⊂ Fs ⊕ εBn.

3. F∞ is robust positively invariant.

Theorem 4.4.3 [101] If the system matrix A is Hurwitz and W contains origin
in its interior, then there exists a finite integer s ∈ N

+ and an associated scalar
α ∈ (0, 1] satisfying

As
W ⊂ αW . (4.94)

The scaled set F(α, s) is a RPI set and outer approximation of the mRPI set F∞
and defined by

F(α, s) := (1− α)−1Fs , (4.95)

where (α, s) satisfies (4.94).
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In order to approach the outer approximation set F(α, s) to the accurate mRPI set
F∞, s is chosen sufficiently large or α is selected sufficiently small. The smallest
values of α and s are defined by

α0(s) := min {α ∈ R |As
W ⊂ αW} (4.96a)

s0(α) := min
{
s ∈ N

+ |As
W ⊂ αW

}
, (4.96b)

where α0(·) and s0(·) satisfy (4.94), respectively. Subsequently, the support function
is introduced to improve the algorithm, which is relevant in the set-based control
theory.

Definition 4.4.2 (Support function [27]) The support function of a set W ⊂ R
n

is defined by
hW(α) := sup

w∈W
αTw. (4.97)

Support function defines the evaluation of set W with α ∈ R
n. If W is a zonotope,

i.e. the image of a cube is under an affine mapping [73], the computation of the
support function is trivial. Then W can be characterized by the affine mapping
described by Φ ∈ R

n×n and c ∈ R
n as follows

W = {Φx+ c | ‖x‖∞ ≤ η} . (4.98)

Substituting (4.98) in the support function (4.97), it yields

hW(α) := sup
w∈W

αTw

= max
‖x‖∞≤η

αTΦx+ αTc = η‖ΦTα‖∞ + αTc .
(4.99)

Besides, the disturbance set W can be written into the H-formulation [99] by

W = {w ∈ R
n |Hww ≤ kw} . (4.100)

Moreover, the equation (4.94) is satisfied if and only if

hW

(
(As)T fi

)
≤ αki, ∀i = 1, . . . , I , (4.101)

where Hw = [f1, f2, . . . , fI ]
T and kw = [k1, k2, . . . , kI ]

T. Applying this definition,
α0(s) can be calculated by

α0(s) = max
i=1,...,I

hW

(
(As)T fi

)
ki

. (4.102)

However, the outer approximation Fs is included in the polyhedral set
P = {x ∈ R

n |Hpx ≤ dp} if and only if

s−1∑
i=1

hW

((
Ai
)T

gj

)
≤ αdj , ∀j = 1, . . . , J , (4.103)
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where Hp = [g1, . . . , gJ ]
T and dp = [d1, . . . , dJ ]

T [154]. Subsequently, F(α, s) is
the robust positively invariant outer ε-approximation of the mRPI set F∞ if the
following condition is fulfilled:

ε ≥ α(1− α)−1 max
x∈Fs

‖x‖ = α(1− α)−1 min
γ
{γ | Fs ⊂ γBn} , (4.104)

where α ∈ (0, 1], s ∈ N
+. It is sufficient to define M(s) with

M(s) := min
γ
{γ ∈ R | Fs ⊂ γBn

∞} , (4.105)

where B
n∞ denotes the ∞-norm unit ball in R

n. M(s) can be calculated by

M(s) = max
i=1,...,n

{
s−1∑
k=0

hW

((
Ak
)T

ei

)
,
s−1∑
k=0

hW

(
−
(
Ak
)T

ei

)}
, (4.106)

where ei denotes the ith basis vector in R
n [154]. Then, the relationship among α,

M(s) and ε is given by

α(1− α)−1Fs ⊂ εBn
∞ if and only if α ≤ ε

ε+M(s)
. (4.107)

Finally, an efficient algorithm, which is proposed in [154], is given as follows:

Algorithm 3 computation of a RPI outer ε-approximation to the mRPI set F∞
1: set s = 1
2: set α = α0(1)
3: compute M(1)
4: while α > ε

ε+M(s) do
5: s = s+ 1

α = α0(s)
compute M(s)

6: end while
7: return Ω∞ = Ωi+1

4.5 Summary

In this chapter, the theoretical backgrounds of the MPC approaches applied
in the present work are introduced. The constrained MPC approaches with
multi-parametric Quadratic Programming (mp-QP) deal with the optimization
problems with incorporated system constraints. The min-max control and tube
MPC approaches are used to handle the system with parameter variation. In the
next chapter, these approaches are adapted to the control system of the IM and
validated on the test bench.





5 Robust current control in induction
machines

In the present work, a three-phase squirrel-cage IM driven by a two-level voltage
source inverter (VSI) is applied as traction system for the high-performance torque
vectoring control. Based on the principles of MPC introduced in chapter 4, the
control strategies and synthesis for the electric drivetrain is discussed in this chapter.
The system modeling and relevant issues, which are critical to control design, are
given in section 5.1. In section 5.2, the classic current control approach for IM is
introduced and compared to the proposed approaches. In section 5.3, the proposed
control approaches are discussed in details. In section 5.4, a novel concept is given,
according to which the constraints of IM can be handled in a convenient way.
Based on these approaches, the simulation and experimental results are presented
in section 5.6.

5.1 Dynamic modeling of electric drive system

In order to define the optimization problem for the control design, the physical
system is first described by a model. In the present work, for the purpose of a
robust current control, the fundamental wave model of the IM is applied.

5.1.1 Modeling of induction machines

For simplified IM modeling, it is a common practice to transform all variables
in the three-phase system into an orthogonal two-axis reference frame. The
most frequently used methods are Clarke-transformation and Park-transformation.
Clarke-transformation aims to translate a three-phase system in a stationary
orthogonal two-axis frame, which is formulated by:[

xα
xβ

]
=

√
2

3

[
1 −1

2 −1
2

0
√
3
2 −

√
3
2

]⎡⎢⎣xaxb
xc

⎤⎥⎦ , (5.1)

where xa, xb, xc denote the electrical or magnetic variables in the three-phase
system, e.g. current, voltage as well as flux linkage. Here, only the simplified
Clarke-transformation is introduced and the system being transformed is a balance
(symmetrical) system. Moreover, all the transformations are based on the power
invariant principle in the present work. The inverse Clarke-transformation is given
by ⎡⎢⎣xaxb

xc

⎤⎥⎦ =

√
2

3

⎡⎢⎣ 1 0

−1
2

√
3
2

−1
2 −

√
3
2

⎤⎥⎦[xα
xβ

]
. (5.2)
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Park-transformation transfers the three-phase sinusoidal variables of IM into
arbitrary rotating two-axis variables with the help of a rotating speed defined by
the reference frame. Besides, Park-transformation is also called dq-transformation,
which denotes the fundamental goal of this transformation. The currents in the
d- and q-axis are referred to as flux-generating and torque-generating currents,
respectively. The mathematical formulation of Park-transformation is shown as
follows: [

xd
xq

]
=

√
2

3

[
cos(θ) cos(θ − 2π

3 ) cos(θ + 2π
3 )

− sin(θ) − sin(θ − 2π
3 ) − sin(θ + 2π

3 )

]⎡⎢⎣xaxb
xc

⎤⎥⎦ . (5.3)

In analogy, the inverse of Park-transformation is⎡⎢⎣xaxb
xc

⎤⎥⎦ =

√
2

3

⎡⎢⎣ cos(θ) − sin(θ)

cos(θ − 2π
3 ) − sin(θ − 2π

3 )

cos(θ + 2π
3 ) − sin(θ + 2π

3 )

⎤⎥⎦[xd
xq

]
. (5.4)

Here θ is the position angle of the reference frame related to the α-axis, which is
defined by:

θ = ωkt+ θ0 , (5.5)

where θ0 can be chosen freely. In order to assign the q-axis corresponding to the
real axis and d-axis to the negative imaginary axis, we choose θ0 as −π

2 . ωk is the
rotational angular speed of arbitrary coordinate system, which is usually defined in
the following four ways:

1. ωk = 0: inactive coordinate system, i.e. the coordinate system is aligned to
the stator;

2. ωk = ωr: coordinate system rotating with rotor speed;

3. ωk = ωs: coordinate system rotating with synchronous speed;

4. ωk = ωμ: coordinate system rotating with rotor flux linkage.

The dq-reference frame can be either rotational with an arbitrary speed or stationary
with respect to the three-phase system. The detailed rotational frame theory can
be found in [104, 147].

Based on the aforementioned theories, the differential voltage equations of induction
motor in d-q axis are presented in Laplace domain as [103]:⎡⎢⎢⎢⎣

usq
usd
u′rq
u′rd

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
(Rs + sLs) ωLs sLm ωLm

−ωLs (Rs + sLs) ωLm sLm

sLm (ω − ωr)Lm (R′
r + sL′

r) (ω − ωr)L
′
r

− (ω − ωr)Lm sLm − (ω − ωr)L
′
r (R′

r + sL′
r)

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
isq
isd
i′rq
i′rd

⎤⎥⎥⎥⎦ ,

(5.6a)
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where

Ls = Lsσ + Lm , (5.6b)

L′
r = L′

rσ + Lm . (5.6c)

Subscripts r and s denote the parameters of rotor and stator respectively. Lm is
the mutual inductance. Lsσ and L′

rσ represent the leakage flux of stator and rotor
respectively. The rotor values are referred to the stator side and identified by the
apostrophe symbol. The aforementioned four different coordinate systems are chosen
according to various control objectives of IM [117, 174]. To simplify the description,
the reference frame for system modeling is chosen to be aligned with the rotor speed
in electrical degrees ωr. Besides, because the applied IM is a squirrel-cage motor,
the rotor voltages u′rd and u′rq are both zero. Taking these conditions into account,
the model of the IM can be reformulated as:⎡⎢⎢⎢⎣

usq
usd
0

0

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
(Rs + sLs) ωLs sLm ωLm

−ωLs (Rs + sLs) ωLm sLm

sLm 0 (R′
r + sL′

r) 0

0 sLm 0 (R′
r + sL′

r)

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
isq
isd
i′rq
i′rd

⎤⎥⎥⎥⎦ . (5.7)

Different to the machine modeling, for the purpose of control, the rotor flux oriented
reference frame is chosen in the control design. Based on this reference frame, (5.7)
is reformulated by

usd = Rsisd + σLs
disd
dt

+ (1− σ)Ls
diμ
dt
− ωμσLsisq

usq = Rsisq + σLs
disq
dt

+ (1− σ)Lsωμiμ + ωμσLsisd ,

(5.8)

where σ denotes the leakage factor, and iμ the magnetizing current for the mutual
flux linkage generation. iμ has the following relationship to the stator current in the
d-axis:

iμ + τr
diμ
dt

= isd , (5.9)

where τr represents the rotor time constant with τr = L′
r

R′
r
. Subsequently, the

electromagnetic torque in the rotor flux oriented reference frame is described by

Tel =
pLm

2

L′
r

iμisq , (5.10)

where p is the pole pair number. Besides, the mechanical dynamic of EMs can be
generally depicted by

Jr
d

dt
Ωr = Tel − Tload , (5.11)

where Ωr is the mechanical speed of rotor with Ωr =
ωr
p . Jr is the rotor inertia and

Tload is the load torque.
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5.1.2 Uncertainties

As has been introduced, there are uncertainties in the system. These uncertainties
can deteriorate the control performance and therefore should be considered in the
control design. The system uncertainties in IM are represented essentially by
variation of stator and rotor resistances by temperature, magnetic saturation and
time delay.

Resistance variation

The operation temperature in IM changes due to the heating caused by losses [1].
Consequently, the ohmic resistance varies with the operation temperature and can
be calculated by

R(T ) = R0 · (1 + αCu(T − T0)) . (5.12)

R0 represents the resistance at temperature T0, which is commonly defined at 20 ◦C.
T is the operation temperature. αCu denotes the temperature coefficient of resistance
for copper and this value is 0.393%/K [181]. Depending on the operation condition
and the insulation class of IM, the operation temperature T can reach up to 200 ◦C.
The lowest operation temperature considered in the present work lies around −30 ◦C.
Therefore, in the present study, the variation of ohmic resistance is defined by R ∈
[0.8R0, 2R0] for the control design, which covers the entire operation temperature
range of IM.

Magnetic saturation

Another type of uncertainty, which can significantly impact the control performance,
is the magnetic saturation effect. It means that the magnetic permeability μ,
which describes the relationship between the magnetizing field strength H and the
magnetic field density B by μ = B

H , decreases with increasing H. For more detailed
information about saturation magnetization the readers are referred to [89]. In
Figure 5.1 the nonlinear magnetic property is illustrated.

This figure implies that in IM, the inductance varies with the magnetizing current.
For the purpose of high performance control, the relationship between mutual
inductance and magnetizing current should be identified. In [137], the approach
of experimental identification of the characteristic line, which is applied in the
present work, is introduced. The measured characteristic line of stator inductance
to magnetizing current applied in this work is given in Figure C.1. According
to this characteristic line, the variation of the mutual inductance is defined by
Lm ∈ [0.5Ln

m, 2L
n
m], where Ln

m denotes the value from the data sheet.

Time delay

Time delays can lead to overshooting or even results in instability of the entire
system. Particularly for high dynamic control such as MPC, time delays are
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Figure 5.1: Illustration of magnetic saturation.

frequently the main cause of performance degradation and instability [88]. More
informations about stability analysis of control systems with time delays are referred
to [134, 50].

In electric drive systems the critical time delay is mainly the dead time due to
the Digital Signal Processor (DSP). Essentially, DSP consists of sampling delay by
Analog-Digital (AD) conversion, which is equal to the half of the pulse interval, and
the calculation time of the DSP [136]. Therefore, the delay of SVM in a two-level
VSI is calculated by

Td =
1

2fPWM
+ Ts . (5.13)

The sampling time of the current control loop in the present work is Ts = 0.1ms
and the carrier frequency of the inverter fPWM = 3200Hz. Consequently, the dead
time of the electrical drive system Td = 3Ts is defined in this work.

5.2 Classical control approach

In industrial applications, the PI controller is widely applied for electric drive
systems. Particularly, the classical FOC approach, which uses PI current controller
is a standard control scheme for IM. Unlike to the system modeling, the controller
is based on the reference frame aligned to the rotating rotor flux ωμ.

Current control with PI controller

The plant for the current control in IM is described in (5.8). In order to decouple the
d- and q-axis, the Electromotive Force (EMF) terms on both axes are compensated
in such a way, that

uRd = Rsisd + σLs
disd
dt

uRq = Rsisq + σLs
disq
dt

,

(5.14)
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with

uRd = usd − (1− σ)Ls
diμ
dt

+ ωμσLsisq

uRq = usq − (1− σ)Lsωμiμ − ωμσLsisd .
(5.15)

It is evident that the current plant (5.14) with EMF-compensation in (5.14) behaves
as PT1 element and it is convenient to be handled by the PI controller. The control
parameters can be tuned by means of magnitude optimum, or sometimes called
modulus optimum, which is introduced in [168]. The block diagram of the current
control loop on both axes are summarized in Figure 5.2.

PI

EMF
Compensation

IM
+

−
+ +

uRd usd isd

isq/isd
iμ
ωμ

/uRq

ucomp
sd /ucomp

sq

/usq /isqi∗sd/i
∗
sq

Figure 5.2: Block diagram of current control loop with PI controller.

Flux control with PI controller

The plant of the rotor flux control is depicted in (5.9). It is a typical PT1-element
similar to the d-current plant. Since the time constant of the current control loop
is much smaller than the rotor time constant, the time constant of the plant can
be approximately represented by τr. Same as the current controller, the control
parameters of the flux controller are tuned by magnitude optimum. The block
diagram of the flux control loop is described in Figure 5.3.

PI
i∗μ

+

− iμi∗sd isdCurrent

loop
PT1

Figure 5.3: Block diagram of flux control loop with PI controller.

Rotor flux estimation

In order to compensate the EMF term described in (5.15) and to control the rotor
flux as well as for Park-transformation, the magnetizing current iμ and the rotor
flux angular speed ωμ must be known. The calculation of the magnetizing current
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is based on the inverse flux model expressed in (5.9). The electric angular speed of
rotor flux is derived by

ωμ = ωr +
isq
τriμ

. (5.16)

Finally, the structure of the entire current and flux control in IM is summarized in
Figure 5.4.
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Figure 5.4: Block diagram of FOC with cascaded PI controllers.

5.3 Robust current control in consideration of
parameter variation

According to the knowledge introduced in section 5.1, in order to attain a
high-performance current control, the system uncertainties are not negligible.
Traditionally, the system uncertainties, which can be estimated by an observer, are
extended in the prediction model as disturbance in MPC. Their effects are fed back
to the controller as input or output compensation. This concept was introduced in
section 4.2.2. However, current overshooting can occur due to parameter mismatch,
particularly the inductance mismatch caused by saturation in high current level,
which makes the problem more critical. To deal with this problem, two different
robust current control approaches implemented in the present work are introduced
in the following.

5.3.1 Min-max current control

The first approach is to use the min-max control method introduced in section 4.4.1.
We briefly recall the idea of this control method: A system with uncertainties is
described as a LPV system with polytopic uncertainties, in which the extreme values
of the parameters are represented by the vertices. The optimization is geared to
minimizing the worst case (at the vertices) of the objective function. In such a
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manner, the robustness can be guaranteed. In the following, this concept is applied
to the current control in IM. The structure of the current control by means of
min-max optimization is shown in Figure 5.5.
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îsq

usq

usd

Δusd

Δusq

z-1
uRd

uRq

u∗
sd

u∗
sq

− +

+

++

+

+

+

+

+

z-1

θμ

isq

isd
isd, isq

U∗
abc

θμ

Ia

Ib Ωr

iμ

ωμ
Kalman

filter

+

Figure 5.5: Block diagram of the control structure of min-max RMPC.

Prediction model

The system model for current control in IM was described in (5.8). The entire model
can be considered as a LPV system with parameters Rs, Ls and ωμ. However,
the parameter ωμ may vary in a large range and is therefore excluded from the
time-varying parameters of the min-max control by using the decoupling components
described in (5.14) and (5.15). In this way, the system dynamics are not substantially
diminished. The d- and q-currents are controlled separately by two min-max
controllers in order to halve the dimension of the state space. As a consequence, the
computational burden can be reduced significantly. The nominal system matrices
are defined by

An = 1− Ts
Rs

σ(1 + σ1)Lm
, Bn = Ts

1

σ(1 + σ1)Lm
. (5.17)

In the present work, the leakage factors σ, σ1 as well as σ2 are assumed to be
constant. The variation ranges of Rs and Lm have been given in section 5.1.2.
Therefore, the vertices of the polytopic uncertain set are defined by

A B Rs Lm

1 1 Rmin
s Lmin

m

2 2 Rmin
s Lmax

m

3 1 Rmax
s Lmin

m

4 2 Rmax
s Lmax

m



5.3 Robust current control in consideration of parameter variation 57

and the system can be then described as:

xk+1 = A(θ)xk +B(θ)uk with

[A(θ) B(θ)] ∈ Co {[A1 B1] , [A2 B2] , [A3 B1] , [A4 B2]} .
(5.18)

Since the introduced min-max optimization only deals with the regulation problem,
which means that the system converges to the zero point in steady-state. The
reference tracking problem of IM has to be reformulated, and the reformulated state
space representation is given by:[

Δxk+1

xk+1 − rk+1

]
=

[
A(θ) 0

A(θ) I

][
Δxk

xk − rk

]
+

[
B(θ)

B(θ)

]
Δuk, (5.19)

where r represents the reference value and it is considered as constant within the
prediction horizon, Δxk = xk−xk−1. Therefore, the min-max optimization problem
of current control for the system (5.19) can be set up according to (4.60).

It is important to note that, to obtain the control laws, a set of SemiDefinite
Programming (SDP) problems as well as Linear Programming (LP) problems have
to be solved at each time instant, which cannot meet the real-time requirement
of current control in IM and therefore can not be applied directly. To tackle this
problem, the expensive computational efforts are moved to an off-line process by the
following approach.

Explicit min-max MPC using approximated multi-parametric SDP

In [15], an off-line solution of min-max constrained optimization problem in the
case of L1- and L∞-norms by using multi-parametric Linear Programming (mp-LP)
is proposed. In [186] and [187], the concept of asymptotically invariant ellipsoids
describing the time-varying terminal constraint set was introduced. A sequence
of explicit control laws corresponding to these ellipsoids is constructed off-line
by solving SDP. Based on the current state, the ellipsoid and the control law
are searched on-line. To simultaneously improve the feasibility and optimality
of the min-max controller, the control law of the large ellipsoid is obtained in a
backward manner with the knowledge of the control laws associated with included
ellipsoids [48]. In [13] and [145], further performance improvement of the invariant
ellipsoid-based off-line min-max control is given.

Instead of solving SDP off-line based on the invariant ellipsoids, the original
optimization problem can be formulated as multi-parametric or rather as
approximated multi-parametric SemiDefinite Programming (mp-SDP). [75] gives
a solution of the mp-SDP. However, the finite termination property cannot be
guaranteed by mp-SDP due to the variation of the optimal solution of a SDP
problem according to the parameter vector [42]. Therefore, in [17] and [142],
algorithms based on approximated mp-SDP are introduced. Instead of ellipsoids,
the state-space is partitioned into triangle regions. The binary search tree algorithm
is used for such approaches. To improve the on-line search efficiency, the orthogonal
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search tree is applied in [90] for multi-parametric Quadratic Programming (mp-QP)
by substituting the triangle regions with quadratic ones. The similar idea using k-d
tree is adopted to solve approximated mp-SDP in [40] and [41]. In [83], the quad-tree
search algorithm for approximated mp-SDP is implemented and presented.

A standard mp-SDP problem is formulated as follows:

min
z

J(z,x)

s.t. F (z,x) ≥ 0 ,
(5.20)

where z denotes the new variable for the optimization problem to be solved and x
the state variable. Either the upper bounds of the cost functions or the actuating
variable can be approximated for the application of the off-line optimization. In
the present work, the actuating variable approximation is determined and therefore
z(x) = uk.

The basic idea of approximated mp-SDP is to construct a piecewise affine function of
z according to the state space vector parameters. The state space is partitioned into
several regions, in each region a control law in linear form is applied. The regions
are defined as quadrat in this work and expressed as follows:

Br = {x ∈ R
n : Hrx ≤ dr}

Hr =

[
I

−I

]
,dr =

[
hu
−hl

]
, ∀r ∈ I .

(5.21)

Br describes the unique quadrat, I ∈ R
n×n is the unit matrix, hu and hl are the

upper and lower limits, I is the index set of the quadrats.

Since it is impossible to find the optimal solution for each point in the quadrat,
the approximated solution is targeted, and this value can be calculated by choosing
several sample points. In order to obtain the approximated linear solution (control
law) in each quadrat, which is represented by

ẑ(x) = K̂rx+ ĝr , ∀x ∈ B , (5.22)

the vertices of the quadrat V = {v1, v2, . . . , vM} are employed as sample points
with M = 2n. For each vertex vi of the quadrat, the SDP problem (4.49) is
solved to obtain the optimal solution z∗(vi). Based on the optimal solutions at the
vertices, the suboptimal solution (5.22) can be obtained by minimizing the following
optimization problem

min
K̂r,ĝr

M∑
i=1

(z∗(vi)− (K̂rvi + ĝr))
TH1(z

∗(vi)− (K̂rvi + ĝr))

s.t. F ((K̂rvi + ĝr), vi) ≥ 0, i ∈ {1, . . . ,M} ,
(5.23)

where H1 	 0 denotes the weighting matrix for the optimization.

In order to check the accuracy of the approximated solutions, some points are
selected as sample. Typically, the vertices, the middle points of the edges and
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the middle point of the quadrat are used. They are called the face points. The
approximation error of each face point is given by the L2-norm of the solution
deviation defined by

εz(x) = ‖z∗(x)− ẑ(x)‖2H2
, ∀x ∈ B , (5.24)

where H2 	 0 describes the weighting factor of the error. The maximum error of
the face points represents the approximation error of the quadrat

ε̂z = max
x∈Xd

εz(x) , (5.25)

where X
d represents the set of the face points. This approximation error should not

exceed the error tolerance named absolute error and denoted by εa. This absolute
error, which is normally very small, is defined to guarantee the quantitative accuracy
of the suboptimal solutions. However, in certain critical regions, it is unnecessary
to achieve such a high accuracy. To reduce the computational effort, a relative error
is introduced as follows:

εrz(x) =
εz(x)

‖z∗(x)‖2H2

. (5.26)

The relative error of the quadrat is the maximum error of the face points:

ε̂rz = max
x∈Xd

εrz(x) ≤
ε̂z

min
x∈Xd

‖z∗(x)‖2H2

. (5.27)

Therefore, the final error tolerance is described by the maximum of the absolute
error and the upper bound of the relative error related to the absolute value:

εt = max

(
εa, εr · min

x∈Xd
‖z∗(x)‖2H2

)
, (5.28)

where εr defines the tolerance of the relative error. If the approximation error exceeds
the error tolerance, the quadrat is partitioned into sub-quadrats, and the entire
process is repeated, until the approximation error is reduced to a value lower than
the tolerance.

To diminish the impact of disturbances such as measurement noise, a minimum
quadrat should be defined with the size Smin. In this quadrat, the system is able to
converge to the origin point in spite of disturbance. In order to ensure the system
stability, a terminal set E0 encompassing the origin is proposed in [186], in which the
standard mp-SDP problem is solved instead. This mp-SDP problem is formulated
as follows [42]:

min
β,S,Y

β

s.t.

⎡⎢⎢⎢⎣
S (AlS +BlY )T SQ

1
2 Y TR

1
2

AlS +BlY S 0 0

Q
1
2S 0 βI 0

R
1
2Y 0 0 βI

⎤⎥⎥⎥⎦ ≥ 0, S ≥ δI, l = 1, . . . , L ,

(5.29)
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where δ and β are nonnegative scalar quantities. By solving (5.29) the feedback
matrix F = Y S−1 ensures the system stability for any state inside the terminal
set xk ∈ E0. On the one hand, the parameter δ should be set to a large value to
ensure the feasibility. On the other hand, it should be not too large to influence the
accuracy. In [42], the rule is given by defining the value as twice of the size of the
minimum quadrat: δ = 2Δxmin.

The off-line optimization process is summarized in Algorithm 4, whereas a user
defined initial box of parameter B̄ ⊂ R

n with vertices {v1, v2, . . . , vM} is introduced.
It is an artificial bound of the state space in consideration of the state constraints.

In the present work, the optimization problems are solved by invoking the
Multi-Parametric Toolbox (MPT) [82] and optimization toolbox YALMIP [120].
As a result of the off-line optimization, the state-space is partitioned into a set of
regions, which can be structured in the form of a quad tree.

In the following, the algorithm of the on-line computation is introduced. For this
purpose, a simple example is given in Figure 5.6.
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x
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Figure 5.6: Orthogonal partition and quad tree search.

Figure 5.6 shows an example of a two-dimensional parameter vector. Following
the off-line optimization procedure described in Algorithm 4, the state-space is
partitioned into several critical regions as illustrated in Figure 5.6a. According
to the principle of the off-line optimization, these regions are able to be structured
in a quad tree as given in Figure 5.6b. The sub-quadrats included in one quadrat are
considered as children of this quadrat in the tree structure. All quadrats including
children are represented by the nodes in the tree. The quadrats without children are
the leaves of the tree, in which the factor K̂r and ĝr of the approximated solution
are stored. Therefore, the on-line computation effort is represented by identifying
in which leaf the actual state is located and by specifying the appropriate control
law according to the factor K̂r, ĝr as well as the actual state value. The on-line
computation process is described in Algorithm 5 by means of the efficient quad tree
search.
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Algorithm 4 Explicit min-max MPC by means of approximated mp-SDP [42]

1: Initialize the set of unpartitioned regions Z =
{B̄}, and the set of partitioned

regions P = {}.
2: Select the region Br ∈ Z, if Z ∈ ∅ then terminate.
3: Solve the SDP problems (4.60) for each vertex vi, i ∈ [1,M ]

� If all solutions are feasible go to step 4

� If all solutions are infeasible go to step 2

� Otherwise, go to step 7

4: If 0 ∈ Br, i.e. origin is contained in the region, solve the SDP problem (5.29)
with δ = 2Δxmin in order to get the feedback matrix F0 around the origin.

� If Br ⊂ E0 then P = P ∪ Br, Z = Z \ Br and go to step 2

� Otherwise, go to step 7

5: Compute the parameter K̂r and ĝr of the approximated solution (5.22) by
solving the problem (5.23)

� If no feasible solution is found, go to step 7

� Otherwise, go to step 6

6: Compute the approximation error ε̂z according to (5.24) and (5.25), determine
the tolerance εt for Br

� If ε̂z ≤ εt, then P = P ∪ Br, Z = Z \ Br and go to step 2

� Otherwise, go to step 7

7: Compute the size of Br by multiplying the edge lengths of the quadratic region.

� If the size is smaller than the predefined minimum quadrat size Smin, then
P = P ∪ Br, Z = Z \ Br and go to step 2

� Otherwise, go to step 8

8: Partition Br into K = 2n equal-sized sub-quadrats Bi, i ∈ [1,K]. Perform
Z = Z ∪ {B1, . . . ,BK} and go to step 2
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Algorithm 5 Orthogonal search algorithm

1: Measure or estimate the state xk at time instant k.
2: Search the quadrat including xk from the top of the tree.

� If the quadrat is node, search the child of this node including xk, i.e.
Hr − dr ≤ 0.

� If the quadrat is not node, access the parameter K̂r and ĝr, determine the
control law by u∗

k = K̂rx+ ĝr.

3: Apply u∗
k into system.

4: Set k ← k + 1 and restart over.
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Figure 5.7: Orthogonal partition.

The off-line optimization results of the min-max robust current control implemented
in this work are presented in Figure 5.7 and Figure 5.8. Since the controllers on both
axes are designed exactly in the same way, only one of the both cases is discussed
in the following. The state space vector is partitioned orthogonally and illustrated
in Figure 5.7. The dark gray region containing the origin represents the terminal
ellipsoid calculated by the optimization. The gray regions represent the regions,
in which the vector parameters are feasible. Depending on the error tolerances
defined for the approximation, the regions are divided either coarse or fine. In the
present work, the state space is partitioned in 416 feasible quadrats. All the regions
are structured in a quadratic tree including the relationships to their super- and
subregions.

In Figure 5.8a the approximated control laws are presented in the state space. It
is evident that according to the vector parameters, the control laws build up a
continuous piece-wise affine function. The relative error between the approximated
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Figure 5.8: Off-line optimization result.

mp-SDP solutions and the original SDP solutions is given in Figure 5.8b. The errors
due to the approximation are negligible.

Furthermore, as shown in Figure 5.5, a Kalman filter is used to reduce the impact
of the measurement disturbance of stator current. With the help of KF, the edge
length of the facets of the minimum quadrat δ = 2Δxmin can be limited to a small
value.

5.3.2 Tube-based robust model predictive current control

The min-max control approach incorporates the system uncertainties into the
optimization problem solved by invoking a sequence of mp-SDP and mp-QP, which
leads to expensive computational costs. As a drawback, the control parameters
cannot be tuned conveniently: For each process of the control parameter tuning,
the off-line optimization has to be performed once, which may take several hours.
Therefore, the tube-based MPC is studied.

Figure 5.9 gives the structure of the entire control system. The tube-based robust
current control for reference tracking, with Kalman filter, with predictor and with
the reference modification is discussed in the following.

Reference tracking problem

In order to apply the tube-based MPC to the current control in IM, the standard
formulation introduced in section 4.4.2 for regulation problems has to be adapted in
such a way, that the reference tracking problems can be dealt with. In [9], [114], [115]
and [10] an efficient method to deal with the non zero target steady state is presented.
The formulation in (4.62) is extended by

x+ = Ax+Bu+w

y = Cx+Du+ v ,
(5.30)
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where y ∈ R
p and v ∈ R

p are system output and unknown output disturbance,
respectively. As has been discussed, the optimization problem is built and solved
regarding to the nominal system. Therefore, the reference can be robustly tracked if
the steady state of the nominal system is admissible. The constraints to be fulfilled
are the modified constraints:

X̄ = X Ω, Ū = UKΩ . (5.31)

In [141] a related theory is proposed to realize the offset-free steady state.
The estimated steady state error is caused by the steady state disturbance and
measurement noises.

Lemma 5.3.1 (Offset-free steady state [141]) Consider a linear discrete-time
system

x+ = Ax+Bu

y = Cx ,

if and only if

rank

[
I −A −B
C 0

]
= n+ p , (5.32)

where n and p are the dimensions of x and y, then there exists a steady state (xs,us)
without offset for any given set point ys.

More specifically, the idea of Lemma 5.3.1 is extended for system (5.30). A given
set point ys and steady state ss := (xs,us) satisfy:[

A− I B

C D

][
xs

us

]
=

[
0

ys

]
, (5.33)
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which can be simplified into:

Ess = Fys. (5.34)

Furthermore, for any given set point ys, there exists more than one admissible steady
state ss. To characterize the set of admissible steady states, the related Lemma is
introduced in [8]:

Lemma 5.3.2 Suppose the pair (A,B) is stabilizable, a solution to problem (5.33)
can be parameterized by:

ss = Mθθ ,

ys = Nθθ ,
(5.35)

where θ ∈ R
nθ is a parameter vector to characterize solutions. Mθ ∈ R

(n+m)×nθ and
Nθ ∈ R

p×nθ are suitable matrices.

Let Xs denote the admissible steady state set and it is meanwhile polyhedron which
is given by

Xs :=
{
xs ∈ X̄ : ∃ us ∈ Ū | (A− I)xs +Bus = 0

}
. (5.36)

Lemma 5.3.3 (Uniqueness of the steady state [8]) As it is proposed in
Lemma 5.3.1, a given admissible set point ss has a unique steady state ss = (xs,us)
if and only if the rank of E is equal to n+m.

Then for the nominal system

x̄+ = Ax̄+Bū

ȳ = Cx̄+Dū,
(5.37)

with control law

u = ū+K(x− x̄) , (5.38)

and subjects to the constraints (5.31), there exists an admissible steady state
ss = (xs,us) satisfying the tightened nominal system constraints

ss = (xs,us) ∈ S̄ := X̄× Ū . (5.39)

In order to attain an offset-free reference tracking, the essential invariant set for
tracking is solved for the tube-based RMPC design, which is defined in the following.

Definition 5.3.1 (Invariant set for tracking [10]) Let xe denote the extended
state (x, θ) ∈ R

n+nθ and Kc ∈ R
m×n the control gain, and A +BKc the Hurwitz.

Then, a set Ωe
t ⊂ R

n×nθ is an admissible invariant set for tracking if for all (x, θ) ∈
Ωe
t, x ∈ X̄, Kcx + Kθθ ∈ Ū and ((A+BKc)x+BKθθ, θ) ∈ Ωe

t, where Kθ :=
[−Kc I]Mθ.
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Definition 5.3.2 (Projection of a set [20]) The projection of a set A ⊂ R
n+p

onto the x-space R
n is defined as

Projx(A) :=

{
x ∈ R

n | ∃y ∈ R
p such that

[
x

y

]
∈ A

}
. (5.40)

Definitions 5.3.1 and 5.3.2 yield that for an initial state (x0, θ) ∈ Ωe
t , the state

sequence of system x+ = Ax + Bu controlled by u = us +Kc(x− xs), where
(xs,us) = Mθθ satisfies xi ∈ Projx(Ω

e
t), ∀k ≥ 0 and tends to xs. Moreover,

Definition 5.3.1 consents the separation of optimal control and the robust constraint
satisfaction.

According to aforementioned theories, the original optimization problem (4.70) is
reformulated. The artificial steady state s̄s = (x̄s, ūs) is considered as a decision
variable of the optimization problem. This way, the artificial steady state can be
represented by s̄s = Mθθ̄. As a consequence, the parameter θ̄ is incorporated as a
decision variable into the optimization problem, i.e. into the objective function:

JN (x, θ; x̄0, ū, θ̄) :=
N−1∑
i=0

L(x̄i, x̄s, ūi, ūs) + Jf(x̄N , x̄s) + Jr(θ̄, θ), (5.41)

with the modified stage cost

L(x̄i, x̄s, ūi, ūs) := ‖x̄i − x̄s‖2Q + ‖ūi − ūs‖2R, (5.42)

and modified terminal cost

Jf(x̄N , x̄s) := ‖x̄N − x̄s‖2P , (5.43)

also the steady state offset cost

Jr(θ̄, θ) := ‖θ̄ − θ‖2T , (5.44)

where T is named steady state offset weighting matrix, which is positive definite. It
incorporates the deviation between the artificial steady state and the given steady
state into the cost function. Subsequently, the resulting optimization problem is
summarized by

min
x̄,ū,θ̄

JN (x,xs; x̄, ū, θ̄)

s.t. x̄ ∈ x⊕−Ω
x̄i ∈ X̄ = X Ω

ūi ∈ Ū = UKΩ

(x̄Np , θ̄) ∈ Ωe
t ,

(5.45)

where xs is the desired steady state and ū the control sequence. The solutions
of the optimization problem are optimal nominal initial state x̄∗(x,xs), optimal
control sequence ū∗(x,xs) := {ū∗(0;x,xs), ū

∗(1;x,xs), . . . , ū
∗(N − 1;x,xs)} and

θ∗(x,xs). The control law applied into the system is defined by

κ∗N (x,xs) := ū∗(0;x,xs) +K(x− x̄∗(x,xs)) . (5.46)
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To guarantee the robust stability and to satisfy the robust constraints of the
closed-loop system, the following conditions should be fulfilled before the optimized
control law is generated [8], [11]:

1. Q, R are positive definite.

2. There exists a constant σ > 0 such that σT ≥MT
x Mx, where Mx = [I 0]Mθ.

3. The feedback control gain K guarantees that the AK = A+BK is Hurwitz.

4. Kc and P fulfill that A + BKc is Hurwitz, P is positive definite, and P −
(A+BKc)

TP (A+BKc) = Q+KT
c RKc.

5. The set Ω ⊂ X is an admissible robust positively invariant set for the system
x+ = AKx+w, i.e. AKΩ⊕W ⊂ Ω and KΩ ⊂ U.

6. The set Ωe
t is an invariant set for tracking the nominal system subjected to

tightened constraints X̄ and Ū.

Furthermore, the proposed controller asymptotically steers the system to the
neighborhood of the desired state, which is testified in [9]. For further interests
readers are referred to [9].

Based on these conditions, the admissible steady state ss = (xs,us) is defined. The
new parameter vector x∗ = [x xs]

T and input vector u∗ = [u us]
T are introduced

for the tube-based current control. Therefore, the system matrices for the control
design are defined by

A∗ =

[
1− Ts

Rs
σ(1+σ1)Lm

0

0 1

]
; B∗ =

[
Ts

1
σ(1+σ1)Lm

0

]
. (5.47)

However, considering the measurement noise as well as the limitation of directly
measuring of the states, an observer shares great importance compared with
reference tracking in the control design. Therefore, a Kalman filter is employed
for the tube-based MPC such as the min-max current control. In order to apply the
Kalman filter to the control approach, the following adaptation is implemented.

Tube MPC extended with observer

The observer system is formulated by:

x̂+ = Ax̂+Bû+KKF(y − ŷ),

ŷ = Cx̂,
(5.48)

where x̂+ ∈ R
n, x̂ ∈ R

n and ŷ ∈ R
p are estimated successor state, system state and

system output of observer system. To distinguish from the disturbance rejection
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control parameter K, the Kalman gain is denoted by KKF. The estimation error ee
between the actual state and estimated state is defined by

ee := x− x̂ . (5.49)

Besides, the estimation error satisfies

e+e = AKFee +wee , (5.50)

where wee := w −KKFv and AKF := (A −KKFC). Here, wee is bounded by the
set Wee, which is derived and defined by

Wee := W⊕ (−KKFV) . (5.51)

Suppose that the matrix AKF is Hurwitz, then there exists a robust positively set
Ωee for system (5.50) with

AKFΩee ⊕Wee ⊂ Ωee . (5.52)

Considering the fundamental characteristics of robust positively invariant sets,
xi ∈ x̂i ⊕ Ωee for ∀ k ∈ N is satisfied, if ee(0) = x0 − x̂0 ∈ Ωee [10]. Besides, the
nominal system is same as described in (4.64). Instead, the control law is defined by

u = ū+Kec , (5.53)

where ec is defined by ec := x̂ − x̄ and it denotes the control error between the
estimated and the nominal states. Similar to the estimation error, control error ec
satisfies

e+c = AKFec +wec , (5.54)

where wec := KKFCee+KKFv. Furthermore, wec is bounded by the set Wec, which
is defined by

Wec := KKFCΩee ⊕ (KKFV) . (5.55)

Taking into account of the assumption that AKF is Hurwitz, there exists a robust
positively invariant set Ωec, which satisfies:

AKFΩec ⊕Wec ⊂ Ωec . (5.56)

Similarly, if ec(0) = x̂0 − x̄0 ∈ Ωec and ee(0) ∈ Ωee, then x̂i ∈ x̄i ⊕ Ωec for ∀i ∈ N.
Moreover, xi ∈ x̄i ⊕ Ω, ∀i ∈ N, where Ω = Ωec ⊕ Ωee. However, the following
assumptions should be satisfied to guarantee the feasibility and admissibility using
the nominal system [127]:

1. There exist K, KKF, a robust positively invariant set Ωee for system (5.50) as
well as a robust positively invariant set Ωec for system (5.54), which ensures
that the tightened constraint X Ω and UKΩ are not empty.

2. The initial states of actual system x0, observer x̂0 and nominal system x̄0 lie
inside the state constraint set X. The initial value of estimation error ee(0)
and control error ec(0) lie in Ωee and Ωec respectively.
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3. The states x̄ and control sequence ū satisfy the tightened state and input
constraints, respectively.

Theorem 5.3.1 ([127]) Suppose that the aforementioned assumptions hold, then
the states and control input satisfy the origin constraints, i.e. xi ∈ X and
ui = ūi +K(x̂i − x̄i), ∀i ∈ N.

Considering the error Ωec and Ωee, the optimization problem (5.45) is refined with
the observer system. The optimization problem is restructured as

min
x̄,ū,θ̄

JN (x̂,xs; x̄, ū, θ̄)

s.t. x̄ ∈ x̂⊕ (−Ωec)

x̄i ∈ X̄ = X Ω

ūi ∈ Ū = UKΩ

(x̄N , θ) ∈ Ωe
t ,

(5.57)

where x̂ and xs are the output of the observer and desired steady state,
respectively. ū is the control sequence. The solutions of the optimization
problem are the optimal initial nominal state x̄∗(x̂,xs), optimal control sequence
ū∗(x̂,xs) := {ū∗(0; x̂,xs), ū

∗(1; x̂,xs), . . . , ū
∗(N − 1; x̂,xs)} and θ∗(x̂,xs). The

control law applied to the system is specified by

κ∗N (x̂,xs) := ū∗(0; x̂,xs) +K(x̂− x̄∗(x̂,xs)) . (5.58)

Reference modification

Since the system contains uncertaintyw, which tends to a steady valuew∞, tracking
error can be generated. This issue should be avoided by the control design. In [9],
a method of tracking error cancellation for systems with the assumption D = 0 is
proposed. As an extension, the corresponding steady state output y∞ in general
case (D �= 0) is derived in this work and expressed by

y∞ = Cx∞ +Du∞ + v∞ =
[
I +C(I −AK)−1KKF +DK(I −AK)−1KKF

]
· (Cee(∞) + v∞) + s ,

(5.59)
where s = Cx̄∞ + Dū∞ denotes the desired set point. Obviously, there exists
an offset leading to y∞ �= s. For the purpose of canceling the offset to guarantee
y∞ = s, a modified reference sn is computed by

sn = s− F (Cee(∞) + v∞) , (5.60)

where F = I +C(I −AK)−1KKF +DK(I −AK)−1KKF. Moreover, the steady
state value Cee(∞) + v∞ can be obtained from the observer. Finally, the modified
reference sn at each time instant can be computed by the following equation:

sn(i) = s− F (yi −Cx̂i), i = 0, . . . , N . (5.61)
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Predictor for dead time compensation

For high dynamic control, dead time can yield overshooting or even can result in
instability. In [169] and [121], the approaches of dead-time compensation for RMPC
are proposed. The principle is to use an extra system model defined as the predicted
system to predict the system states and handle the dead time issue. In [162] and
[161], the methods of dead time compensation for tube-based RMPC are proposed.
Furthermore, the explicit dead-time compensation is described in [162], which is
applied in the control design in this work.

At first, a general form of the dead time compensation method is introduced. An
uncertain discrete linear system with dead time is described by

xk+1 = Axk +Buk−d +wk

yk = Cxk ,
(5.62)

where xk is the state at time instant k with k ≥ d, uk−d the control input with dead
time d, wk the unknown but bounded disturbance and yk the current output.

Besides, the constraints are represent by polyhedrons X, U andW as aforementioned.
Due to the existing dead-time d, the control input uk affects the system state xk+d.
A simple prediction for xk+d at time instant k is given by

x̃k := xk+d|k = Adxk +

d∑
l=1

[
Al−1Buk−l

]
. (5.63)

Thus, the prediction system is represented by

x̃k+1 = Ax̃k +Buk . (5.64)

Equation (5.64) denotes the nominal system without dead-time but at d steps ahead.
Moreover, the disturbance should be considered in the system, and it leads to the
deviation between the prediction at kth step x̃k and the real state appearing after
d steps xk+d. Therefore, the dead-time compensation for systems with predicted
bounded disturbance is presented by

x̃k = Adxk +

d∑
l=1

[
Al−1Buk−l

]
+

d∑
l=1

Al−1wk+d−l . (5.65)

Subsequently, the complete model of the nominal system with dead time
compensation and disturbance is given by

x̃k+1 = Ax̃k +Buk + w̃k, (5.66)

where w̃k is the entire disturbance of the system across d steps from time instant k
and this value can be derived by substituting (5.63) into (5.66)

w̃k :=wk+d|k
=x̃k+1 −Ax̃k −Buk

=Ad (xk+1 −Axk −Buk−d) .

(5.67)
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Since the estimated states from the observer are fed back to the controller as system
states, the formulation of w̃k in (5.67) is re-arranged to

w̃k = Ad
(
x̂k+1|k −Ax̂k −Buk−d

)
. (5.68)

Furthermore, a prediction error ep is introduced:

ep(k) = x̂k − x̃k−d (5.69)

with x̃k−d = Adx̂k−d +
∑d

l=1A
l−1Buk−d−l. Therefore, ep can be depicted by

ep(k) = Ad−1wk−d +Ad−2wk−d+1 + . . .+wk−1 . (5.70)

Since the disturbance w and the prediction error ep are both bounded [162], the
bounded set E is defined by

E = Ad−1
W⊕Ad−2

W⊕ . . .⊕W . (5.71)

Obviously, the predicted state x̃k is bounded by X̃ defined by X̃ := X E. Similar
to the tube-based RMPC with reference tracking, a tube-based RMPC is adapted
for dead-time compensation with the objective function

JN (x̃, θ; x̄k,u, θ̄) =

N−1∑
i=0

L(x̄k+i, x̄s, ūk+i, ūs) + Jf(x̄k+N , x̄s) + Jr(θ̄, θ) . (5.72)

The resulting optimization problem, which considers dead-time compensation as
well as reference tracking, can be presented as follows:

min
x̄k,ū,θ̄

JN (x̃,xs; x̄, ū, θ)

s.t. x̄k ∈ x̃⊕ (−Ωn)

x̄+ = Ax̄+Bū

x̄k ∈ X̄ = X E Ωn

ūk ∈ Ū = UKΩn

(x̄k+N , θ̄) ∈ Ωe
t ,

(5.73)

where Ωn is an admissible invariant set satisfying (A+BK)Ωn ⊕ W̃ ⊂ Ωn.
Therefore, the corresponding control law for the dead-time free controller is given
by

uk+i = κ(x̃k+i) = ū∗
k+i +K(x̃k+i − x̄∗

k(k + i)) . (5.74)

Furthermore, the offset error has to be removed. The steady state output value can
be separated into two parts: One is the steady state value of the predicted state,
and the other is the offset term. It is represented by

y∞ = Cx̃s + Fw∞, (5.75)

where F = C
[
(I −A−BK)−1Ad +

∑d
l=1A

l−1
]
[162]. Since the disturbance is

unknown, an observer is required to estimate the disturbance at each time instant. In
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the present work, the Kalman filter with extended disturbance modeling is applied.
The state space representation is given by[

x̂k+1

ŵk+1

]
=

[
A I

0 I

][
x̂k

ŵk

]
+

[
B

0

]
uk−d

[
ŷk

]
=

[
C

0

][
x̂k

ŵk

]
.

(5.76)
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Figure 5.10: State-space partition.

Similar to the min-max current control, the tube-based current MPC on one axis
is presented. Figure 5.10 shows the results of the off-line optimization. There are
29 partitioned critical regions presented in Figure 5.10a, in each of these regions
a control law is given. The piecewise affine control laws over the state space are
illustrated in Figure 5.10b.

5.4 Constraint handling for the electric drive systems

So far we discussed about the robust current control without system constraints.
In the following, the constraint handling in IM is studied. The system constraints
of IM are given by the maximum admissible stator current which depends on the
thermal classification of the motor’s insulation system, and the maximum available
dc link voltage of the inverter. Both have to be considered for safety reasons in
the control design. The stator current and voltage limits, without consideration of
over-modulation by means of Space Vector Modulation (SVM), can be represented
in the dq-frame by a circle and a ellipse, whose expressions are introduced later.
This means, that the constraints are depicted by quadratic inequalities, which do
not fulfill the standard QP form anymore and therefore have to be rearranged.

The simplest way of constraint handling for IM is to apply a constant limiting values.
In [105], three box-constrained inequalities are given for the d-current, torque and
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rotor flux. In [7, 113, 78, 58, 77], the constraint of the q-current is formulated
assuming that the d-current is constant. The problem of such approaches is that
the feasible regions of the system are not comprehensively considered. It causes that
the optimality can not be guaranteed, or the optimal control is only available for a
particular operating area. In [79], a penalty of stator current is introduced in the
cost function to prevent over-current. It is only applicable for the finite set direct
control based on enumeration, since there are finite combinations of control values.
In case of optimal control problems with continuous control variables, the optimality
is deteriorated. Another approach is to convert the spherical constraint curves into
polygons by approximation [182]. The quadratic inequality can thereby be replaced
by a set of linear inequalities. In [124], the current constraint is defined by an
adjustable inequality regarding the actual value of the d-current and the reference
value of the q-current. The voltage constraint is depicted by a polygon with the
radius of direct current (dc) link voltage of the inverter. However, the accuracy
of approximation is strongly dependent on the degree of the polygon. Therefore,
a trade-off between approximation accuracy and computational effort should be
considered in the control design.

In the following, a novel method, which is proposed in [84], is introduced. We recall
the voltage equations of IM described in (5.14) and (5.15). The system constraints
in IM are described by

i2sd + i2sq ≤ I2dq,max

u2sd + u2sq ≤ U2
dq,max ,

(5.77)

where Idq,max and Udq,max are the maximum admissible stator current and available
inverter voltage converted into the dq-frame, respectively. It is evident that (5.77)
does not match the linear inequality specified in (4.3). To transform the quadratic
inequality system constraints to linear ones, the torque limit of the system is
considered. The maximum available torque can be determined by the following
equations

I2dq,max = i2sd + i2sq (5.78a)

U2
dq,max = (ωμLsisd)

2 + (σωμLsisq)
2 (5.78b)

isd =
ωn

ωr
isd,n (5.78c)

Tel =
pL2

m

L′
r

isdisq . (5.78d)

isd,n denotes the rated d-current. Since the voltage limit is only considerable in the
field weakening area, where the voltage drops on stator and rotor resistances are
negligible compared to the induced voltage due to rotation. Therefore, the voltage
boundary line described in (5.8) and (5.77) can be simplified in form of (5.78b). In
this equation, the d-current isd is used instead of the magnetizing current iμ, since
the excess of current limitation in transient states should be considered as well,
which is discussed later. In the present work, the conventional constant rotor flux
method with field weakening in (5.78c) is applied for the torque limit calculation.
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In consideration of (5.78a), (5.78c) and (5.78d) in the basic speed area and (5.78b),
(5.78c) and (5.78d) in the field weakening area, the system constraint represented
by the torque limit is described by −T el ≤ Tel ≤ T el, where

T el =

⎧⎪⎨⎪⎩
pL2

m
L′
r
isd,n

√
I2dq,max − i2sd,n, ωr ≤ ωn

pL2
m

L′
r

ωn
ωr
isd,n

√(
Udq,max

σωμLs

)2 − ( ωn
σωr

isd,n

)2
, ωr ≥ ωn .

(5.79)

The first torque limit formulation in (5.79) describes the rated torque of IM, which
has a constant value and is only available in the basic speed area. In the field
weakening area, the maximum torque depends on the actual rotor speed ωr and
ωμ, which represents the synchronous frame speed at the operating point regarding
the actual rotor speed with the maximum torque requirement. This dynamic torque
limit is specified in the second formulation in (5.79). However, as described in (5.16),
ωμ is not directly given in the control. For this reason, ωμ has to be replaced by
ωr by means of an analytical solution of (5.78b), (5.78c), (5.78d) and (5.16). The
torque constraint formulation in field weakening area is thereby only with respect
to ωr, when this solution is replaced in the second formulation in (5.79). For a given
rotor speed ωr, the torque limit is determined by solving a fourth-order polynomial
equation. The derivation of the dynamic torque limit in consideration of the rotor
speed and magnetic saturation is given in Appendix D.

In addition, it has to be noticed that the voltage limit (5.78b) is represented by isd.
In case of field weakening operation, the magnetizing current iμ drops slower than
isd in transient states. As a consequence, the actual EMF in the q-axis

εq = σωμLsisd + (1− σ)ωμLsiμ (5.80)

resulted primarily by isd and iμ, is larger than the one calculated solely from isd. Due
to this reason, the applied voltage exceeds the voltage limit in transient procedures in
the field weakening area. This issue can be suppressed by applying iμ in the voltage
limit calculation and using a rotor flux controller, whereas current overshooting in
the d-axis arises in transient procedures and the current limit may be exceeded. In
contrast, the impact of resulted over-voltage issue in transient procedures is limited
by the available dc link voltage of the inverter as has been discussed. Therefore, the
approach with flux controller is abandoned in this work.

Since the system constraints are related to the torque limit after the reformulation,
which can be considered as input of the outer loop system of control loop, a
constrained speed MPC will be demonstrated to validate the concept of constraint
handling. The prediction model of speed loop is described by

ωr(k + 1) = ωc
r (k) + Ts

p

Jr
Tel(k) , (5.81)

in which Tload has been already compensated to the actual rotor speed ωr(k)
represented by ωc

r (k). The sample time Ts is fixed to the same value as in the
current loop by Ts = 0.1ms.
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Based on the theories of multi-parametric Quadratic Programming (mp-QP)
introduced in section 4.3.2, we recall the QP problem in form of (4.26). Considering
our reference tracking problem with reference r and applying the reformulated
constraint description (5.79) yield

min
U

{
1

2
UTHU + [x̂T

k rTk ]FU

}
s.t.

[
I

−I

]
U ≤ E

[
T el(k)

T el(k)

]
,

(5.82)

where the inequality constraint is linear but time-varying. Therefore, the parameter
vector is extended by

x̃k =
[
x̂k rk T el(k) T el(k)

]T
. (5.83)

Finally, the optimization problem is set up by

min
U

{
1

2
UTHU + x̃T

k F̃U

}

s.t.

⎡⎢⎢⎢⎣
0

0

I

−I

⎤⎥⎥⎥⎦U ≤ Ẽx̃k .

(5.84)

Figure 5.11 shows the off-line optimization solution of the constrained speed
MPC. The solution consists of control laws defined in 20 polyhedral regions in
R
3 state-space. Figure 5.11a illustrates the state-space partition projected to the

two-dimensional subspace
[
ωr T el

]
, where the reference is set by r = 150 rad/s. The

piece-wise affine control laws projected on this subspace are shown in Figure 5.11b.
The simulation and experiment results are presented in section 5.6.
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Figure 5.11: Off-line optimization results.
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5.5 Overview of the control approach

In this chapter, the system parameter variations and constraints are considered in the
robust current control design of IM in such a way, that they are incorporated into the
optimization problems. According to the problem description, two different robust
current controllers are implemented: The first controller is based on the min-max
optimization using multi-parametric SemiDefinite Programming (mp-SDP) and the
second one is based on the minimal Robust Positively Invariant (mRPI) set. The
system constraints of stator current and voltage are reformulated and transformed
to the torque constraint, which is moved to the outer control loop. Therefore, no
explicit constraint handling is required in the current control loop. In the present
work, only relaxed boxed constraints, which cover the real physical range, are defined
for the current control design. The entire control structure is shown in Figure 5.12.
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Figure 5.12: Overview of the robust current control in IM with constraint handling.

5.6 Simulation and experimental results

In this section, the discussed control approaches are validated. The machine
parameters and the data of the test bench are given in Appendix B. Due to
the hardware limit, some parameters are newly defined. The reason is given
in section 5.6.2. All control approaches are implemented and simulated in
MATLAB/Simulink. The performance of the following three approaches are
compared:

� nominal model predictive current control with Kalman filter extended by
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disturbance modeling introduced in section 4.2.2, which is named as NMPCC
subsequently;

� robust min-max model predictive current control implemented in section 5.3.1,
which is named as RM3PCC, and

� tube-based model predictive current control designed in section 5.3.2, which is
named as TMPCC.

Moreover, for the real-time application, the dSPACE DSP system is applied, which
is introduced in section 5.6.2. The sample time of the current control loop is defined
by Ts = 0.1ms for both the simulation and the experiment.

5.6.1 Simulation results

Robust current control

To present the performance of robust current control in consideration of parameter
mismatch, four test cases are chosen for the simulation. In the first case, the
parameters in the system and controller are identical. In the second case, the actual
resistance is higher than the one applied to the controller, which corresponds to
the scenario at high operating temperature. In the third and the last cases, the
mutual inductance set by the controller is set to half and twice of the actual one,
respectively.

Figure 5.13 shows the current responses of different control approaches in the d-
and q-axis. The reference value is set in form of a step change with i∗sd = 10A and
i∗sd = 10A, respectively. The rotor speed is kept constant at 1000 rpm. rs and lm
are the normalized ohmic resistance and mutual inductance in the controller based
on the motor’s data sheet information. The simulation results of all four cases are
presented in Figures 5.13a - 5.13d, respectively.

In Figure 5.13a, it is apparent that in the case without parameter mismatch, all three
control approaches have achieved a similar good performance without overshooting.
In the second case, the system controlled by NMPCC has a small overshooting due to
resistance mismatch, while RM3PCC and TMPCC show a similar performance as in
the first case. In the third case, the system performances of NMPCC and RM3PCC
are impacted in the transient procedure, in which the overshooting of NMPCC is
essentially larger than the one of RM3PCC. In opposition to that, TMPCC behaves
comparably well as before. In Figure 5.13d the performance of NMPCC is further
deteriorated. A significant overshooting amounting 50% takes place. In contrast, a
good system performance is exhibited by RM3PCC as well as by TMPCC.

Furthermore, the off-line and the on-line computational efforts of TMPCC are
significantly reduced in comparison to RM3PCC. Depending on the computing
capacity of the computer used, as a reference, only several minutes are required for
TMPCC to get the off-line control laws instead of several hours for RMPCC. The
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Figure 5.13: Simulation results.

tuning process of control parameters becomes therefore more comfortable. Moreover,
there are 29 partitioned regions for TMPCC, whereat 416 regions are generated for
RM3PCC. That means, the implementation of advanced search algorithms for the
on-line computation is no longer necessary for the TMPCC.

Figure 5.14 illustrates the result of dead time compensation. As predefined in
section 5.1.2, the dead time Td = 0.3ms, which means d = 3. The TMPCC
with predictor introduced in section 4.4.2 named DCTMPCC is presented here as
example. It is important to note, that the impact of the dead time is well diminished
by extension of the predictor in the control structure. It helps to improve the
performance and to ensure the system stability.

Constraint handling

The aim here is to validate and to evaluate the method of constraint handling in
IM using MPC introduced in section 5.4. Therefore, it is focused on the optimum
utilization of the system resource under the new constraint condition. Figure 5.15
illustrates the off-line computation results of the torque limit, which is stored in a
look-up table and applied to the on-line computation.
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transient.

The simulation runs as follows: Initially, the reference rotor speed is changed
abruptly to 1400 rpm, whereat the load ramps up from 0Nm to 55Nm within the
first 9 s. After 10 s, the load torque falls to 12Nm. A few seconds later, the reference
speed is increased to 2000 rpm in step form, which is in the field-weakening area.
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To evaluate the optimality of the controller, the reference torque applied by the
controller is considered. As shown in Figure 5.16, the MPC controller applies the
maximum torque to be limited to 56Nm in the base speed area, as long as the
reference speed is not reached. Once the reference speed is reached, the required
drive torque drops to the actual value of the load torque and follows this value
thereafter. In the phase of speed increase from 1400 rpm to 2000 rpm, which is
mainly in the field weakening area, the reference torque coincides with the curve
shown in Figure 5.15 in the field weakening area. As soon as the transient procedure
is finished, the reference torque is reduced to the load torque again.

Figure 5.17 shows the stator current change in the simulation. According to
Table B.3, the admissible amplitude of the phase current Îabc corresponding to
Idq,max is calculated to be 32.7A. The maximum current by dint of ωn

ωr
method

described in (5.78c) is delivered when the maximum torque is required in the base
speed area. As shown in Figure 5.17, the amplitude of the current is well limited to
Îabc by using the torque constraint.

The admissible amplitude of the phase voltage Ûabc being 231V is calculated in the
same way as by Îabc. As mentioned in section 5.4, the voltage limit is relevant in the
field weakening area. The maximum voltage is demanded in the case of the maximum
torque requirement in the field weakening area. In Figure 5.18, it is presented that
the maximum voltage is reached at the rated operation point. However, during the
transient procedure in the field weakening with the maximum torque requirement,
the stator voltage exceeds the limit value, which is shown in Figure 5.19 as shark
fins in shape. The clarification of this phenomenon was given in section 5.4 and is
confirmed by Figure 5.19.

In the following, the comparisons between proposed approach and PI controller as
well as Explicit Model Predictive Control (EMPC) with approximated constraints
are given. To compare the dynamics of the proposed EMPC controller and the PI
controller, the following reference speeds are applied as example in sequence with
decreasing step changes: 500 rpm, 600 rpm, 650 rpm, 675 rpm and 680 rpm. The
offsets from each reference value change are reduced step by step. The parameters of
the PI current and speed controllers are tuned by means of magnitude and symmetric
optimum, respectively. The IM is driven without load. Figure 5.20 - Figure 5.24
show the step responses with different step changes, respectively. The PI controller
achieves a comparable dynamic as the proposed EMPC in the case of large reference
change. Because of the significant control deviation, the maximum permissible
torque is applied by the PI controller as shown in Figure 5.20. However, this
manipulated value of the PI controller reduces when the reference change becomes
smaller: The smaller the step change is, the smaller is the reference torque applied by
the PI controller, which is illustrated in Figures 5.21 - 5.24. In general, the parameter
optimization of PI controllers can only be designed within a constricted operation
range. In contrast, the proposed approach applies the maximum permissible torque
independent on the size of reference change to obtain the high dynamic.

To present the advantage of the proposed EMPC approach compared to the EMPC
with approximated constraints, the following constraints are defined for the latter
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Figure 5.20: Step change = 500 rpm.
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Figure 5.21: Step change = 100 rpm.
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Figure 5.22: Step change = 50 rpm.
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Figure 5.23: Step change = 25 rpm.
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Figure 5.24: Step change = 5 rpm.
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The stator current in the d-axis isd is limited by the rated current and is larger or
equal to zero. The q-current isq is constrained by the positive and negative value of
the rated current in the q-axis. Since the stator voltage in the d-axis is much smaller
than the one in the q-axis at high speed due to the leakage factor, it is constrained by
a constant value, whereas the constraint of the q-component voltage is determined by
the maximum voltage and the actual reference voltage in the d-axis. For this reason,
both the current and voltage constraints are approximated by rectangular polygons.
Because the dq-components of stator current and voltage are decoupled, two EMPC
controllers are able to be separately implemented to reduce the dimension of the
state space. The torque constraint of the speed controller is given by the rated
torque. After the off-line optimization, 29 polyhedral regions in R

3 state space are
defined for each EMPC current controller.

The simulation result of the proposed EMPC approach and the EMPC with the
approximated constraints defined in (5.85) is presented in Figure 5.25. In the
beginning, the reference speed is set by 1400 rpm, which is in the base speed area.
In this area, the system is only constrained by the current inequalities. Because
the stator current in the d-axis remains at its rated value. It means that the
maximum torque is reachable for both approaches. Therefore, there is no difference
associated with system dynamics between both approaches as shown in Figure 5.25.
Subsequently, the reference speed is increased to 2000 rpm. This value lies in the
field weakening area and the voltage constraints should be thus considered. In
the optimization of EMPC with approximated constraints, only the area inside the
voltage rectangle is feasible, whereas the feasible area of the proposed approach
is represented by the voltage ellipse defined by the original voltage description
derived from (5.8) and (5.77). In this particular case, less system resources can
be used by the EMPC with approximated constraints. Due to this issue, the
system dynamic is deteriorated by the approximation as shown in Figure 5.25.
As aforementioned, the performance can be improved if the approximation is
more accurate. However, since the dq-components are no more decoupled due to
the inequality formulations, the hexagonal approximations of current and voltage
constraints leads to 1057 polyhedral regions. Thereby, the on-line computational
effort is increased significantly, whereat the feasible area is still smaller than the
proposed approach.

5.6.2 Experimental results

Test bench configuration

The aforementioned simulation cases are practically validated by measurements on
a laboratory test bench, which is set up as illustrated in Figure 5.26.

The test bench consists of the following main components with their functions
described as:

� drive motor: Siemens IM with model type 1LA5186-4AA10 (Table B.2)
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Figure 5.26: Schematic illustration of the test bench setup for the current control in IM.

controlled by the software implemented in this work running on dSPACE
system DS1103 (Table B.9)

� load machine: Siemens Permanent-Magnet Synchronous Motor (PMSM) with
model type 1FT6134-6SF71 (Table B.4) controlled by Siemens control program
running on the control module 6SN1118-1NH01-0AA1 (Table B.8)

� two-level VSI: Simodrive 6SN1123-1AA00-0EA2 (Table B.6) drives the IM; and
Simodrive 6SN1123-1AA01-0FA1 (B.7) drives the PMSM. Both systems use
the same dc link voltage supplied by the supply module 6SN1145-1BA02-0CA1
(Table B.5)

� Simodrive-dSPACE-interface (Sidi) board: the switching signals from dSPACE
modulator using SVPWM are implemented by Sidi onto the inverter. The
signals of measured stator currents and dc link voltage are sent from here to
the dSPACE IO system. Moreover, the over-current and -voltage signals are
sent from here to the dSPACE system for the safety function.

� encoder: Heidenhain encoder with model type ROD 420 (Table B.10) measures
the rotational speed of the drive motor. The speed of PMSM is measured by
EQN1325 integrated in the machine.

� torquemeter: HBM T10F (Table B.11) measures the torque produced by the
drive motor.

Due to the over-current protection on the Sidi board, the original rated current of
the IM can not be reached. Therefore, the rated operating point is redefined in the
present work with the data given in Table B.3.
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Robust current control

The experimental results of robust current control are shown in Figure 5.27.
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(c) isd with lm = 0.5.
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Figure 5.27: Experimental results.

Slightly different from the simulation presented before, only the mutual inductance
mismatch is implemented for the controller on the test bench. The reason for this is
that the variation of the mutual inductance affects the current control performance
more significant than the stator resistance according to the simulation results. The
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results in Figure 5.27 are comparable to the ones in the simulation (see Figure 5.13).
Figure 5.28 illustrates the difference between the simulation and the experiment
results in the d-axis with lm = 1 as example. In order to synchronize the start time,
the experimental result is shifted 0.1 s backwards. The legend texts sRM3PCC and
sTMPCC mean the simulation results. The overshooting and the response time
of the current in the experiment shown in Figure 5.28 is larger than those in the
simulation. The reason for this is the dead time in the physical system, which is not
modelled in the simulation shown in Figure 5.13.
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Figure 5.28: Comparison of simulative and experimental results: isd with lm = 1.

According to the simulative and the experimental results, NMPCC for IM is
robust against parameter mismatch and variation. However, it is not easy to
prove, that if the robustness can be guaranteed over the entire operation range
by means of this approach. Furthermore, the system performance degrades in case
of parameter variation. To achieve a high robustness based on this scheme, the
system dynamic has to be sacrificed. Meanwhile, since the proposed approaches
systematically incorporate the system uncertainties into the formulation of the
optimization problems, a universal robustness can be guaranteed for the control
system.

Constraint handling

The following three test results concerning constraint handling are presented: The
first test validates the current limit by means of the proposed method in a start up
process; the second test validates the optimality of the proposed method; the last
test delivers the measurement results compared to the simulation results.

In the start up test a load torque of 13Nm is imposed to the IM. Then, the
reference speed is changed to 1000 rpm. As shown in Figure 5.29a the reference
torque demanded by the speed controller jumps to the maximum available torque at
the same time. The reference torque falls to the value equal to the load torque after
the transient procedure is terminated. Meanwhile, as shown in Figure 5.29b, the
stator current is well limited during the entire process, particularly in the transient
procedure of the startup. The amplitude of the stator current shown in the figure
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Figure 5.29: Start up.

is below 35A. Due to measurement noises, it is sightly higher than the theoretical
limit.
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(b) Stator current - reference torque.

Figure 5.30: Diverse speed requirements.

In the second test, the IM is operated as in the simulation with different step variants
to check the optimality of the control approach. In Figure 5.30a, it is evident
that despite of the diminished reference changes, the maximum admissible torque is
enforced for each transient procedure. It confirms that the maximum system resource
is required no matter how large the control offset is. This implicates the optimality
of the control algorithm. The stator current curve is illustrated in Figure 5.30b. The
current is limited to the admissible current except in the second transient procedure.
However, the current limit is exceeded for about 5ms and the peak value is about
39A. Usually, the admissible peak current of power electronics and EMs is much
higher compared to the one for continuous operations. Therefore, the exceeding in
this case will not plague the hardware and is uncritical. In case of the maximum
torque requirement for long durations, no over-current arises, which was depicted
by the first test in Figure 5.29b.
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Figure 5.31: Drive cycle.

In the last test, the similar drive cycle is performed as in the simulation. The
load torque ramps from the beginning until 55Nm. The reference speed is set to
1400 rpm, same as in the simulation. After the steady state is reached, the load is
changed from 55Nm to 12Nm. After a few seconds the reference speed is set to be
2000 rpm, as in the simulation.

In Figure 5.31, the experimental results are shown in comparison to the simulation
results. In the first phase, roughly within the first 2.8 seconds in Figure 5.31a,
the reference torque follows the load because no control offset exists. As soon as
the reference speed changes to 1400 rpm, the speed controller enforces the reference
torque to the maximum torque in order to reach the reference value as quickly as
possible. Once the reference value is met, the reference torque drops to the current
load torque and increases with it. At about the 20th second, the load drops to
12Nm. After the reference speed is set to 2000 rpm, the reference torque rises firstly
to 56Nm and then follows the torque limit curve, since entering the field weakening
area until the reference speed is reached. This measurement result coincides with
the simulation result presented before.

The stator current curve in one phase is presented in Figure 5.31b. As the maximum



88 Robust current control in induction machines

admissible torque is required at the 3rd second, the stator current reaches its limit.
From the 9th second to the 19th second, the stator current remains around the
current limit, as the load is approximately equal to the maximum torque. In the
next procedure of the maximum torque requirement, the stator current increases to
the limit and then is reduced because of the field weakening operation. Thus, the
current limit via torque limit is validated.

The reference values of the stator voltage are described in Figure 5.31c. Since the IM
is in standstill at the beginning, the stator voltage results mainly from the voltage
drop of the stator resistor in the d-axis, which is marginal compared to its limit
value. Due to the small speed overshooting shown in Figure 5.31a, the voltage limit
is reached at approximately the 5th second. Because of the load reduction at the 20th

second, the rated speed is exceeded, so that the maximum voltage is reached again.
Due to the maximum torque requirement in the field weakening area around the
23rd second, the reference voltage exceeds the maximum admissible voltage, which
confirms the explanation in Figure 5.19 and agrees with the simulation result.

Finally, the validated constraint handling method can be applied in the overlying
active damping controller introduced in the next chapter.

5.7 Summary

The robust current control for IM is discussed and implemented in this chapter. In
order to obtain high control performance, the optimization-based robust constrained
MPC methods are applied. To attain a good trade-off between robustness and
optimality, two approaches are implemented in this work: the approach based on
the min-max optimization and the one based on the minimal Robust Positively
Invariant (mRPI) set. The system constraints are incorporated into the optimization
problem as well and solved by the multi-parametric Quadratic Programming
(mp-QP). The experimental results shows that the control performance of the IM is
enhanced by those approached when compared to the classical control approaches.
In order to implemented the TV application, the controlled traction motor should
be integrated into the mechanical system as actuator. In the next chapter, this
integration and the control approach in the mechanical drivetrain are presented.



6 Active damping control in the
mechanical drivetrain

By combining the robust current control approaches as introduced in chapter 5
with the torque equation 5.10, a desired electromagnetic torque is produced by the
induction traction motor and then transmitted to the mechanical drivetrain. In
vehicles, traction motors are combined by elastic mechanical transmission elements,
which induce torsional oscillations on the mechanical drive shaft in the course of
the torque transmission. This issue may deteriorate the drivability and the comfort.
Particularly critical is the situation, when the resonance frequency of the mechanical
drivetrain is stimulated by issues such as the unbalance mass of the system. In this
case, the oscillation of the drive torque leads to jerking of the bodywork, which may
have a comparable large resonance frequency. Moreover, the torque oscillation on the
drive shaft may in turn impact the IM and causes current and voltage oscillations.
This degrades the control performance of the electric drivetrain and may even lead
to undesired cutoff of the electric traction motor.

In this chapter, the properties of the mechanical drivetrain are introduced in
section 6.1. In section 6.2, a dynamic active damping control is introduced, designed
and implemented in order to suppress torque oscillations in the crucial low frequency
range. The test bench setup as well as the results are presented in section 6.3.

6.1 Modeling of elastic mechanical drivetrain

6.1.1 Mechanical structure

The mechanical drivetrain system in EVs is composed of the rotor of the electric
traction motor, the input and the output gear, the wheel rim, the tire belt, the
vehicle mass as well as the mechanical couplings among them. The behavior of
the entire system can be idealized as a six-mass-oscillator and can be modeled as
a spring-damper-mass system. Such a mechanical drivetrain model is illustrated in
Figure 6.1.

rotor gear box wheel rim tire belt vehicle mass

Jr Jg,in Jg,out Jwr Jtb Jvm

machine shaft gear wheel side shaft tire side tire profile

ϕr ϕg,in ϕg,out ϕwr ϕtb ϕvm

kms kgw kss kts ktp

cms cgw css cts ctp

Tel Tload

Figure 6.1: Illustration of the mechanical drivetrain system.
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In the figure, J and ϕ denote the moment of inertia and the position angle of the
masses. Symbols k and c represent the damping coefficient and the torsional stiffness
of the mechanical joints, respectively. Moreover, rg embodies the gear ratio. In this
way, the kinetics of the system are described by

Jr · ϕ̈r = Tel − cms · (ϕr − ϕg,in)− kms · (ϕ̇r − ϕ̇g,in) , (6.1a)

Jg,in · ϕ̈g,in = cms · (ϕr − ϕg,in) + kms · (ϕ̇r − ϕ̇g,in)

− cgw
rg
·
(
ϕg,in

rg
− ϕg,out

)
− kgw

rg
·
(
ϕ̇g,in

rg
− ϕ̇g,out

)
, (6.1b)

Jg,out · ϕ̈g,out = cgw ·
(
ϕg,in

rg
− ϕg,out

)
+ kgw ·

(
ϕ̇g,in

rg
− ϕ̇g,out

)
− css · (ϕg,out − ϕwr)− kss · (ϕ̇g,out − ϕ̇wr) , (6.1c)

Jwr · ϕ̈wr = css · (ϕg,out − ϕwr) + kss · (ϕ̇g,out − ϕ̇wr)

− cts · (ϕwr − ϕtb)− kts · (ϕ̇wr − ϕ̇tb) , (6.1d)

Jtb · ϕ̈tb = cts · (ϕwr − ϕtb) + kts · (ϕ̇wr − ϕ̇tb)

− ctp · (ϕtb − ϕvm)− ktp · (ϕ̇tb − ϕ̇vm) , (6.1e)

Jvm · ϕ̈vm = ctp · (ϕtb − ϕvm) + ktp · (ϕ̇tb − ϕ̇vm)− Tload . (6.1f)

6.1.2 Oscillation analysis

In [128], the parameters of a real mechanical drivetrain are presented. Based on
these parameters, the oscillation behavior of the system is analyzed. Its eigenvalues
are calculated and collected in Table 6.1.

Position Eigenvalue Frequency (Hz) Damping factor

– −0± j0 0 −1
side shaft −0.225± j47.4 7.55 0.00473

tire profile −16.8± j404 64.4 0.0416

tire side −43.9± j684 109 0.0642

machine shaft −18.3± j2580 411 0.00708

gearbox −468± j23400 3725 0.02

Table 6.1: Eigenvalues of the six-mass-oscillator.

Furthermore, the Bode diagram describing the oscillation behavior is shown in
Figure 6.2. From Table 6.1 and Figure 6.2 it can be identified, that the dominant
resonance frequency of the system lies on the side shaft. Mostly, this frequency is
much smaller than the other resonance frequencies. As a consequence, vehicle jerking
takes place during the startup procedure, which is called Ferraria effect. Therefore,
the major task of the control strategy is to suppress oscillations with the dominant
resonance frequency on the side shaft.
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Figure 6.2: Bode diagram of the six-mass-oscillator.

It is worthy to note, that the original studied system (6.1) has a high order and
is therefore hardly suitable for the control design. In order to simplify the system
and describe it better controllable without significantly changing the properties, the
order reduction method proposed by Laschet is used [107]. Figure 6.3 shows an
example of the order reduction.

The Laschet’s order reduction works as follows:

J ′
1 = J1 +

c1
c1 + c2

· J2 , (6.2a)

J ′
3 = J3 +

c2
c1 + c2

· J2 , (6.2b)

J1 J2 J3
c1 c2

J
′
1 J

′
2

c
′
1

Figure 6.3: An example of Laschet’s order reduction.
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c′1 =
c1 · c2
c1 + c2

. (6.2c)

The moment of inertia associated with the mass to be eliminated is distributed to
the adjacent masses in accordance to the relationship of the torsional stiffness. The
joints composed of two stiffnesses are summarized by one. Because of the gear ratio,
it is important to notice, that the damping coefficients, torsional stiffnesses as well
as the inertias on the right hand side of the gear wheel (see Figure 6.1) have to be
transformed by

J̃ = J/rg
2 , (6.3a)

c̃ = c · rg2 , (6.3b)

k̃ = k · rg2 , (6.3c)

if they are referred to the left hand side of the gear wheel. Furthermore, the sequence
of the order reduction has to be performed in such a way, that the mass on the
mechanical joint with the highest resonance frequency is firstly reduced. In this
sequence, the six-mass-oscillator is reduced to a two-mass-oscillator composed of a
rotor, a vehicle mass and a drive shaft. This system has a comparable resonance
frequency as the original one to be suppressed. The physical values of these
components are modified according to Laschet’s order reduction and represented
by J∗

r , J∗
vm, c∗ss and k∗ss. In this way, the new undamped resonance frequency is

calculated by

ω∗
0 =

√
c∗ss
J∗
r

+
c∗ss
J∗
vm

(6.4)

and the damping factor

ζ∗ =
k∗ss
2

√
1

J∗
r · c∗ss

+
1

J∗
vm · c∗ss

. (6.5)

In Figure 6.4, the reduced two-mass-oscillator is compared to the original one in
regard to the oscillation behavior.

After the order reduction, the dominant resonance frequency of the
two-mass-oscillator differs slightly from the original one: The frequency drops
from 7.55Hz to 7.48Hz. Moreover, there is a marginal change of the magnitude in
the bode diagram corresponding to the damping factor. Despite of these facts, the
result of the order reduction is still considered to be acceptable and suited for the
control design.

6.1.3 Parameter variation

Another issue, which has to be discussed for the control design, is the impact of
the parameter variation on the resonance frequency. As an example, the inertia of
the vehicle mass varies with the load situation. Due to this reason, the parameters



6.1 Modeling of elastic mechanical drivetrain 93

100 101 102 103 104 105 106 107
-400

-200

0

Frequency in Hz

M
a
g
n
it
u
d
e
in

d
B

six-mass-oscillator

two-mass-oscillator

5.5 6 6.5 7 7.5 8 8.5 9

20

40

60

Frequency in Hz

M
a
g
n
it
u
d
e
in

d
B

six-mass-oscillator

two-mass-oscillator

Figure 6.4: Amplitude response of the six-mass-oscillator and the reduced
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in the six-mass-oscillator are analyzed. In Figure 6.5, the relationship between the
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parameter variation and the change of the resonance frequency is illustrated.

The x- and y-axis denote the normalized physical values and resonance frequencies,
respectively. The parameters, whose variations significantly impact the resonance
frequency, are Jr and css. Both parameters are able to be identified precisely and do
not change during operation. As a consequence, no parameter variation has to be
considered in the control design.

6.2 Dynamic active damping control

Based on the reduced two-order-oscillator model, a dynamic active damping control
is implemented. Since the rotational speeds of both the rotor and the wheel are
measured in the real system, the kinetic equations containing angle positions are
reformulated. The state-space representation of the reformulated system is defined
by ⎡⎢⎢⎢⎣

ω̇r

ω̇w

Ṫss

Ṫload

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
0 0 − 1

J∗
r

0

0 0 1
J∗
vm

− 1
J∗
vm

c∗ss −c∗ss −k∗ss
(

1
J∗
r
+ 1

J∗
vm

)
k∗ss
J∗
vm

0 0 0 0

⎤⎥⎥⎥⎥⎦ ·
⎡⎢⎢⎢⎣

ωr

ωw

Tss

Tload

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
1
J∗
r

0
k∗ss
J∗
r

0

⎤⎥⎥⎥⎦ · Tel , (6.6)

where ωw denotes the wheel speed, c∗ss and k∗ss the modified stiffness and damping
coefficient on the side shaft and Tss the transmitted drive torque on the side shaft.

According to the expression of the control laws introduced in section 4.3.2, the
control action determined by Explicit Model Predictive Control (EMPC) in each
critical region is proportional to the control deviation. Therefore, within the scope
of a region, only the dominant eigenvalues are modified by the controller, while the
damping factor remains unchanged, which is caused essentially by the marginal tire
damping coefficient. Therefore, the control performance of the EMPC based on the
system (6.6) is rather restricted. In order to tackle this problem, the virtual damping
coefficient proposed in [128] is applied in the present work as an auxiliary control
component.

Based on (6.6), the transfer function of the system is described by

Gs(s) =
Tss

Tel
=

c∗ss
J∗
r

· 1

s2 + ω2
0

, (6.7)

where the marginal damping coefficient k∗ss is neglected. Considering the
compensation block with transfer function Gc(s) illustrated in Figure 6.6, the
transfer function of the new system is defined by

G′
s(s) =

Gs

1 +GcGs
=

c∗ss
J∗
r

s2 + c∗ss
J∗
r
Gc + ω2

0

=

c∗ss
J∗
r

s2 + 2ζmodω0s+ ω2
0

, (6.8)
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Gs(s)

Gc(s)

−
T ∗
ss Tss

Tc

Figure 6.6: Virtual damping coefficient scheme.

where the damping factor of the new system is represented by

ζmod =
c∗ss

2ω0J∗
r

Gc
1

s
. (6.9)

As implied by this equation, the damping factor ζmod is modifiable by the transfer
function Gc. Subsequently, the compensation torque is calculated by

Tc = Gc(s) · Tss =
2ζmodω0J

∗
r

c∗ss
· Tss · s = 2ζmodω0J

∗
r · (ωr − ωw) . (6.10)

Here, the damping k∗ss is neglected, since it is much smaller when compared to the
virtual damping coefficient kmod

ss derived from (6.5). The virtual damping coefficient
yields

kmod
ss = 2ζmod

√
J∗
r J

∗
vmc

∗
ss

J∗
r + J∗

vm

. (6.11)

Therefore, the new system is derived by replacing the damping coefficient k∗ss by
kmod
ss in (6.6). Moreover, The dynamic torque constraint discussed in section (5.4) is

employed here for the IM. It has to be reconsidered by involving the compensation
torque:

− T el + Tc ≤ Tel ≤ T el + Tc . (6.12)

Furthermore, the objective function

J = ‖T ∗
ss − Tss‖2Q + ‖Tel‖2R (6.13)

is specified for the optimization problem of the active damping control. The
parameter vector of the optimization problem is defined by

x =
[
ωr ωw Tss Tload T ∗

ss T el Tc

]T
. (6.14)

In order to access the state variables, a Kalman filter is applied by using the new
state-space representation, whereat the system matrix is expressed as

C =

[
1 0 0 0

0 1 0 0

]
.

The structure of the control approach is illustrated in Figure 6.7.
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Figure 6.7: Block diagram of the active damping control approach.

6.3 Simulative and experimental results

In the simulation, the control approach is applied to a six-mass-oscillator model with
the parameters described in Appendix E. Figure 6.8 illustrates the system response
with/without active damping controller. The reference value is changed in step
from 0 to 40Nm. It is evident, that by means of the introduced control approach,
the oscillation behavior described by the red line is significantly suppressed and the
actual torque denoted by the blue line reaches promptly the reference value.

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

t in s

T
in

N
m

Reference

Damping control
System response

Figure 6.8: Simulation results.

In order to validate the control approach for mechanical drivetrain systems in
vehicles, a test bench is set up to simulate the resonance frequency of such a
drivetrain. Based on the principle of Laschet’s order reduction, a two-mass-oscillator
system owning a low resonance frequency is implemented. In Figure 6.9, the test
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bench scheme is illustrated.

IMsafety clutch

bearings

flywheelPMSM

clutch

drive shaft

machine bed

torquemeter

Figure 6.9: Test bench scheme.

Since no gear box is established, the stiffness of the drive shaft in the test bench
must be designed much smaller than the one of the side shaft in vehicles (see (6.3b)).
The torsion stiffness of a cylinder is determined by

c =
πGd4

32l
, (6.15)

where G is the shear modulus of the steel material, d and l the diameter and the
length of the cylinder. In order to reduce the stiffness of the steel cylinder, one can
either reduce the diameter or increase the length. However, since a certain torque
must be transmitted without breaking the shaft, the diameter cannot be arbitrarily
decreased. As a consequence, a long drive shaft is employed as shown in Figure 6.9.
To ensure the straightness of the shaft, which may be deteriorated by its tare weight,
the shaft is supported on several positions with the help of bearings.

The vehicle mass is simulated by means of a flywheel, whose inertia is much larger
than the rotor’s one. The inertia is defined according to the inertia of the vehicle
mass in the two-mass-oscillator system. Moreover, for safety reasons, a safety
clutch is introduced. In case that the transmitted torque exceeds the predefined
threshold value, this safety clutch is released to decouple the oscillating system. The
torque-controlled IM represents the traction motor in EV, while the speed-controlled
PMSM simulates the wheel speed, which is given by the dSPACE Automotive
Simulation Models (ASM) suite introduced in chapter 7. The data of the components
in this test bench are given in Appendix E.

In order to attain a high dynamic active damping control, the resonance frequency
of this physical system has to be checked and compared to the calculated frequency.
This is achieved by applying sinusoidal drive torque with different frequencies on the
IM side. This test is performed under diverse vehicle velocities, which implicates
different flywheel speeds. The results are illustrated in Figure 6.10. It is important
to note, that independent on the vehicle velocity, the resonance frequency of the
mechanical drivetrain in combination with the vehicle simulation stays at around
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Figure 6.10: Identification of resonance frequency.

11.8Hz, which corresponds to the calculated value according to the component data
in Appendix E.

The experimental result of aforementioned system is presented in Figure 6.11. A step
reference change from 0 to 40Nm is applied at a vehicle velocity of 50 km/h. Same
as in the simulation, the oscillation behavior of the system is significantly suppressed
by means of the active damping control approach. The reference torque is achieved
within 0.2 s. The slight overshooting of the step response is able to be diminished by
the outer control loop, which has a lower dynamic and can be therefore considered
as a low-pass filter for the damping control loop.
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Figure 6.11: Experimental result.
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6.4 Summary

In this chapter, the mechanical drivetrain in vehicles is discussed. Due to its
elastic joints, the system exhibits oscillating behavior. In order to suppress such
torsional oscillations and improve the system performance, an active damping control
approach is implemented. In order to validate this approach and to integrate the
electrical drivetrain, a drivetrain system is assembled in a test bench, in which the
resonance frequency is simulated on the drive shaft and the drive torque is generated
by the controlled IM and transferred to the drive shaft. In the next step, the entire
drivetrain system is combined with the vehicle dynamic model. The TV application
is implemented based on the assembled system.





7 High-performance torque vectoring
control

Recalling the requirements and specifications introduced in chapter 2, a
high-performance torque vectoring control approach is implemented in this chapter.
The vehicle modeling is discussed in section 7.1. To enhance the system performance,
both the active yaw rate control and the tire slip control are implemented in this
work, which are explained in section 7.2. The operation strategy interacting with
the driver’s demand is introduced in section 7.3. Since a limited number of sensors
are assumed to be applied in the present work, a set of not practically measurable
quantities, which are employed for the control strategy, have to be estimated. The
estimation procedure is depicted in section 7.4.

7.1 Vehicle modeling

In order to replicate the physical system as close as possible, the dSPACE ASM suite,
in which vehicle dynamics and nonlinearities are comprehensively modeled [52], is
applied in this work. In this section, issues are discussed, which are relevant to the
design of a high-performance control.

The physical quantities in the vehicle system are based on diverse coordinate
systems. Therefore, to prevent confusions, it is necessary to preliminarily introduce
these coordinate systems, the definition of the transformation between them, as well
as the notations of the physical quantities, before the vehicle system is analyzed.
These are given in section 7.1.1. Furthermore, the pneumatic tires of a road
vehicle significantly influence the dynamic interaction between vehicle and road,
which further changes the overall vehicle behavior, maneuverability, and driving
experience. Consequently, understanding this vehicle component from a physical
point of view is essential for accurately analyzing and predicting vehicle behavior.
This is in turn required for the development of capable drive dynamics control
systems and is therefore discussed in section 7.1.2. In section 7.1.3 and 7.1.4, the
linear single track model and dual track model applied in the control design, are
introduced respectively.

7.1.1 Coordinate systems

Within the scope of the present work, Newtonian mechanical laws are appropriate to
describe the motion of rigid bodies under the influence of forces in space time. As the
modeling in this work heavily relies on non-inertial reference systems, a coordinate
transformation is introduced that facilitates the application of Newton’s laws in
accelerated reference systems. In regards to the following context the international
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Figure 7.1: The Vehicle Coordinate System [22].

standard of the ISO 8855 Road Vehicles – Vehicle dynamics and road-holding ability
– Vocabulary [6] is of high relevance and used as a reference.

Inertial reference frame

The Inertial Reference Frame (IRF) in the present work is defined as a special
case of an inertial frame of reference with a constant speed of motion equal to
zero. Accordingly, it exhibits neither linear nor rotational velocity and accelerations.
Although not exactly valid for the Earth, in Newton mechanics the Earth is indeed
assumed as an IRF, which offers more than sufficient accuracy for the scope of the
present work. The IRF can be identified with a reference coordinate system, usually
referred to as the Earth Coordinate System (ECS) E. The ECS enables a spacial
parameterization of the IRF and unique definition of position with respect to an
arbitrary but fixed reference point, denoted with the origin O. Furthermore, the
ECS is composed of three orthogonal space axes {X, Y, Z} forming a right-handed
coordinate system E = {O, X, Y, Z}. Each point in space may then be identified
with respect to O using a set of Cartesian coordinates {x, y, z}. The Z-axis of ECS is
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oriented perpendicularly to the horizontal plane spanned by X and Y and is therefore
parallel to the gravitational field.

Vehicle coordinate system

The Vehicle Coordinate System (VCS) represents another reference frame that is
rigidly attached to the vehicle sprung mass. It is composed of a right-handed,
orthogonal axis system {XV,YV,ZV}, and an origin OV located at the vehicle body’s
CoG. Its XV-axis points horizontally towards the front of the vehicle and lies on the
vehicle body’s longitudinal center plane. The YV-axis is oriented perpendicularly
to this center plane, pointing to the left side of the vehicle (see Figure 7.1a).
Finally, the ZV-axis points upwards (see Figure 7.1b). Again, a set of Cartesian
coordinates {xV, yV, zV} is introduced, providing means to describe positions and
vector quantities with respect to the VCS EV. To avoid the contextual ambiguities,
quantities expressed in vehicle coordinates are indicated by superscript V.

Due to forces acting on the vehicle body, the VCS may exhibit angular inclinations
relative to the ECS. Any rotation of the VCS relative to the ECS can be attained
using a sequence of elementary rotations related to a set of angles {ψ, θ, ϕ}, referred
to as Tait-Bryan angles [76]. From six possible rotation sequences, the yaw-pitch-roll
convention commonly used in engineering science is chosen for the present work [76].
In this context the set {ψ, θ, ϕ} denote the Kardan angles [167]. Furthermore, two
intermediate axes XH, YH need to be introduced (see Figure 7.2). Both axes lie on
the horizontal plane (X–Y plane), where XH is the projection of XV onto this plane
and YH is oriented perpendicularly to XH.

The first rotation (1) is performed about the Z-axis until the X and XH axes
representing the yaw angle ψ. The second rotation (2) is performed by the VCS
rotation about the YH-axis until the XH and XV axes constituting the pitch angle
θ. Such an angle is usually induced under acceleration or braking conditions. The
third rotation (3) is performed about the longitudinal XV-axis describing the roll
motion of the vehicle body. The resulting angle between the YH and YV axes is
denoted by the roll angle ϕ.

The VCS is only subject to the previously described angular motion relative to the
ECS. This means, OV does not exhibit translational motion relative to the ECS.
This observation is of great importance in the context of coordinate transformations
discussed later on.

Tire coordinate systems

The set of coordinate systems {E, EV} is complemented by four additional Tire
Coordinate Systems (TCS). For each tire, the origin OTi of the underlying
right-handed is typically called Contact Point (CP), where i ∈ {1, 2, 3, 4} with the
definition given in Table 7.1. Both axes XTi and YTi lie on the local road-surface
plane. With XTi defined as the intersection of the tire’s longitudinal center plane
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Figure 7.2: Definition of Kardan angles.

and the local road-surface, tire coordinate systems are uniquely defined. A set of
Cartesian coordinates {xTi , yTi , zTi} is introduced to describe positions and vector
quantities corresponding to the four TCS. In order to avoid contextual ambiguities,
quantities expressed in tire coordinates are indicated by superscript Ti. Analogous
to the aforementioned VCS, the four TCS are limited to rotational motion relative
to the ECS. Figures 7.1a and 7.1b illustrate these definitions for the Front Left (FL)
and Rear Left (RL) tires.

Ti 1 2 3 4

Tire Front Left (FL) Front Right (FR) Rear Left (RL) Rear Right (RR)

Table 7.1: Equivalence between index i and tire position.

Coordinate transformations

Since the introduced coordinate systems are subject to motion relative to each other,
it is helpful to introduce a matrix transformation that facilitates conversion of vector
quantities among those coordinate systems. This can be achieved by employing the
procedure used earlier to rotate the VCS with respect to the ECS based on a sequence
of elementary rotations using Kardan angles. Mathematically, this can be lumped
into a single matrix [76]:

R =

⎛⎜⎝ cosψ cos θ sinψ cos θ − sin θ

cosψ sin θ sinϕ− sinψ cosϕ sinψ sin θ sinϕ+ cosψ cosϕ cos θ sinϕ

cosψ sin θ cosϕ− sinψ sinϕ sinψ sin θ cosϕ− cosψ sin θ cos θ cosϕ

⎞⎟⎠
(7.1)
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Now, let qV = (qx, qy, qz)
T denote a generic vector quantity expressed in ESC. Then,

applying R to q, a representation in the VCS qV with xV, yV, zV yields:

qV = R · q . (7.2)

Deriving (7.2) with respect to time gives the time derivative of q expressed in Vehicle
coordinates:

q̇V = Ṙ · q +R · q̇ . (7.3)

Equation (7.3) may be reformulated as follows

q̇V = R · q̇ −R(ω × q) , (7.4)

where ω = d
dt(θ, ϕ, ψ)

T denotes the instantaneous angular velocity of the vehicle
body with respect to the ECS [164].

7.1.2 Tire modeling

A state-of-the-art reference on this matter, vehicle and tire dynamics [139] by Dutch
engineer Hans B. Pacejka is utilized throughout the present work. The tire models
derived and validated in [139], such as the Magic Formula (MF), are applied in
various engineering disciplines and range from implementations in computer games
to professional simulation tools employed in the automotive industry.

Definition of basic tire quantities

A correct application of the tire model used in this work requires a careful
definition of the model input quantities. First, a pneumatic tire with rim depicted
in Figure 7.3b is considered1 with several radii, where R0 is the unloaded or
manufactured tire radius, R the loaded tire radius, and Rdyn the effective rolling
radius. The difference between R0 and R, denoted as the radial tire deflection
δR = R0 − R, is the consequence of the tire’s air-spring-like behavior under the
influence of a wheel load force Fz. The definition of Rdyn is less straightforward:
One considers a free-rolling2 wheel dragged on an even, horizontal plane, such
that it exhibits zero torque τ3 (neglecting the small rolling resistance portion).
By measuring the distance, the tire travels within one revolution U (also rolling
circumference). Rdyn is defined as follows [139, 2]:

Rdyn =
U

2π
. (7.5)

Then, in free-rolling condition, the circle with radius Rdyn, which is called as slip
circle, rolls over an imaginary line parallel to the road plane. This line corresponds

1 When talking about wheels, the tire-rim-entity is intended.
2 Rolling motion is a combination of rotational and translational motion.
3 τ is used instead of T throughout this chapter to differ from the tire symbol.
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Figure 7.3: Definition of the effective rolling radius Rdyn.

to the locus of the Instantaneous Center (IC) of wheel rotation, therefore is denoted
as fixed centrode of the wheel motion (see Figure 7.3a) [167]. The wheel’s rotational
velocity about its spindle axis is given by ω = vx/Rdyn, where vx is the velocity of
the CP in XT-direction. Tire particles located at the IC exhibit zero velocity.

In the general case, the wheel is subjected to either driving or braking torque. The
IC moves relative to O and the points on which slip circle and fixed centrode intersect
and have τ = 0 in the previous case now have a non-zero velocity. This velocity is
called longitudinal slip speed and defined as vsx = vx−ωRdyn. More commonly, the
slip ratio or longitudinal slip defined as follows is employed:

sx = −vsx
vx

. (7.6)

Figure 7.4 gives an overview of different cases of (7.6) and depicts the relevant

ω

IC

v‖
sx > 0

(a)

v‖
sx →∞

ω

IC

(b)

sx = −1
v‖

(c)

Figure 7.4: Tangential velocity distribution v‖ at the lateral tyre center plane under
different slip ratios.

tangential velocity vectors v‖ at the wheel’s lateral center plane, indicating the
changing position of the IC. Figure 7.4a depicts the driving case. Figures 7.4b
and 7.4c show the special cases of wheel spin and wheel lock, respectively. In a
similar manner to (7.6), a lateral slip or side slip may be defined as

sy = tanα =
vy
vx

, (7.7)
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Figure 7.5: Definition of the tire slip angle α.

where vy denotes the velocity of the CP in YT-direction and α the tire slip angle (see
Figure 7.5). By analogy with vsx, vy describes the velocity of the rubber particles
in the CP relative to the road-surface in the lateral direction. The definition of slip
quantities given in this section implies that tires are only able to produce longitudinal
or lateral forces at cases in which either non-zero slip ratio or side slip takes place.

Magic formula tire model

In the present work, the semi-empirical MF model is utilized and discussed in the
following. Input to the MF is the (longitudinal) slip ratio sx, side slip sy, tire load
force Fz, and wheel camber γ. Here, γ denotes the tilt angle between the longitudinal
tire center plane and the local road-surface plane. Camber represents a degree of
freedom in the suspension design that can be used to improve the lateral force
potential of the tires [80]. The MF is applicable in the exclusively longitudinal and
lateral slip cases as well as in the combined slip case. For the exclusively slip cases
the tire forces are obtained from the sine-version of the MF. Its general analytical
structure is

Fi0(ui) = Di sin (Ci arctan [Bis̃i − Ei (Bis̃i − arctanBis̃i)]) + SVi , (7.8)

where i ∈ {x, y}, s̃i = s′i + SHi, and the input variables s′x = sx · sgn vx,
s′y = sy · sgn vx. The offset parameters SHi, SVi enable a shifting of the nominal
curve (SHi = Sy = 0) with respect to the origin in horizontal (SHi) and vertical
(SVi) directions, respectively. Offset parameters usually appear as non-zero due to
ply-steer or conicity, when tire pull forces are present. Both effects induce side forces
at zero tire slip angle and are the consequences of tire non-uniformity [4, 30]. The
peak value Di determines the maximum (minimum) value that (7.8) may attain.
The slope of (7.8) in the linear region around the origin corresponds to the product
BiCiDi. The shape factor Ci controls the influence of the sine-function in (7.8),
leaving Bi to set the desired slope around the origin. Consequently, Bi is referred
to as the stiffness factor and it is applied in case of Cs = BxCxDx|s̃x=0 (traction
stiffness) and Cα = ByCyDy|s̃y=0 (cornering stiffness). Finally, the curvature factor

Ei defines the curvature of (7.8) around its extremal points as well as their horizontal
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positions. The dependency of MF on Fz and γ is implied by its coefficients’
relationship with these quantities. Figure 7.6 depicts the typical shape of (7.8)

Di

arctan(BiCiDi)

Fi0(si)

F∞
i0

F
i0

s′i
ŝ′i

Figure 7.6: Sine-version of the Magic Formula.

without offsets: From ui = 0 the MF passes through the origin, subsequently
reaching its peak value by ŝi and eventually settling on a horizontal asymptote
F∞
i0 . For the combined slip case MF is extended with a weighting function

Gij(vj) =
cos (Cij arctan [Bij s̄j − Eij (Bij s̄j − arctanBij s̄j)])

cos (Cij arctan [BijSHij − Eij (BijSHij − arctanBijSHij)])
, (7.9a)

j ∈ {x, y}, i �= j such that

Fx(s
′
x, s

′
y) = Fx0(s

′
x) ·Gxy(s

′
y) (7.9b)

Fy(s
′
x, s

′
y) = Fy0(s

′
y) ·Gyx(s

′
x) + SVyx , (7.9c)

and s̄j = s′j + SHij . The full set of MF-equations required for the computation of
longitudinal and lateral tire forces is provided in Appendix F.1.
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Figure 7.7: Longitudinal and lateral tire forces produced by the MF at varying α.

Figure 7.7 depicts a typical family of curves for the longitudinal and lateral tire forces
depending on sx, at varying α. It can be observed that an increasing tire slip angle
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α reduces the available traction force Fx. At large longitudinal slip values (sx → 1),
this reduction converges to zero as the lateral tire force vanishes. For the side force
Fy, the maximum value is attained at sx = 0 and it increases with α. The coherence
underlying those observations is represented through the so-called Tire-Force Ellipse
(TFE) in the following.

Tire-force ellipse

Under the assumption of exclusively longitudinal or lateral slip, the maximum force
a tire is able to produce is limited by the product of the friction coefficient4 and tire
load force:

Fx,max = μx · Fz , (7.10a)

Fy,max = μy · Fz . (7.10b)

It is important to note that the maximum force in x- or y-direction can only be
fulfilled when the other is zero. Based on those limits, a peak slip ratio ŝx is attained
for Fx,max and a peak side slip ŝy = tanαth for Fy,max exist. If the slip is increased
beyond its peak value, the corresponding tire force commences to decrease and finally
approaches an asymptotic value. From a drive dynamics control point of view, it
is essential to obey these limits, since their violation potentially results in unstable
vehicle behavior. Equations (7.10a) and (7.10b) emphasize that a real-world tire may
have different friction coefficients in longitudinal (μx) and lateral (μy) directions.

In the combined slip case, both longitudinal and lateral tire forces are present. The
force F is composed of elements Fx and Fy, whereat the maximum available friction
force remains unchanged. Under the assumption of symmetric friction coefficients
μx = μy = μ, the maximum value of F may attain before the tire starts to skid.
Mathematically, this relationship writes

Fmax = μ · Fz = Fx,max = Fy,max , (7.11)

where F = ‖F ‖2. This circle-based representation of the limit of adhesion was first
formulated and published by Wunibald I. E. Kamm and therefore named after him
as Kamm Circle [149]. For the more general case μx �= μy, the same notion may be
employed resulting in an elliptic representation of the tire force limits [28]:

F 2
x

μ2
x

+
F 2
y

μ2
y

≤ F 2
z . (7.12)

Figures 7.8 and 7.9 depict the TFE for μx = 1.21 and μy = 0.99 (see Appendix F.1) in
comparison to the curves produced by the MF at Fz = 4000N. In Figure 7.8 the tire
slip angle α is varied. Figure 7.9 shows the variation of the slip ratio sx. Evidently,
the TFE represents a quite accurate approximation of the envelope defined by

4 The effective friction coefficients μeff
i = max{Fi/F z}, i ∈ {x, y}, introduced in this section must

not be confused with the physical static and dynamic friction coefficients introduced earlier.
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Figure 7.8: Tire-Force Ellipse at varying α.
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Figure 7.9: Tire-Force Ellipse at varying sx.

the true maximum tire forces. Due to effects caused by tire non-uniformity and
anisotropy, a slight discrepancy between the ideal and the real-world curves can be
expected.

An important statement regarding the tire behavior can be derived from the TFE: At
given lateral tire force, the occurrence of any traction force (braking or accelerating)
may cause the tire to increase its slip angle. This fundamental relation becomes
of a great importance when a vehicle in a heavy cornering situation is considered:
If one tire is already close to its peak side slip value (e.g. due to fast cornering),
a braking intervention potentially make the slip angle exceeding the peak value,
which effectively diminishes the lateral tire force. Depending on the vehicle’s state
of motion, unstable behavior, like spin out, may be the consequence [80].
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7.1.3 Linear single track model

In this section a simple vehicle model is derived with the objective to analyze
and discuss basic vehicle cornering behavior. The so-called Linear Single Track
Model (LSTM) facilitates a physically plausible and convenient approach to this
matter by incorporating the following approximations [167]:

� Longitudinal vehicle dynamics are neglected, i.e. the velocity magnitude at
the CoG remains constant (v = const.). In other words, there is no presence
of the traction forces, which means the vehicle is neither subjected to braking
interventions nor to accelerations (

∑4
i=1 F

Ti
x = 0).

� Vertical vehicle dynamics are neglected. This includes vanishing of the vertical
force at the CoG (FV

z = 0), negligence of roll and pitch motion of the chassis
(θ = ϕ = 0), and additionally, a static wheel load distribution.

� The mass distribution of the vehicle is lumped into a point mass m located at
the vehicle’s CoG.

� On both vehicle axes (front and rear), the left and right tires are consolidated
into one tire that is shifted to the vehicle’s longitudinal center plane. Each
entailed virtual tire has a stiffness that is equivalent to the sum of the individual
stiffnesses of the left and right tires.

� The elasticity of the steering system is disregarded, which significantly cancels
the effects due to the presence of alignment torque.

� Aerodynamic drag forces and resultant torques are neglected.

Input to the LSTM is the steer angle δ. The LSTM provides physically reasonable
results up to lateral accelerations of |ay| = 4ms−2 on dry roads [12].

From the first two assumptions it may be inferred that the vehicle motion is
constrained to translation in XV- and YV-direction and rotation about the vertical
ZV-axis. Hence, the number of Degrees of Freedom (DOFs) is reduced from six to
three5, whereat XV-direction is neglected since no longitudinal acceleration exists.
This information is used to define a couple of state-space variables representing those
two remaining DOFs:

xT =
[
x1 x2

]T
=
[
β ψ̇

]T
. (7.13)

Symbol β denotes the angle of the velocity vector v with respect to the vehicle’s CoG
and the longitudinal XV-axis of the VCS and is referred to as the vehicle sideslip
angle. According to this, β can be described in vehicle coordinates:

β = arctan

(
vVy
vVx

)
. (7.14)

5 An unconstrained rigid body has six DOFs: three translational (X,Y, Z) and three rotational
(θ, ϕ, ψ).
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Figure 7.10: Geometry and kinematics of the LSTM.

The second state-space variable ψ̇, named the yaw rate, denotes the time derivative
of yaw angle ψ. Figure 7.10 qualitatively depicts geometric and kinematic quantities
relevant for the subsequent derivation of the model. Before proceeding the LSTM,
the so-called Ackermann Angle δA needs to be introduced as a measure to describe
the vehicle’s cornering behavior at low speeds. In these situations, tire forces
vanish and the vehicle trajectory corresponds to a circle with the radius ρ0. In
order to maintain this trajectory the front wheel has to be steered by δA, which is
approximately given as

δA ≈ wB

ρ0
, (7.15)

with wB denoting the wheel base [72]. The geometric path radius ρ0 is a special
case of the instantaneous path radius ρ that describes the distance between IC and
CoG. The definition of ρ follows

ρ =
v

ψ̇ + β̇
, (7.16)

where the angle ψ + β is referred to as the course angle.

For the time derivation of the first kinematic equation with respect to β, Newton’s
Second Law, stating that the sum of all external forces acting on a rigid body is
equal to the rate of change of its linear momentum p, is employed. Therefore, it is
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also referred to as the principle of linear momentum and given as follows:

F =
dp

dt
= m · dv

dt
. (7.17)

The analysis of the vehicle cornering behavior is simplified by rewriting (7.17)
in vehicle coordinates. This is achieved in two steps: First the coordinate
transformation (7.2) is applied to (7.17):

FV = R · F = m ·R · dv
dt

. (7.18)

Now, Newton’s Second Law is given in vehicle coordinates except for the time
derivative dv

dt . Using expression (7.4) this derivative can be stated in vehicle
coordinates as well, such that

FV = m ·
(
dvV

dt
+ ω × vV

)
(7.19)

with

ω =

⎡⎢⎣00
ψ̇

⎤⎥⎦ and R =

⎡⎢⎣ cosψ sinψ 0

− sinψ cosψ 0

0 0 1

⎤⎥⎦ . (7.20)

Decomposing (7.19) to its longitudinal and lateral components (the assumption
FV
z = 0 holds), according to (7.14) in consideration of v = ‖v‖2 = const., yields:

FV
x

m
= −v

(
ψ̇ + β̇

)
sinβ , (7.21)

FV
y

m
= v

(
ψ̇ + β̇

)
cosβ . (7.22)

Now the Left-Hand-Sides (LHS) of (7.21) and (7.22) are investigated. The sums
of the longitudinal and lateral forces acting on the CoG are given as follows
when a steered front wheel (δ �= 0) and zero traction forces (

∑
FTi
x = 0,

i ∈ {(F)ront, (R)ear}) are taken into account:

FV
x = −FTF

y · sin δ , (7.23)

FV
y = FTF

y · cos δ + FTR
y . (7.24)

By computing the sum of (7.21) and (7.22) and then substituting corresponding
terms in equations (7.23) – (7.24), a single equation for β can be obtained:

β̇ =
FTF
y (sin δ + cos δ) + FTR

y

mv (sinβ + cosβ)
− ψ̇ . (7.25)

The lateral tire forces FTF
y and FTR

y are obtained from a linear tire model

FTF
y = CF

α · αF (7.26) FTR
y = CR

α · αR , (7.27)
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where αF and αR are the tire slip angles at the front and rear wheel, respectively,
whereas CF

α and CR
α are the corresponding cornering stiffnesses. Following the

definition of the tire slip angle (7.7) from Section 7.1.2 and remembering the vehicle’s
rotational motion yields

tan(δ − αF) =
v · sinβ + lF · ψ̇

v · cosβ and (7.28)

− tanαR =
v · sinβ − lR · ψ̇

v · cosβ . (7.29)

Here, lF and lR denote the distances from the front and rear axle to the CoG.

In the present work, the analysis of the vehicle behavior may be restricted to values
of β below six degrees (see section 2.3.2). Hence, cosβ ≈ 1 and sinβ ≈ β are
reasonable approximations. The same approximations are applicable for the side
slip (tanαi ≈ αi) and steer angles such that:

αF ≈ δ − β − lF · ψ̇
v

, (7.30) αR ≈ −β +
lR · ψ̇
v

. (7.31)

Substituting the tire slip angles into (7.26) and (7.27) by elaborated expressions
derived in (7.30) and (7.31), and subsequently inserting the results in (7.25), yields:

β̇ =
CF
α

(
δ − β − lFψ̇

v

)
(sin δ + cos δ) + CR

α

(
lRψ̇
v − β

)
mv (sinβ + cosβ)

− ψ̇ . (7.32)

Finally, (7.32) may be further simplified by assuming sinx + cosx ≈ 1, x ∈ {β, δ},
which is implicit for the angle approximations made previously. This results in

β̇ ≈ 1

mv

[
CF
αδ − β

(
CF
α + CR

α

)− ψ̇

v

(
mv2 + CF

α lF − CR
α lR

)]
. (7.33)

The second kinematic equation regarding ψ̇ is derived by means of the Newton Euler
Equation. This equation embodies the principle of angular momentum stating that
the rate of change of angular momentum about a rigid body’s CoG is equivalent to
the sum of external torques acting on the CoG:

dL

dt
= τ = I · ω̇ + ω × (I · ω) . (7.34)

In (7.34) L denotes the angular momentum. It is assumed that the axes of the VCS
coincide with the vehicle’s principle axes (axes of symmetry) such that the inertia
tensor I reduces to a 3 × 3 diagonal matrix I = diag (Ix, Iy, Iz). The diagonal
elements correspond to the inertias about the vehicle’s principal axes. Due to the
existence of the constraints on the LSTM only one independent equation remains
from (7.34): ∑

τz = Iz · ψ̈ . (7.35)
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The torque about the vehicle’s vertical ZV-axis is induced by the lateral tire forces
that do not directly act on the CoG. The geometry introduces two levers lF and lR
which are multiplied with the corresponding tire force result in

∑
τz:

Iz · ψ̈ = FTF
y · lF · cos δ − FTR

y · lR . (7.36)

Again, the tire forces can be replaced using (7.26), (7.27) in conjunction with (7.30),
(7.31). Applying cos δ ≈ 1 yields:

ψ̈ ≈ 1

Iz

[
CF
α lFδ + β

(
CR
α lR − CF

α lF
)− ψ̇

v

(
CF
α l

2
F + CR

α l
2
R

)]
. (7.37)

Ultimately, the state-space representation of the LSTM with two DOFs is given as
follows: [

β̇

ψ̈

]
=

⎡⎣ − 1
v
CF

α+CR
α

m −1− 1
v2

CF
α lF−CR

α lR
m

−CF
α lF−CR

α lR
Iz

− 1
v
CF

α l2F+CR
α l2R

Iz

⎤⎦[β
ψ̇

]
+

⎡⎣ CF
α

mv

CF
α lF
Iz

⎤⎦ δ . (7.38)

7.1.4 Dual track model

In the previous discussion the axle load transfer phenomenon has not been
mentioned. Axle load transfer describes the effects that forces acting on the vehicle’s
CoG virtually always impose torque on the vehicle body. As a consequence, this leads
to a change of the tire load distribution. Axle load transfer can only be explained by
means of three-dimensional models that allow positioning of the CoG at a certain
height. The significance of axle load transfer becomes apparent when the cornering
stiffness’ dependence on the tire load force is recalled. In case of the LSTM, linear
tire characteristics are assumed, which also imply Cα ∝ FT

z . Since the load excess
at the (curve) outer tire can be compensated by the load deficit at the inner tire, the
lumped cornering stiffnesses at both axles (CF

α , C
R
α ) may remain constant. While this

method is valid only for lateral accelerations smaller than 0.4 g, tire nonlinearities
cause the cornering stiffness to increase more slowly at larger lateral accelerations,
resulting in reduction of the effective cornering stiffnesses [167]. It can therefrom be
concluded, that an accurate simulation of cornering behavior up to the tires’ limit
of adhesion can only be accomplished when all four tires are treated individually.

The nonlinear Dual Track Model (DTM) employed in this work features three
explicit DOFs, namely xV, yV and ψ, and eight implicit DOFs. Among these
DOFs, four are given by the rotational velocities about each wheel’s spinning axis
ωi, i ∈ {1 . . . 4}, entering the model implicitly through the slip ratios sTi

x . The
remaining four DOFs enter the model by means of the dynamic load forces FTi

z ,
effectively incorporating the axle load transfer phenomenon.

The derivation process of the DTM’s equations of motion is similar to the one
performed for the LSTM. Differences occur because additional tire forces need to be
included in the Newton and Euler equations (see Figure 7.11). Eventually, when a
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Figure 7.11: Geometry and kinematics of the Dual Track Model.

rear-wheel drive vehicle (FT1
x = FT2

x = 0) is considered in the absence of the road
incline as well as lateral drag forces, the following non-linear and input affine state
space equations is obtained:

ẋ = F (x) +G(x)u , (7.39) x =
[
v β ψ̇

]T
, (7.40)

F (x) =⎡⎢⎣ 1
m

[
sin (β − δ)

(
FT1
y + FT2

y

)
+ sinβ

(
FT3
y + FT4

y

)− Fx,D cosβ
]

1
mv

[
cos (β − δ)

(
FT1
y + FT2

y

)
+ cosβ

(
FT3
y + FT4

y

)
+ Fx,D sinβ

]− ψ̇
1
Iz

[
lF cos δ

(
FT1
y + FT2

y

)− lR
(
FT3
y + FT4

y

)]
⎤⎥⎦ , (7.41)

G(x) =

⎡⎢⎣
cosβ
m

sinβ
m

− sinβ
mv − cosβ

mv

− bR
2Iz

bR
2Iz

⎤⎥⎦ , (7.42) u =
[
FT3
x FT4

x

]T
. (7.43)

In the equations above, the front and rear track width bF and bR have been
introduced. The two-dimensional system input vector u is comprised of the
rear left and rear right tractive tire forces. These forces are obtained from the
MF-tire model together with the lateral tire forces. which requires computation
of the longitudinal and lateral slip values. The main steps in this calculation is
elaborated in Appendix F.1 and F.2. Thereby, the tire-specific slip angles are

derived from the following expressions:
α1 = δ1 − arctan

vVy + lRψ̇

vVx − 1
2bRψ̇

, (7.44)
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α2 = δ2 − arctan
vVy + lRψ̇

vVx + 1
2bRψ̇

, (7.45)
α3 = arctan

vVy − lRψ̇

vVx − 1
2bRψ̇

, (7.46)

α4 = arctan
vVy − lRψ̇

vVx + 1
2bRψ̇

. (7.47)

The steer angles at the front and left tires are not identical, which is clarified later.
For the rear tires, it is assumed there exists no steer angle.

The longitudinal slip values for the rear tires are directly introduced to the model.
As such, information on the wheel dynamics

ω̇i · IW = τD,i −Rdyn,i · FTi
x − f0 ·Rdyn,i · FTi

z (7.48)

is – as stated before – provided implicitly. In (7.48) τDi denotes the driving torque
acting on the i-th wheel, f0 the static rolling resistance coefficient, and IW the
wheel’s inertia about its spindle axis. According to Pacejka [139], for the effective
rolling radius Rdyn the following relation holds when the centrifugal growth of the
unloaded tire radius is neglected:

Rdyn = R0 − Fz0

kz

(
Deff

R arctan

(
Beff

R

FTi
z

Fz0

)
+ F eff

R

FTi
z

Fz0

)
. (7.49)

From the equation (7.49) the unloaded tire radius R0 as well as the vertical tire
stiffness kz are recalled. The remaining parameters are constant coefficients which
can be determined empirically.

7.2 Vehicle dynamics control

With the introduced knowledge of vehicle dynamics, the TV control approach is
discussed in this section. As aforementioned, a tire slip control is applied in the
present study to enhance the control performance. It is introduced in section 7.2.1.
The implementation of the inverse tire model is presented in section 7.2.2, in which
the nonlinearity of tire slip to tire force is described. Finally, the overlying yaw rate
control is given in section 7.2.3.

7.2.1 Tire slip control

In this section the tire slip control for the rear-left and rear-right tires is derived and
implemented. Two identical and independent controllers are utilized, one for each
tire. In regards to the overall TV control system, the slip control’s purpose is to
take a reference longitudinal slip value s∗x provided by the inverted tire model and
to control the desired slip values on each side by applying certain shaft torques. The
structure of the tire slip control is presented in Figure 7.12.
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Figure 7.12: Block diagram of the tire slip control.

The prediction model employed for the tire slip control is directly derived from the
definition of the longitudinal slip ratio introduced in section 7.1.2

sx =
ωRdyn − vTx

vTx
, (7.50)

along with the rotational wheel dynamics (see section 7.1.4)

ω̇IW = τD −RdynF
T
x . (7.51)

In (7.51), the rolling resistance torque has been neglected. Derivating (7.50) with
respect to time and substituting (7.51) yields

ṡx = − v̇Tx
vTx

sx +
Rdyn

IWvTx
τD −

R2
dynF

T
x

IWvTx
− v̇Tx

vTx
, (7.52)

where the longitudinal contact point velocity vTx and its derivative v̇Tx are considered
as time-varying parameters. These quantities are constrained in this work by the
following bounds:

30 km/h ≤ vTx ≤ 120 km/h (7.53)

−7m/s2 ≤ v̇Tx ≤ 7m/s2 (7.54)

To obtain a model compatible to the polytopic uncertainty description, a decoupling
term is added to the input variable τD

τD = τ̃D + τdecD , τdecD = RdynF
T
x +

IW
Rdyn

v̇Tx . (7.55)

One may reformulate the tire slip model into the requested form

ṡx = − v̇Tx
vTx

sx +
Rdyn

IWvTx
τ̃D . (7.56)

After the discretization by the Euler discretization method, the following
discrete-time representation of (7.56) can be obtained

xk+1 =

(
1− Ts

v̇Tx
vTx

)
xk + Ts

Rdyn

IWvTx
ũk , (7.57)
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where ũk = τ̃D denotes the input, xk = sx the state, and Ts = 1ms the sample time.

In order to facilitate offset-free reference tracking, the model (7.57) is rewritten in
differential form[

Δxk+1

ek+1

]
=

⎡⎣1− Ts
v̇Tx
vTx

0

1− Ts
v̇Tx
vTx

1

⎤⎦
︸ ︷︷ ︸

A(θ)

[
Δxk
ek

]
+

[
Ts

Rdyn

IWvTx

Ts
Rdyn

IWvTx

]
︸ ︷︷ ︸

B(θ)

Δũk , (7.58)

where Δxk = xk−xk−1 denotes the change in the system state within one time step,
Δũk = ũk − ũk−1 the change in the input quantity, and ek = xk − rk the control
deviation from the reference value rk = s�x(t = kTs). In this context, it is assumed
that the reference value remains constant (rk+1 = rk) within the control horizon.
Since the control law is computed off-line, the increased number of system states
induced by the differential reformulation is of no concern.

The LPV prediction model (7.58) provides the basis for the formulation of the robust
optimal control problem. Thereby, from the two uncertain parameters included in
the system matrices, four vertices [Al, Bl], l = 1, . . . , 4 are defined. Additionally,
the following state and input constraints are considered:

x̃max =
[
0.04 0.3

]T
(7.59) ũmax = 730 (7.60)

The tire slip’s rate of change is limited to 0.04/ms, which may be derived from
(7.52) under the assumption that the maximum wheel torque τmax

D = 730Nm is
applied. The maximum control deviation of 0.3 was chosen, since the peak value
of the longitudinal tire force is attained for values of sx in the area of 0.15. The
value is doubled since it is assumed that the largest possible set point change of sx
occurs when a change from positive peak traction force to negative peak traction
force is requested. Finally, the maximum difference of τD between two time instants
is assumed to be equal to the maximum driving torque, which implies that the
induction machine’s torque can be controlled within 1ms. We remark that due to
the differential formulation, no absolute constraints can be imposed on the control
output. Ensuring that τD stays below the maximum available driving torque will
be the task of the overlaying yaw rate control. Nevertheless, a saturation block
(−τmax

D ≤ τD,k ≤ τmax
D ) is introduced to guarantee a bounded control output when

high-dynamic changes of the slip request occur.

7.2.2 Inversed tire model

The inverted tire model represents a key component in the TV control system. It
translates the longitudinal tire force requests into corresponding longitudinal slip
values. Hence, an inaccurate inversion of the tire model will lead to a mismatch
between requested and actual tire force. This is not critical under normal operation,
since the yaw rate dynamics demonstrate strongly integrating behavior. However, a
mismatch can potentially deteriorate the yaw rate control’s performance.



120 High-performance torque vectoring control

−0.4−0.2
0

0.2
0.4

-1.5

0
1.5

−1

0

1

α in radFT
x in kN

s x

Figure 7.13: Slip ratio depending on the tire slip angle and longitudinal tire force at fixed
FT
z = 800N.

In severely combined slip driving situations, a model mismatch may lead to
oscillations, as the tire may be driven beyond its peak slip value, resulting in a
smaller longitudinal force than expected. This is attributed to a change of the
MF’s monotony occurring at large tire slip angles. Beside the combined slip case,
a mismatch at large longitudinal slip values may induce oscillations for the same
reason. For the vehicle considered in the present work, both critical situations occur
at large lateral accelerations at the rear wheel on the inner side of the curve. In order
to prevent such situations, the maximum tire force calculation FT,max

x is limited to
95% of the theoretically attainable value.

The following discretization is defined experientially by the simulation to deliver
accurate results for the inverted tire model’s full range of applicability:

Δα =

{
0.002 |α| ≥ 0.49

0.01 else

ΔFT
z =

{
50N FT

z ≤ 2080N

750N else

ΔFT
x =

{
20N

∣∣FT
x

∣∣ ≥ 500N

50N else.

Considering the maximum available driving torque on each side as well as the MF’s
domain of invertibility, the following parametric range was chosen

−π/6 ≤ α ≤ π/6 800N ≤ FT
z ≤ 8800N − τmax

D /Rmin
dyn ≤ FT

x ≤ τmax
D /Rmin

dyn ,
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Figure 7.14: Slip ratio depending on the tire load force and longitudinal tire force at fixed
α = 0.

where a minimum effective rolling radius Rmin
dyn = 0.33m was assumed. For values

of the longitudinal tire force that exceed the peak value at a given α and FT
z , a

saturation was implemented, such that an excessive force request does not lead
to further instability. Figure 7.13 renders the inverted data for the most critical
situation, i.e. FT

z = 800N and it clearly shows the aforementioned saturation. At
larger load forces, the saturation vanishes, as the tire’s force potential exceeds the
EM’s maximum torque. Figure 7.14 depicts the inverted model, where α = 0 is fixed.
The region of small tire load force emphasizes the necessity for a finer discretization
in this area. Inclusion of different road surfaces is mandatory for the inverted tire
model. Here, the force request input FT

x = (FT
x )∗ is simply divided by μ.

7.2.3 Yaw rate control

In the following, the implementation of the yaw rate control for the TV application is
described. Beside the main aspect of controlling the vehicle’s yaw rate, it is the yaw
rate control’s task to interpret and forward the driver’s demand to the underlying
slip controllers. Thus, a strategy to determine the drive forces in consideration of
the driver’s demand and the yaw rate control is required. In contrast to the tire slip
controller, time-varying constraints are taken into account in the control design. In
order to ensure a safe operation close to the tires’ physical limitations, the dynamic
force constraints are analyzed. The entire structure of the yaw rate control is given
in Figure 7.15.
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Figure 7.15: Block diagram of the yaw rate control.

Control derivation

In order to establish a model for the control design, the DTM introduced in
section 7.1.4 is recalled. The continuous-time equation is again discretized using
the first order approximation:

ψ̇k+1 = Aψ̇k +Buk +
Ts

Iz
dk . (7.61)

The system matrices A and B, input vector uk, as well as the disturbance term are
given as follows:

A = 1 B =
TsbR
2Iz

u = ΔFx = FT4
x − FT3

x . (7.62)

By means of a feed-forward disturbance compensation with

ΔFx = ΔF̃x −ΔF comp and

ΔF comp =
2

bR
·
(
lF ·

(
cos δ1 · FT1

y + cos δ2 · FT2
y

)− lR ·
(
FT3
y + FT4

y

)
+

bF
2

(
sin δ2 · FT2

x − sin δ1 · FT1
x

) )
,

(7.63)

the state-space representation used for the nominal yaw rate control is then given
as follows:

ψ̇k+1 = ψ̇k +
TsbR
2Iz

ΔF̃x . (7.64)
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The model equation (7.64) represents the first constraint in the QP-based control
problem. Additional constraints are introduced to maintain the tires within their
physical limits:

ΔF̃min
x ≤ ΔF̃x ≤ ΔF̃max

x . (7.65)

The computation of the lower and upper thresholds is clarified later. The
optimization-based control problem is completed by the following cost function

J(k) =

N∑
i=0

∥∥∥ψ̇k+i|k − ψ̇∗
k

∥∥∥2
Q
+
∥∥∥ΔF̃x k+i|k

∥∥∥2
R
. (7.66)

The QP problem based on the objective function (7.66) can be stated as a
multi-parametric Quadratic Programming (mp-QP) problem

min
z

J(z,x)

s.t. (7.64), (7.65) , (7.67)

where the optimizer z = Ũ contains the sequence of control inputs
Ũ = {ũT

k , . . . , ũT
N−1}. Moreover, the parameter vector is comprised of the

following four elements:

x =
[
ψ̇k ψ̇∗

k ΔF̃min
x ΔF̃max

x

]T
.

Driver demand determination

As mentioned before, the yaw rate control is responsible for the interpretation of the
driver’s demand as well. Thereby, the acceleration demand of the driver is translated
into symmetric longitudinal forces and is considered in the control design. The
primary target of the application is to produce the asymmetrical longitudinal drive
forces to get the desired yaw rate. Therefore, in order to hold the system constraint
and ensure the yaw rate control performance, the drive demand is considered as a
secondary requirement and has to be modified if necessary. The total longitudinal
forces required are represented by

FT3
x = −1

2
ΔFx + FT3,D

x (7.68a)

FT4
x =

1

2
ΔFx + FT4,D

x . (7.68b)

In Algorithm 6 the control logic to determine the acceleration forces required by
the driver is shown, where FAcc

x represents the unmodified acceleration longitudinal
forces demanded by the driver.

Based on the equations (7.68a) and (7.68b) the total longitudinal forces required are
compared to the maximum and the minimum longitudinal forces of both rear tires.
If the force limitation on any tire is exceeded, the offset having the larger value, that
shifts the required force within the limitation, is added to both tires. In this way,
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Algorithm 6 Determination of drive forces required by the driver

1: FT3,D
x = FT4,D

x = 1
2F

Acc
x

2: ΔFTi
x ub =

(
FTi,max
x < FTi

x

)
·
(
FTi
x − FTi,max

x

)
, i ∈ {3, 4}

3: ΔFx,ub = max
{
ΔFT3

x ub,ΔFT4
x ub

}
4: ΔFTi

x lb =
(
FTi,min
x > FTi

x

)
·
(
FTi
x − FTi,min

x

)
, i ∈ {3, 4}

5: ΔFx,lb = min
{
ΔFT3

x lb,ΔFT4
x lb

}
6: FTi

x
∗
= FTi,D

x −ΔFx,ub −ΔFx,lb;
7: return FTi

x
∗

the yaw rate control approach is not impacted in case that the force limitation
is exceeded, but the total acceleration demand by the driver may be modified.
However, such modification takes place temporarily in the transient procedures of
certain situations and is therefore not perceived by the driver.

Dynamic constraint computation

As aforementioned, diverse force limitations are applied in the control design. In the
following, the computation of the thresholds ΔF̃min

x , ΔF̃max
x , FT3,max

x and FT4,max
x

is clarified.

First, the maximum longitudinal force that can be transmitted by the rear tires is
computed. Here, not only the tire-force ellipse has to be considered (see section
7.1.2), but also the maximum torque on the drive shaft. Therefore, the maximum
tire forces are determined by computing the minimum of both contributions

FTi,max
x = min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
τTi,max
D

RTi
dyn

, 0.95μx

√√√√√(FTi
z

)2 −
(
FTi
y

)2
μ2
y

⎫⎪⎪⎪⎬⎪⎪⎪⎭ i ∈ {3, 4} . (7.69)

In (7.69) the factor 0.95 represents a safety margin, which was mentioned in the
previous section.

Based on the maximum longitudinal tire forces, the difference between RR and RL
tires is constrained by

− FT3,max
x − FT4,max

x ≤ ΔFx ≤ FT3,max
x + FT4,max

x . (7.70)

Subsequently, the force thresholds of the yaw rate controller are computed by

− FT3,max
x − FT4,max

x +ΔF comp
x ≤ ΔF̃x ≤ FT3,max

x + FT4,max
x +ΔF comp

x . (7.71)
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7.3 Operation strategy

Recalling the software specification defined in section 2.3.3, an operation strategy is
implemented, which manages the interaction between driver and control software.
In addition, road situations such as cross slope and inhomogeneous frictions are
considered in the operation strategy as well. The entire SW structure is illustrated
in Figure 7.16 and its components are introduced in the following.

determination

Friction limit

Cross slope

correction

Yaw rate

δH v

+
+

+
+

ay

Δay

ψ̇∗

ψ̇′
Δψ̇

ay

Figure 7.16: SW structure of operation strategy.

7.3.1 Determination of reference yaw rate

The steady-state yaw rate reference can be determined for the yaw rate control
by using the steady-state equation derived from (7.38) with ψ̈ = 0, β̇ = 0.
Mathematically, this formulation follows

ψ̇

δ
=

v

wB + η · v2 (7.72)

with

η =
m

wB

(
lR
CF
α

− lF
CR
α

)
. (7.73)

Here, η is referred to as the self-steer gradient and describes the steady-state steering
behavior of vehicles [144]. Figure 7.17 depicts typical shapes of the yaw gain for
different self-steer gradients. The stable and unstable regions for an over-steered
vehicle are highlighted with blue and red, respectively. Under-steered vehicles (η >
0) experience a peak yaw gain occurring at the characteristic velocity vch =

√
1/η.

Typically, vch ranges from 18m/s to 35m/s [129]. For an over-steered vehicle such
a maximum does not exist. Equation (7.72) rather exhibits a singularity at v =
vcr =

√−1/η, which renders an infinite yaw gain. Obviously, this phenomenon
cannot be of any physical nature and is therefore attributed to the model failure.
However, eigenvalue analysis shows that this singularity is related to the unstable
vehicle behavior [139].
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Figure 7.17: Typical yaw gain curves of understeer η > 0, neutral steer η = 0 and oversteer
η < 0.

If η takes positive values, the car is considered to have under-steering behavior as the
steering effort increases with increasing lateral acceleration. Contrarily, vehicles with
negative self-steer gradient exhibit over-steering behavior, i.e. the necessary steering
effort decreases at increasing lateral accelerations. A vehicle exhibits neutral steer
if η = 0 [138].

The self-steering behavior is essential for the drivability and maneuverability of
a vehicle. Most passenger cars are designed to show under-steering behavior as
it is most drivers’ natural response to increase the steering wheel angle when the
vehicle is drifting away from the desired trajectory [129, 144]. Furthermore,
an under-steered vehicle inhibits unstable steady-state cornering behavior.
Consequently, under-steered vehicles are inherently safer to operate by normal
drivers and less likely to exhibit instabilities in comparison to over-steered vehicles.
Unfortunately, under-steering behavior may lead to unsatisfactory agility and
limited cornering performance. Hence, sports cars are designed towards a more
neutral behavior. Racing cars, usually operated by trained and experienced drivers,
may in fact exhibit an over-steering characteristic at relatively low velocities. In
contrast to these common cases, this characteristic line can be freely modified by
means of a yaw rate controller. This is achieved by determining a reference yaw rate
at a certain velocity and a certain steer angle. In order to attain a satisfying agility
and simultaneously ensure the vehicle’s stability, the neutral steering behavior line
(η = 0) is pursued in the present work.

Equation (7.72) and Figure 7.17 give the relationship between yaw rate and steer
angle. The input signal to the operation strategy is the steering wheel angle, though.
Therefore, the steering system is introduced in the following. Initially, the idealized
steering system depicted in Figure 7.18a is considered. This system is typically
consisted of a steering wheel (1), a steering column (2), a steering gear (3, 4), two
tire rods (5), steering arms (6), king-pins and stub axles (7). Any joints or active
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support systems are neglected and the overall stiffness of the steering system is
lumped into an ideal torsional spring Cδ, disregarding any damping (dδ = 0).

Assuming an infinitely rigid steering system (Cδ → ∞), the steer angle is simply
given by the ratio of steering wheel angle and kinematic steering ratio is:

δ =
δH
is

. (7.74)

In practice, the resulting hypothetical steer angle (7.74) is reduced when longitudinal
or lateral tire forces exist. This is caused by the fact that the CP no long lies in the
middle of the tire, and induces torques acting on the steering system’s finite stiffness
Cδ. In that case, the sum of the pneumatic and kinematic trails t, ny constitutes
the lever, on which the lateral tire force FTi

y acts (see Figure 7.18b). With the

same principle, the steer angle is affected by the longitudinal tire force FTi
x , whereat

no pneumatic trail exists. For the sake of brevity, only effects attributed to the
lateral tire force are considered, since it is much greater than the longitudinal one.
Neglecting the system’s exact geometry, the true steer angle is given as follows [129]:

δi =
δH
is
− FTi

y (t+ ny)

Cδ
− γi , i ∈ {1, 2} . (7.75)

In other words, elasticity in the steering system requires the driver to turn the
steering-wheel beyond the geometrically necessary angle increasing the vehicle’s
tendency to behave under-steered [129]. In (7.75) γi denotes the toe angle describing
the offset of wheel’s steer angle at neutral steering-wheel position. It provides
another constructive means to improve the cornering behavior by maximizing
the tires’ lateral force potential [80]. Typically, it is defined γ1 = −γ2. As
aforementioned, the steer angles on the rear tires are idealized as zero.

Therefore, the reference yaw rate resulting from the steering wheel angle in
steady-state is derived by substituting the average steer angle from (7.75) in (7.72):

ψ̇′ =
v

wB + η · v2 ·
δ1 + δ2

2
. (7.76)

(6)

(4)

(2)

(1)

(3) (5)

(7)
δH τH

YT2

XT2

δ

ks

(a) Simplified steering system.

−t ny XT

(6)

ZT

CP

(b) Trails occurring at the tire.

Figure 7.18: Overview of the simplified steering system’s geometry and components.
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7.3.2 Cross slope correction

The determination of reference yaw rate is considered so far on flat surfaces.
However, roads may also show a lateral gradient. This lateral gradient, denoted
by the bank angle ϕ, significantly influences the vehicle’s motion.

ϕm · g

m · g · sinϕm · v2ρ

ρ

ψ̇m · v2ρ · cosϕYV

ZV

Figure 7.19: Steady-state cornering with cross slope.

Figure 7.19 shows the steady-state cornering with cross slope from the front/rear
view of the vehicle. The effective radius of the drive circle is now ρ′ = ρ/ cosϕ on
the YV-axis. Therefore, the following equation is obtained:

m · ay = m · v
2

ρ′
−m · g · sinϕ . (7.77)

Substituting (7.16) with β̇ = 0 and applying ρ′ as effective radius in (7.77) yields

ay = v · ψ̇ − g · sinϕ . (7.78)

Therefore, the correction of the lateral acceleration is represented by [190]

Δay = v · ψ̇ − ay = g · sinϕ . (7.79)

Recalling the LSTM and considering the equilibrium of the moment on both tires
around ZV-axis in Figure 7.20 as a simplification of Figure 7.10 yields

FF
y · cos δ · wB = m · v

2

ρ
· cosβ · lR = m · ay · lR (7.80a)

FR
y · wB = m · v

2

ρ
· cosβ · lF = m · ay · lF , (7.80b)

where cos δ ≈ 1, cosβ ≈ 1 and the tire forces are calculated by means of (7.26),
(7.27) (7.30), and (7.31):

FF
y = CF

α ·
(
δ − β − lF · ψ̇

v

)
(7.81a)
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Figure 7.20: Simplified kinematics of LSTM.

FR
y = CR

α ·
(
−β +

lR · ψ̇
v

)
. (7.81b)

Eliminating β by subtracting (7.81b) from (7.81a) and substituting them
in (7.80a), (7.80b) yields

δ =
wB

v
· ψ̇ + η · ay . (7.82)

Substituting (7.79) in (7.82) results in

δ =
wB

v
· ψ̇ + η ·

(
v · ψ̇ −Δay

)
. (7.83)

Reformulating (7.83) it is obtained

ψ̇ =
v

wB + η · v2 · δ +
η · v ·Δay
l + η · v2 . (7.84)

Comparing equation (7.84) with (7.76), the correction term due to cross slope is
represented by

Δψ̇ =
η · v

l + η · v2 ·Δay . (7.85)
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7.3.3 Friction limit

The reference yaw rate cannot be set to an arbitrarily large value, since friction on
the tires has physical limits. The following condition has to be held:

|m · ay| ≤
∣∣∣∣∣

4∑
i=1

FTi
y · cos δi

∣∣∣∣∣ . (7.86)

Assuming cos δi ≈ 1 and introducing the maximum admissible tires’ lateral force
described in Figure 7.8, the lateral acceleration is limited by

|ay| ≤
∣∣∣∣∣

4∑
i=1

μTi
y,max · g

∣∣∣∣∣ (7.87)

where μTi
y,max represents the maximum friction coefficient of each tire given by the

Kamm Circle. Therefore, the reference yaw rate is limited by substituting (7.79)
in (7.87) ∣∣∣ψ̇∣∣∣ ≤ ∣∣∣∣∣

∑4
i=1 μ

Ti
y,max · g
v

+
Δay
v

∣∣∣∣∣ . (7.88)

7.4 Parameter estimation

The aforementioned control approaches as well as the operation strategy are based
on a sequence of vehicle quantities, some of which are not measurable. Therefore,
a reliable estimator is required to ensure the control performance and safety of the
TV application. In order to provide an overview, the signals regarding the vehicle
dynamics control are categorized. The measured quantities are associated with the
specification given in section 2.3.3 and summarized by

� Steering wheel angle δH;

� Yaw rate ψ̇;

� Wheel speeds ωi;

� Lateral acceleration ay.

The other unmeasurable quantities required for the vehicle dynamics control are
represented by

� Steer angle δ;

� Vehicle’s longitudinal velocity vVx ;

� Tire forces FTi
x , FTi

y and FTi
z ;

� Tires’ longitudinal slips sTi
x ;

� Overall cornering stiffness Cαi ;

� Vehicle sideslip angle β;

� Vehicle’s lateral velocity vVy ;

� Tire slip angles αi;

� Friction coefficients μTi .

The estimation of the steer angle δ according to the steering wheel angle δH was
derived in section 7.3.1 and therefore is not presented here.
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Tire force estimation

In a moving vehicle, a tire transfers all the desired forces: longitudinal forces to
compensate resistances and to accelerate or to brake, lateral forces to turn the
vehicle in other directions and vertical forces to bear the vehicles weight.

The calculation of the longitudinal tire forces is based on the momentum equilibrium
around the wheel rotation axis:

ITi
W · ω̇i = τTi

D − FTi
x

′ ·RTi
dyn . (7.89)

Since the resistance force is neglected in the control strategy, the effective
longitudinal tire force in consideration of a rolling resistance coefficient is calculated
by

FTi
x = FTi

x
′ − FTi

x,R =
1

RTi
dyn

·
(
τTi
D − ITi

W · ω̇i

)
− fR · FTi

z , (7.90)

where fR describes the rolling resistance coefficient, which is empirically fixed to
fR = 0.01 in this work. The lateral tire forces are determined by

FTi
y = Cαi · αi , (7.91)

where Cαi denotes the overall cornering stiffness and αi the tire slip angle. The
calculation of both parameters is derived later.

In order to calculate the vertical tire forces, some preconditions are required. In
the simple case of uniform motion, the wheel forces are determined by the vehicle’s
CoG. Given the vehicle’s geometric dimensions and the location of the CoG, it is
uncomplicated to calculate, for a given wheel, which forces acting on it are induced
by the vehicle’s total mass:

FT1
z0 = FT2

z0 =
lR
2wB

·m · g , (7.92a)

FT3
z0 = FT4

z0 =
lF
2wB

·m · g . (7.92b)

In dynamic conditions the wheel forces in general will not be parallel to gravity any
more. In the calculations it is assumed that only lateral accelerations cause a lateral
wheel load transfer. According to Figure 7.21a the equilibrium of the moment in
the roll-axis (ϕ) is given by

m · ay · h =
(
FT2
z − FT1

z

) · bF
2

+
(
FT4
z − FT3

z

) · bR
2

, (7.93)

which results in
2 ·m · ay · h = ΔFF

z,roll · bF +ΔFR
z,roll · bR . (7.94)

The symbol h denotes the height of the vehicle’s CoG referred to the driving surface.
The following representations are given: ΔFF

z,roll = FT2
z −FT1

z , ΔFR
z,roll = FT4

z − FT3
z .

The lateral wheel load transfer concerns both, the front and the rear axle and the
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(b) Longitudinal wheel load transfer.

Figure 7.21: Wheel load transfer.

distribution, which is caused by the suspension’s springs together with anti-roll-bars.
These effects are represented in the calculation by the parameters kF and kR with
kF + kR = 1. Therefore, the vertical tire force changes due to lateral wheel load
transfer in case of roll motion are represented by

FT1
z,roll = −

h

bF
· kF ·m · ay; FT2

z,roll =
h

bF
· kF ·m · ay , (7.95a)

FT3
z,roll = −

h

bR
· kR ·m · ay; FT4

z,roll =
h

bR
· kR ·m · ay . (7.95b)

An overlying wheel load transfer is caused by longitudinal forces, such as drag forces,
acceleration or braking forces. These forces result in a pitch motion. Furthermore,
a simplification is made in such a way, that drag forces are set as a force parallel to
the vehicle’s longitudinal axis, affecting the car at its CoG. The calculation respects
the longitudinal effects of lateral tire forces in cornering maneuvers. Figure 7.21b
shows the effect of the longitudinal wheel load transfer. The equilibrium of the
longitudinal force is given by

FR +m · ax = FT3
x + FT4

x − FT1
y · sin δ1 − FT2

y · sin δ2 , (7.96)

where FR represents the resistance and hR the effective height of the resistance. For
simplification it is assumed that hR = h.
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Furthermore, the equilibrium of the moment in the pitch-axis (θ) is described by

(FR +m · ax) · h+
(
FT1
z + FT2

z

) · lF =
(
FT3
z + FT4

z

) · lR . (7.97)

Substituting (7.96) yields(
FT3
x + FT4

x − FT1
y sin δ1 − FT2

y sin δ2
)·h = ΔFz ·(lF + lR)+

(
FT1
z + FT4

z

)·(lR − lF) ,
(7.98)

where ΔFz = FT3
z − FT1

z = FT4
z − FT2

z with the assumption that only longitudinal
acceleration takes place. Additionally, FT1

z + FT4
z = 1

2 ·m · g. Therefore,

ΔFz =
h

wB

(
FT3
x + FT4

x − FT1
y sin δ1 − FT2

y sin δ2
)− lR − lF

2wB
·m · g . (7.99)

Considering the difference of the vertical tire forces ΔFz0 = FT3
z0 −FT1

z0 = FT4
z0 − FT2

z0

in uniform motion (see (7.92)), the tire difference between front and rear wheels due
to longitudinal wheel load transfer is calculated by

ΔFT1,T3

z,pithch = ΔFT2,T4

z,pithch = ΔFz−ΔFz0 =
h

wB

(
FT3
x + FT4

x − FT1
y sin δ1 − FT2

y sin δ2
)
.

(7.100)
A further assumption refers to the movements of the vehicle’s chassis. In reality
the vehicle’s chassis will not be steady, but instead will show (random) movements,
even in the case of uniform motion. Such movements for example are induced by
the road’s surface, which is not perfectly plain, furthermore by the vehicle’s engine
and also by the passengers inside the vehicle. The forces onto the wheels induced
by such movements are ignored in the following calculation.

Finally, the calculation of the vertical tire forces according to the uniform, roll and
pitch motions results in

FT1
z =

lR
2wB

·m · g − h

bF
· kF ·m · ay − h

2wB
· (FT3

x + FT4
x − FT1

y sin δ1 − FT2
y sin2 δ

)
,

(7.101a)

FT2
z =

lR
2wB

·m · g + h

bF
· kF ·m · ay − h

2wB
· (FT3

x + FT4
x − FT1

y sin δ1 − FT2
y sin δ2

)
,

(7.101b)

FT3
z =

lF
2wB

·m · g − h

bR
· kR ·m · ay + h

2wB
· (FT3

x + FT4
x − FT1

y sin δ1 − FT2
y sin δ2

)
,

(7.101c)

FT4
z =

lF
2wB

·m · g + h

bR
· kR ·m · ay + h

2wB
· (FT3

x + FT4
x − FT1

y sin δ1 − FT2
y sin δ2

)
.

(7.101d)

Longitudinal velocity and slip estimation

A precise and reliable knowledge of the longitudinal velocity is necessary for the
longitudinal slip estimation. The calculation is mainly based on the measured wheel
speed and yaw rate.
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Figure 7.22: Relationship among the velocities.

Starting from the product of wheel speed and tire radius, values of the longitudinal
velocity at four positions are obtained. Unfortunately, these values cannot be
directly used at this stage. There are the longitudinal slip, changing tire radius
and yawing. As the longitudinal slip is not known yet, a rough guess has to be
performed initially. The resulting tire radius is a function of the vertical tire force.
Considering the yaw rate, the longitudinal vehicle velocity at the portions of the
four wheels can be transferred to the vehicle’s center of mass to receive four possible
values. Finally, one of them or an arithmetic mean has to be chosen.

Figure 7.22 illustrates the relationship between vehicle velocity and wheel speed.
The front right wheel (T2) is taken as an example for the computation. Since the
velocity on the wheel consists of translational motion and rotational motion in the
yaw-axis(ψ), the tire velocity on the XV- and YV-axis is represented by

vVx,T2
= vVx + ψ̇ · bF

2
, (7.102a)

vVy,T2
= vVy − ψ̇ · lF . (7.102b)

Moreover, the longitudinal tire velocity vT2
x is depicted by

vT2
x =

ω2 ·Rdyn

1 + F
T2
x

F
T2
z

· Cs

, (7.103)

where the linear tire characteristic is assumed. Therefore, the following equation
results

ω2 ·RT2
dyn

1 + F
T2
x

F
T2
z

· Cs

= vT2
x = vVx,T2

· cos δ2 − vVy,T2
· sin δ2 . (7.104)

Subsequently, the equation of vehicle’s longitudinal velocity calculation is derived
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by substituting (7.102a) and (7.102b) in (7.104) and reformulating the equation to

vVx |T2 =

ω2·RT2
dyn

1+
F
T2
x

F
T2
z

Cs

+ vVy · sin δ2 − ψ̇ · lF · sin δ2 − bF
2 ψ̇ · cos δ2

cos δ2
. (7.105)

The vehicle’s longitudinal velocity can be derived by considering the other tires in
an analogous manner. They are summarized by

vVx |T1 =

ω1·RT1
dyn

1+
F
T1
x

F
T1
z

Cs

+ vVy · sin δ1 − ψ̇ · lF · sin δ1 + bF
2 ψ̇ · cos δ1

cos δ1
, (7.106a)

vVx |T3 =
ω3 ·RT3

dyn

1 + F
T3
x

F
T3
z

Cs

+
bR
2
ψ̇ , (7.106b)

vVx |T4 =
ω4 ·RT4

dyn

1 + F
T4
x

F
T4
z

Cs

− bR
2
ψ̇ . (7.106c)

Subsequently, the longitudinal vehicle velocity can be represented by these four
velocities with the weighting factors gi:

vVx =
4∑

i=1

gi · vVx |Ti with
4∑

i=1

gi = 1 . (7.107)

Since the slip ratios sx on the front tires are much smaller than those on the rear
tires in rear-wheel-drive vehicles, a larger weighting factor is commonly defined for
vVx |T1 and vVx |T2 . In the present work, g1 = g2 = 0.75/2 and g3 = g4 = 0.25/2 are
set as default. Furthermore, a strategy is implemented to eliminate the effect of the
skidding wheel in order to obtain a reliable longitudinal velocity estimation.

The longitudinal slip estimation works by comparing wheel speed and longitudinal
velocity and considering the vehicle’s yaw rate:

sT1
x =

ω1R
T1
dyn −

(
vVx − bF

2 ψ̇
)
cos δ1 +

(
vVy − lF · ψ̇

)
sin δ1

ω1 ·RT1
dyn

, (7.108a)

sT2
x =

ω2 ·RT2
dyn −

(
vVx + bF

2 ψ̇
)
cos δ2 +

(
vVy − lF · ψ̇

)
sin δ2

ω2 ·RT2
dyn

, (7.108b)

sT3
x =

ω3 ·RT3
dyn −

(
vVx − bR

2 ψ̇
)

ω3 ·RT3
dyn

, (7.108c)

sT4
x =

ω4 ·RT4
dyn −

(
vVx + bR

2 ψ̇
)

ω4 ·RT4
dyn

. (7.108d)
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Overall cornering stiffness estimation

The overall cornering stiffness describes the relation between tire slip angle and
lateral force on each wheel. It should ideally consider all the influences, such
as the friction coefficient, vertical force, longitudinal slip, steering and suspension
elasticities and camber angle. Depending on the situation, there are different ways
to obtain the overall cornering stiffness.

The HSRI tire model in [54, 139] allows a relation between slip, tire slip angle,
longitudinal and lateral forces:

FTi
y

FTi
x

=
Cα · αi

Cs · sTi
x

(7.109)

with the linear traction stiffness Cs and the linear cornering stiffness Cα introduced
in section 7.1.2. Introducing the aforementioned steering stiffness Cδi , and the
pneumatic trail t + ny the overall cornering stiffness is obtained, which is derived
in [54]:

Cαi =
Cδi

Cα·FTi
x

Cs·sTi
x

Cδi +
Cα·FTi

x

Cs·sTi
x

di

. (7.110)

However, a very small slip causes a division by nearly zero in equation (7.110). Thus,
the overall cornering stiffness can also be read out of a LUT with the relative friction
coefficient and the vertical load as inputs.

Lateral velocity estimation

Obtaining the lateral velocity is a key element of this estimator. An EKF is
implemented for this purpose with the state vector and input

x =
[
vVy ψ̇ ay d

]T
, u = δH , (7.111)

where d denotes the process disturbance. The matrices A and B of the discrete
system are⎡⎢⎢⎢⎣

vVy
ψ̇

ay
d

⎤⎥⎥⎥⎦
k+1

=

⎡⎢⎢⎢⎣
1 −vVx · Ts Ts 1

ε · Ts 1 + χ · Ts 0 1

0 0 1 1

0 0 0 1

⎤⎥⎥⎥⎦ ·
⎡⎢⎢⎢⎣
vVy
ψ̇

ay
d

⎤⎥⎥⎥⎦
k

+

⎡⎢⎢⎢⎣
0 0

ξ · Ts ζ · Ts

0 0

0 0

⎤⎥⎥⎥⎦ ·
[
δ1
δ2

]
k

(7.112)

where ε, χ, ξ and ζ are derived in Appendix G.1. The sample time is Ts = 1ms.

In this system, ψ̇ and ay are available as measurement variables. Since the
calculation of the lateral velocity vVy in (7.112) is derived from the kinematic
equations in the form of an integrator as shown in G.1), the estimation errors
of the applied variables are integrated simultaneously during the calculation. In
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order to eliminate these errors, the lateral velocity is considered in the EKF as a
’measurement variable’ in such a manner, that it is derived from the force equilibrium
and is described by

ṽVy =
vVx

Cα1 · cos δ1 + Cα2 · cos δ2 + Cα3 + Cα4

·
(
m · ay − Cα1 · lF · cos δ1 + Cα2 · lF · cos δ2 − Cα3 · lR − Cα4 · lR

vVx
· ψ̇
)

(7.113)

+ Cα1 · cos δ1 · δ1 + Cα2 · cos δ2 · δ2 .
The derivation is given in Appendix G.2. As (7.113) does not contain any
integrator, it is applied as a measurement variable to correct the integration errors.
Consequently, the output vector of the system is defined by

y =
[
ṽVy ψ̇ ay

]T
. (7.114)

Vehicle sideslip angle and tire slip angle estimation

Based on the knowledge of the longitudinal and lateral velocity as well as the yaw
rate, the calculation of the vehicle sideslip angle is performed geometrically. For the
vehicle sideslip angle, the steer angle of each wheel is required in addition.

β =
vVy
vVx

. (7.115)

According to Figure 7.22, the tire slip angles are therefore calculated by

α1 =
vVy − lF · ψ̇
vVx − bF

2 ψ̇
+ δ1 , (7.116a)

α2 =
vVy − lF · ψ̇
vVx + bF

2 ψ̇
+ δ2 , (7.116b)

α3 =
vVy + lR · ψ̇
vVx − bR

2 ψ̇
, (7.116c)

α4 =
vVy + lR · ψ̇
vVx + bR

2 ψ̇
. (7.116d)

Friction coefficient estimation

The estimation of the friction coefficient has been an important subject in
automotive research in the recent years. Publications present a large variety on
ideas and approaches to estimate the friction coefficient, however up to now, to the
best knowledge of the author, no method with satisfying results has been established.
Some ideas, for instance the analysis of the slip stiffness at a small slip, are presented
in [59, 133, 189].
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Figure 7.23: Characteristic line (longitudinal) of Pacejka tire model with constant slip
angle and vertical tire force.

In the present work, the friction coefficient is obtained by comparing the estimated
force to a reference value calculated from the tire model. Firstly, the friction at
the actual operating point is to be found, which means the slip ratio sTi

x , the tire
slip angle αi and the vertical tire force FTi

z are given. The characteristic line of the
Pacejka tire model in the longitudinal direction is illustrated in Figure 7.23, where
the tire vertical force and the slip angle are constant. According to the characteristic
line, a reference force FTi,ref

x is determined by selecting a certain reference friction
coefficient μref

x (typically with a properly large value) and the current slip ratio.
Therefore, a relative friction coefficient is identified by

μTi
rel =

FTi
x

FTi,ref
x

=
sx · Cs(μ

Ti
x ) · FTi

z

sx · Cs(μref
x ) · FTi

z

=
Cs(μ

Ti
x )

Cs(μref
x )

. (7.117)

In the Pacejka tire model, it is assumed that the traction stiffness Cs(μx) changes
linear to the friction coefficient μx in case that other factors remain the same.
Therefore, equation (7.117) is described by

μTi
rel =

FTi
x

FTi,ref
x

=
μTi
x

μref
x

. (7.118)

With the knowledge of μref
x , the current longitudinal friction coefficient μTi

x is
determined. Analogously, the lateral friction coefficient μTi

y can be derived by
comparing the lateral forces.

Under the assumption of symmetric friction coefficients (μ = μx = μy), the friction
coefficient μ is determined either by μx or μy. The relative friction coefficient
can only be estimated when forces are applied on the tire. Therefore, friction
coefficients on both axes are compared and the more appropriate one is chosen.
In this approach, it is assumed that the tire model is entirely known to the software.
The implementation is achieved by storing the characteristics of the tire model in
the LUT.
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In Figure 7.24 the entire structure of the estimator with implicated estimation
sequence is summarized.
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Figure 7.24: Structure of the parameter estimator.

7.5 Summary

The TV application is studied in this chapter. In order to prevent wheel spin
and enhance the reliability of the application, both tire slip control and yaw rate
control are implemented. Furthermore, the operation strategy and the approach
of parameter estimation are introduced. In the next chapter, these approaches are
integrated with the drivetrain system and the validated control approaches presented
in the previous chapters, and tested in the Hardware-in-the-Loop (HiL).





8 Integration and Validation of the
entire application

In this chapter, the robust current control and the active damping control, which
are validated in the corresponding subsystems with results presented in section 5.6
and 6.3, are integrated in the TV control. By means of the dSPACE ASM suite
mentioned in section 7.1, the entire control SW is applied to the real-time vehicle
dynamics simulation. Two different simulation approaches applied in the present
work are introduced in section 8.1. In section 8.2, the performance of the TV
application is evaluated. In addition, the standardized test maneuvers specified in
section 2.3.1 are performed.

8.1 Simulation approaches

In order to test the control SW in a proper way, two different simulation approaches
are applied in the present work. The first one is called Processor-in-the-Loop
(PiL) simulation. In the PiL simulation, the control SW to be tested is compiled
and downloaded to the target real-time platform. In this way, the control SW
is stand-alone and is executed in real-time. Unlike the standard PiL test, the
simulation environment – the vehicle model and the driving situation – is simulated
in the present work on another real-time platform and communicates with the control
SW via I/O interfaces of both systems.

Another approach is the HiL simulation. According to the V-model in the industry,
the implemented TV application is validated on a HiL test bench before it is
integrated in the entire physical vehicle system. Safety functions in particular have
to be tested in a simulated environment to avoid potential dangers. The setup of
the test bench is schemed in Figure 8.1.

As shown in the figure, the entire system consists of the simulation and the physical
components, and depicts a close-loop system. The physical component is represented
by the mechanical drivetrain introduced in chapter 6 as the RR drivetrain in the
vehicle and the IM as the RR drive motor (shown as 1 ). The simulation component
consists of the RL drivetrain, the vehicle dynamics and the driving environment
(shown as 2 ). The control unit, on which the simulation runs, is referred to as
slave thereinafter.

The work flow as well as the interaction between the physical and the simulative
systems are described as follows: The operation strategy on the control unit referred
to as master determines the reference yaw rate according to the steering wheel angle
and the driving situations in the simulation. In order to obtain the yaw rate, the TV
controller manipulates in both drivetrains the shaft torques, which are considered as



142 Integration and Validation of the entire application

ASM Vehicle
Dynamics

Control
Strategies

Simulation Physical system

vehicle sensor signals

shaft torque (RR)
motor torque (RL)

reference
speed (wheel)

Simodrive

switch
signals

actual
speed (motor)

stator
voltage

actual speed (wheel)

stator current
(motor)

1

2

Figure 8.1: scheme of the HiL test bench.

reference values for the damping controllers. So far, there is no difference between
both drivetrains.

Subsequently, both damping controllers compute the control output – the motor
torque – in order to obtain a dynamic shaft torque response without oscillation.
Here, the RL damping control is based on the wheel speed and the rotor speed from
the simulation, while the RR damping control uses the values from the physical
systems. The RR wheel speed in the simulation is implemented in the physical
system by applying this speed as reference value to the PMSM. The RL motor
torque is transferred to the slave, whereat the RR motor torque is translated as
reference value to the current controller. By using the SIEMENS Simodrive system
introduced in chapter 5, the IM provides an electromagnetic torque enforced on the
rotor and the mechanical drivetrain. The resulted shaft torque is measured and
transferred as RR shaft torque to the slave. In the simulation, the vehicle dynamics
are influenced by the RR shaft torque and the RL motor torque. As feedback, the
sensor signals are sent to the master.

Both the simulation and the control strategies are operated in real-time. The sample
time of the current control loop is T 1

s = 0.1ms, while for the vehicle dynamics
simulation as well as for the rest part of the control strategies the sample time is
defined by T 2

s = 1ms.
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8.2 Results and evaluations

In order to evaluate the application in a proper way, the following properties with
their measures are considered in the present work as essential evaluation criteria for
the performance analysis of the TV application [185]:

� Stability: The vehicle sideslip angle β is applied to evaluate the vehicle
stability.

� Maneuverability: The time delay between the steering wheel angle and the
yaw rate, and the time delay between the steering wheel angle and the lateral
acceleration, are defined as the criterion to present the steerability [3]. In
addition, the driving trajectories are considered as another reference.

� Agility: The agility is exhibited by the maximum admissible lateral
acceleration ay.

SW integration test

The first test is performed in the PiL simulation. In this test, it is aimed to
validate the SW integration as well as to roughly present the performance of the
TV application. The driving maneuver is defined as follows: The vehicle velocity is
kept constantly at 60 km/h. A step change of steering wheel angle from 0◦ to 90◦ is
applied.

The yaw rate responses are shown in Figure 8.2. The yaw rate reference of the system
without TV is derived from the natural steering behavior of the vehicle introduced
in section 7.3.1, while the operation strategy of the TV application determines the
reference value based on the neutral steering behavior. Therefore, a higher reference
value is required by the system with TV as shown in Figure 8.2a. Unlike the system
without TV that the actual yaw rate converges to the reference value, a steady-state
control deviation is noticed in the figure. This issue can be clarified in Figure 8.2b.
It is important to note, at around the 2nd second, that the upper bound of the
input constraint of the yaw rate controller is reached. For this reason, a larger force
to increase the yaw rate is impossible and the reference value cannot be reached.
However, the reference yaw rate determined by the operation strategy is only a
steering behavior to be pursued. More important is that, the actual yaw rate by the
same steering wheel angle is increased by the TV application, which implicates that
the cornering behavior is improved.

In Figure 8.3 and 8.4, the performances of the tire slip control and the active damping
control are presented. Apparently, the reference tracking of slips and torques are
satisfying. Because of the asymmetrical torque distribution of TV, a positive tire
slip is required on the RR wheel, while a negative slip is applied on the RL wheel.
It is important to notice, the slip value of the RL wheel is greater compared to the
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Figure 8.2: Comparison of yaw rate responses.
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Figure 8.5: Vehicle trajectory.

value of the RR wheel, although the force/torque value on the RL wheel is smaller.
This phenomenon is clarified as follows: The vertical load forces on the left and
the right wheels are differently distributed due to the roll motion of the vehicle as
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introduced in section 7.4. In case of left cornering as in the simulation, the vertical
load forces on the right tire is higher than on the left tire. According to the Pacejka
tire model, with the same slip, the corresponding force is proportional to μ · Fz.
Therefore, in order to obtain the same force, higher slip is applied in case of smaller
μ · Fz.

Figure 8.5 illustrates the TV performance in an intuitive way, that the vehicle
trajectories are delineated. Apparently, under the condition that the vehicle drives
at the same velocity and is steered with the same steering wheel angle, the vehicle
with TV requires a shorter duration and path to be steered in the desired direction.
It means, assisted by the TV application, that the vehicle steering behavior is
improved. This features a great importance in certain emergencies: For instance,
the vehicle is steered due to an obstacle appearing abruptly in the driving path. The
TV application facilitates the vehicle to drive quickly around the obstacle, while the
vehicle with natural steering behavior may drive against it.

Furthermore, another driving situation is simulated: a step change of steering wheel
angle from 0◦ to 180◦ at 60 km/h is employed. The vehicle behavior with/without
TV is illustrated in Figure 8.6 and 8.7.
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Due to the large step change of the steering wheel angle, large side forces on the
tires are produced and result in the instability of the vehicle without TV. Figure 8.6
shows that the actual yaw rate does not match the reference value compared to
Figure 8.2a. The peak value of the vehicle sideslip angle in Figure 8.7 is around
−20◦, which deviates far away from the admissible extreme value of ±6◦ specified in
section 2.3.2. In the vehicle with TV in contrast, the actual yaw rate is maintained
near to its reference value by means of the yaw rate controller and the vehicle sideslip
angle is kept under 4◦. This simulation result implicates the fact, that despite of the
overreaction of the driver, TV ensures a stable vehicle behavior as long as enough
system resource is available for the control application.

As has been introduced, the TV application is validated in the present work by
means of the standardized test maneuvers.
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Lateral transient response test

As specified in the standard ISO 7401, the driving torque and the steering wheel
angle are chosen in such a manner, that the lateral acceleration ay in steady-state
is kept to 4m/s2 and the vehicle velocity at 80 km/h. The target of this test is to
evaluate the lateral dynamic behavior of the driving system. Figure 8.8 shows the
results of the significant measures on the HiL test bench.
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Figure 8.8: Lateral transient response test.

In order to obtain a constant lateral acceleration in the amount of 4m/s2, a
larger steering wheel angle is required for the vehicle without TV as presented in
Figure 8.10a. The yaw rate responses of both systems are illustrated in Figure 8.10b.
The response time of the vehicle without TV is smaller than the vehicle with TV.
Furthermore, The yaw rate of the vehicle with TV exhibits an oscillating behavior.
The reason of a slower response with TV is clarified as follows: The dynamic of
the TV control is limited to the system dynamics in the inner loops. The system
response time of the uncontrolled yaw rate in the present work is around 200ms.
However, due to the limited measurement resolution and noises on the test bench,
the dynamics of the controllers are restricted, so that the time constant of the entire
control system is greater than this response time. As a consequence, additional



8.2 Results and evaluations 147

longitudinal forces, which are applied by the TV controller to the vehicle system
for yaw rate enhancement, have a slower effect on the vehicle compared to the
response time of the yaw rate and cause therefore oscillations. In analogy, the
transient behavior of the lateral acceleration without TV is better than the one
with TV, which is presented in Figure 8.8c. According to ISO 7401, the values of
the assessment criteria in this test are measured and given in Table 8.1.

Criterion Symbol without TV with TV

Yaw gain in steady-state
(
ψ̇/δH

)
ss

0.2288 /s 0.3426 /s

Response time of lateral accel. Tay 0.469 s 0.633 s

Response time of yaw rate Tψ̇ 0.215 s 0.331 s

Time to the maximum lateral accel. Tay,max 0.818 s 1.01 s

Time to the maximum yaw rate Tψ̇,max 0.384 s 0.701 s

Overshooting value of lateral accel. Uay 1.0237 1.0311

Overshooting value of yaw rate Uψ̇ 1.1473 1.0947

Table 8.1: Values of the assessment criteria of the lateral transient response test.

The yaw gain with TV in steady-state is greater than the one without TV, since
the vehicle with TV has a neutral steering behavior, while the vehicle without TV
owns the natural under-steering behavior. For this reason, the steady-state steering
behavior of the vehicle is improved by means of TV. Subject to ISO 7401, the
response time of the quantity is defined by the duration from the time, when 50%
of the steering wheel angle is reached, to the time, when 90% of the quantity in
steady-state is achieved. The time to the maximum quantity is give by the duration
from the time, when 50% of the steering wheel angle is reached, to the time, when
the peak value of the quantity is attained. Both the response time and the time to
the maximum quantity without TV are shorter when compared to those with TV.
The reason was clarified above. The overshooting of the lateral acceleration Uay

with/without TV is comparable. Unlike to the lateral acceleration, the overshooting
of the yaw rate without TV is 5% higher when compared to those with TV. Since
the yaw damping coefficient decreases with the vehicle velocity, this overshooting
becomes greater at higher velocity without TV and may cause vehicle instability.

As shown above, the dynamic steering behavior with TV is not satisfied when
compared to the one without TV. In order to show the effect of this drawback,
the vehicle trajectories of both cases are illustrated in Figure 8.8d. Apparently, the
vehicle trajectories in both cases deviate little from each other. Since the yaw rates
of both cases in steady-state are identical, the slight discrepancy of the trajectories
is caused by the yaw rate difference in the transient procedure, which has a marginal
effect as shown. Therefore, the drawback of the TV in the transient procedure does
not significantly deteriorate the maneuverability of the vehicle.

In Figure 8.9, the essential estimation values are presented. The estimated slip
ratios are close to the physical values. The slip ratio of the RR drivetrain has a
larger ripple compared to the RL drivetrain, since the driving torque on the former
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Figure 8.9: Estimation values.

drivetrain is performed by the mechanical components. The longitudinal velocity is
well estimated. Since the lateral velocity is marginal, an estimation error is present.
The estimation values of other relevant quantities are presented in Appendix I.1.

Sine-steer test

The sine-steer test is performed by a complete period of sinusoidal steering wheel
angle with 0.5Hz as input. The vehicle velocity is kept around 80 km/h by a
constant gas pedal position. The magnitude of the steering wheel angles are selected
in such a way, that comparable lateral accelerations (around 4m/s2) are obtained
with/without TV. The results of the HiL simulation are described in Figure 8.10.

Since the comparable yaw rate and lateral acceleration should be attained
with/without TV, a higher magnitude of the steering wheel angle is required in the
case without TV as described in Figure 8.10a. Similar to the lateral step response
test, the transient behaviors of the yaw rate and the lateral acceleration without
TV shown in Figure 8.10b and 8.10c are better compared to the ones with TV.
According to ISO 7401, the necessary measures of this test are given in Table 8.2.
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Figure 8.10: Sine-steer test.

Criterion Symbol without TV with TV

Time delay of lateral accel. T (δH − ay) 0.23 s 0.36 s

Time delay of yaw rate T (δH − ψ̇) 0.14 s 0.23 s

Lateral accel. gain ay/δH 0.0768 (m/s2)/◦ 0.1065 (m/s2)/◦

Yaw gain ψ̇/δH 0.240 s 0.342 s

Table 8.2: Values of the assessment criteria of the sine-steer test.

The time delay of a quantity is defined by the duration between the peak values of
the steering wheel angle and the quantity. As presented in the table, the delay time
of both the lateral acceleration and the yaw rate without TV is smaller compared
to those with TV. In contrast, assisted by the TV, the lateral acceleration gain and
the yaw gain are greater. As the former test, the vehicle trajectories are illustrated
in Figure 8.10d. A similar result is obtained here as in the lateral transient response
test, the vehicle trajectory is slightly impacted. The estimation results of the
essential values are illustrated in Figure 8.11. Other estimation results are given
in Appendix I.2.
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Figure 8.11: Estimation values.

Sine-steer with dwell test

The sine-steer with dwell test is the most appropriate driving maneuver to excite
an unstable vehicle behavior. The maneuver is specified in H.3. According to the
specification, no gas pedal is applied during the test. The initial vehicle velocity is
80 km/h. Since the safety clutch on the test bench is activated in case of vehicle
instability, the test can only be performed in the PiL simulation. Figure 8.12 presents
the essential results.

As shown in Figure 8.12a, the same steering wheel angle is applied in both cases.
The peak value of the steering wheel angle is 200◦. In the first half of the period,
the vehicle in both cases is stable. A large yaw rate is obtained by the steering
wheel angle. Although only a small force range is available for the TV application
due to the large portion of the lateral force, a greater yaw rate is attained assisted
by TV. However, in the second half of the period, the vehicle in both cases reaches
the system limit. The vehicle without TV exhibits an instability. Both, the yaw
rate and the lateral acceleration deviate significantly from the values of the stable
behavior, which are described in Figure 8.12b and 8.12c. Figure 8.12e emphasizes
this phenomenon: Despite of the reset steering wheel angle, the vehicle slides further
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Figure 8.12: Sine-steer with dwell test.

in the same direction. Due to the resistance caused by the large tire slip angles on
the front axle, the vehicle velocity decreases significantly as depicted in Figure 8.12f.

In comparison to the case without TV, the vehicle assisted by TV is kept stable. In
the second half of the period, the yaw rate is reset slowly. The reason is explained as
follows: Restricted by the TFE, not sufficient longitudinal force is available for TV
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to control the yaw rate to the reference value, since the lateral forces of both rear
tires are large. Once the lateral forces decrease, the control deviation is reduced.
In the end, the actual yaw rate is controlled to zero corresponding to the steering
wheel angle. The same result is implicated by the vehicle trajectory in Figure 8.12e
as well. The vehicle is able to drive straightly in the end of this test since the
yaw rate is corrected to zero. It is important to notice, that the vehicle slip angle
without TV exceeds 20◦, while the slip angle with TV is maintained in an acceptable
range compared with the large steering wheel angle. The vehicle velocity is kept at
around 60 km/h with TV, while in case without TV the vehicle is able to return
to a stable state first at a much lower velocity. This test shows evidently, that the
vehicle stability is enhanced significantly by the TV application.
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Figure 8.13: Estimation values.

Figure 8.13 illustrates the estimation quality. Although the vehicle dynamics and
the tire modeling are far away beyond the linear operation range, the estimation
errors are acceptable. These results validate the reliability of the estimator. More
estimation results can be found in Appendix I.3.
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Motivated by the increase of the customer requirements in the automotive market,
vehicles possessing safety systems are becoming particularly critical. Amongst these
safety systems, TV exhibits a reliable facilitation of cornering behavior without
significantly deteriorating the drive dynamics. TV exploits the possibility of
producing additional yaw moment by applying asymmetric tire forces on either
vehicle side. Assisted by this additional yaw moment, the driver’s steering effort
can be either supported or corrected, so that the vehicle is kept in the desired
trajectory. Taking advantage of individual drive wheel control, unlike conventional
vehicles with ICE, TV is achieved in EVs without active differential. Furthermore,
the response time of torque produced by electric motors is much smaller compared to
the response time of ICEs. These features make EV appealing for TV applications.

As preliminaries of the present work, a hypothetical vehicle is defined as the platform
for the TV application. The cost, the mass, the installation/HW and SW complexity,
the adaptability for TV as well as the vehicle stability are taken into account as the
critical criteria. Furthermore, the functional requirements and SW specifications are
taken as guidance for the SW development and validation.

The requirements of safety and reliability of TV emphasize a high dynamic and
robust control application. For this reason, the optimization-based MPC theories
are applied as fundamentals of the present work. Technical reviews are stated in
regard to the current control in the IM, the active damping control in the mechanical
drivetrain and the torque vectoring control, which constitute the control objective of
the present work. In contrast to other works, the potential benefits of MPC theories
are further exploited in order to attain a high-performance control application.

In the current control of the IM, the system uncertainties and the system constraints
are among the most critical issues, which influence the robustness and the dynamic
of the system. Two approaches are implemented to tackle the system uncertainties:
In the former case, the system is described as a LPV system with polytopic
uncertainties. The optimization problem is represented by minimizing the maximum
objective function inside the polytopic uncertainty set, which is bounded by
Lyapunov functions. For the purpose of real-time application, the approximated
multi-parametric SemiDefinite Programming (mp-SDP) is applied for the orthogonal
partition, which is executed off-line, and the quad-tree search is implemented for
efficient on-line computation. Due to expensive off-line computational efforts and
therefore the inconvenience of tuning control parameters, the latter approach is
proposed and implemented in the present work. It is based on a nominal prediction
model and restricts the errors between the nominal and the uncertain systems by a
RPI set. By determining the minimal Robust Positively Invariant (mRPI) set and
the tightened sets of the state and input variables, both of which are polyhedrons, the
optimization problem can be formulated as a QP problem. To obtain the real-time
application, the QP problem is reformulated into a mp-QP problem, in which
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the piecewise affine control laws are expressed explicitly by the vector parameters.
Despite the significant reduction of the computational costs in the latter approach
compared to the former one, the robustness and the optimality of the system are
seldom deteriorated. The simulation and the experimental results show, that both
approaches achieve a high control performance despite of parameter mismatches.
Meanwhile, in comparison to the approaches based on MPC and Kalman filter
with disturbance modeling, the control performance and the robustness of both
approaches do not depend on the quality of the disturbance estimation. That means,
as can be observed from the results, the overshooting in transient states due to slow
estimation is eliminated.

Besides the system uncertainties, the system constraints of IM are taken into account
in the control design as well. Instead of directly handling the current and voltage
constraints, they are reformulated as torque constraint. The advantage of such
reformulation is that, no approximation of quadratic current and voltage constraints
is required, since the torque constraint formulation is linear. By appending the time
varying torque limit to the vector parameters and applying mp-QP, the approach
is applicable for the entire operation range in real-time. It is presented in the
results that neglecting the approximation of the system constraints entails a sufficient
utilization of the system resource and promotes thus the optimality of the system.

In the mechanical drivetrain, the main control issue is depicted by the oscillating
behavior due to the elastic joints among the mechanical components. In order to
suppress such torsional oscillations and improve the system performance, an active
damping control approach is implemented. Since the control objective is to prevent
the natural dominant resonance frequency of the system, which is barely impacted
by the potential parameter variations, the explicit MPC approach with underlying
mp-QP is applied according to the approximated two-mass-oscillator model. To
enhance the control performance, a feedback compensation based on the speed
difference between motor and wheel is adopted. By means of this compensation,
which is essentially a derivative controller, the damping factor of the closed-loop
system can be modified. The system constraint is represented by the torque capacity
of the IM as input constraint, whereat the compensation torque has to be factored
as well.

To validate the active damping controller by measurements, a test bench is designed,
in which the resonance frequency of a mechanical drivetrain in vehicles is simulated.
On this test bench, the set-point of the speed-controlled PMSM as a load machine
is determined by the wheel speed obtained from the vehicle simulation model. In
this manner, the repercussion of the vehicle to the mechanical drivetrain is taken
into account.

In the vehicle dynamic system, the LSTM and the DTM are applied as fundamentals
for the TV control. Unlike numerous TV control approaches, a tire slip controller
is implemented in the present work. The primary advantage of the tire slip
control is that the tires’ physical limitations can be systematically considered in
the control approach. Particularly under low friction conditions, the skidding is
suppressed. The tire model is described as a LPV system, in which the longitudinal
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velocity and acceleration are considered as time-varying parameters. This system
can be dealt with by either the min-max control method based on mp-SDP or
the tube-based MPC method. In order to translate the required longitudinal tire
forces into the corresponding longitudinal slips, an inverse tire model is implemented
by means of LUTs. However, model mismatch can be caused in certain critical
situations discussed in the present work. In order to avoid such situations, the
maximum tire force limitation is applied by 95% of the potentially available value.
The yaw rate control is composed of a yaw rate controller based on mp-QP and
several auxiliary components responsible for the disturbance rejection, the dynamic
constraint computation as well as the driving force determination. For the purpose
of reference tracking of the yaw rate, the force difference between both drive wheels
is overlapped to the symmetrical driving force demanded by the driver in such a
way, that the total driving force remains a constant. However, in some extreme
situations, where the tire force limitation is reached, either the TV force or the force
demanded by the driver must be modified. In the present work, the TV force is kept
unchanged to guarantee that the control performance and the driving force from
the driver is adapted according to the tire force limitation. Nevertheless, the driver
cannot sense this change, since it takes place transiently.

In order to enhance the reliability of the TV application, an operation strategy
is proposed. According to it, the maximum admissible yaw rate and the road
situations such as cross slope and inhomogeneous frictions are considered. In this
way, a proper situation-dependent yaw rate reference can be determined for the TV
control. Furthermore, a systematical estimation strategy is developed to provide the
unmeasurable signals used by the TV application.

According to the development procedure of the V-model, the validated controlled
IM and the damped mechanical drivetrain subsystems are finally integrated into the
vehicle system with TV. The entire system is validated through both the PiL and
the HiL simulation. The evaluation of the TV application is performed according
to the vehicle stability, steerability and agility. Due to the equipment limitations
such as resolution and noises, the dynamic of the active damping control is limited.
As a consequence, the dynamic of the entire TV application is slower than the
tire dynamic. Slight contribution is made by the TV application to enhance the
transient behavior. According to the evaluation criterion specified in ISO 7401,
the transient maneuverability in case of absence of the TV application is therefore
better. However, since the TV application enables a neutral steering behavior, more
yaw rate is attained by the identical steering effort of the driver. Therefore, the
steering behavior assisted by the TV application is usually better than the natural
steering behavior. The results of the sine-steer with dwell test show, that the TV
application ensures a stable vehicle behavior in critical driving situations, while
the vehicle without TV application becomes completely unstable. Furthermore, a
higher agility is achieved by means of the TV application. Ultimately, the cornering
behavior and the vehicle safety are evidently enhanced by the TV application.

Although the test results prove that a high-performance torque vectoring is attained
by means of the optimization-based control approaches, several works can be
performed in the future. The primary work to be expected is to apply and test
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the entire SW in a real vehicle system. This means, the control parameters and the
estimation parameters have to be newly calibrated. Moreover, several control issues
can be anticipated in such a system: So far the Pacejka tire model is adopted both in
the control SW and in the vehicle model. However, such model is an approximation
of real tires’ property. As a consequence, the estimation quality of the friction
coefficient μ based on the tire model is limited. Another factor, which influences the
estimation accuracy of the friction coefficient, is the tire wear. Since the physical
properties may change with the wearing and the aging of the tire, it is reasonable to
assume that the characteristic line obtained from a used tire is significantly different
from the one obtained from a new tire. This phenomenon emphasizes the necessity
and importance of the friction coefficient estimation in the practice.

Furthermore, in the present work, a neutral steering behavior (η = 0) is pursued.
However, depending on the requirement of the TV application, the characteristic
line can be modified. For instance, an over-steering characteristic (η < 0) can be
specified for sports cars. The impact of this change over the control strategy should
be also carefully investigated.

Finally, the redundancy of the signals and the failure tolerance of the TV application
are worthy to be studied. In case of sensor failures, the failed signal can be replaced
by the value derived from other signals. In the most critical cases, the TV application
should be either switched to the limp modus or completely switched off and the
overlying ESC system takes on the responsibility to ensure the vehicle stability.



A Definitions and notations of
optimization problems

Definition A.0.1 (Closed Set [42]) A set S is closed if every point outside S has
a neighborhood disjoint from S.

Definition A.0.2 (Bounded Set [42]) A set in R
n is bounded if it is contained

inside a ball {x ∈ R
n : ‖x‖ ≤ R} of finite radius R.

Definition A.0.3 (Compact Set [42]) A set in R
n is compact if it is both

bounded and closed.

Definition A.0.4 (Convex Set [27]) A set C is convex if the line segment between
any two points in C lies in C, i.e., if for any x1, x2 ∈ C and any θ with 0 ≤ θ ≤ 1,
it holds

θx1 + (1− θ)x2 ∈ C. (A.1)

Definition A.0.5 (Hyperplane and Halfspace [27]) A hyperplane is a set of
the form {

x |aTx = b
}
, (A.2)

where a ∈ R
n, a �= 0, and b ∈ R.

A hyperplane divides R
n into two halfspaces. A (closed) halfspace is a set of

the form {
x |aTx ≤ b

}
, (A.3)

where a �= 0.

Definition A.0.6 (Polyhedron [27]) A polyhedron is defined as the solution set
of a finite number of linear equalities and inequalities:

P =
{
x |aT

i x ≤ bi, i = 1, ...,m, cTj x = dj , j = 1, ..., p
}
. (A.4)

Obviously, a polyhedra is the intersection of a finite number of halfspaces and
hyperplanes.

Definition A.0.7 (Polyhedral Partition [25]) A collection of sets P1, ...PN is a
partition of a set Θ if

⋃N
i=1 Pi = Θ and Pi ∩Pj = ∅, ∀i �= j. Moreover, P1, ...,PN is

a polyhedral partition of a polyhedral set Θ if P1, ...,PN is a partition of Θ and the
P i are polyhedral sets, where P i denotes the closure of the set Pi.
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Definition A.0.8 (Polytope [27]) A bounded polyhedron P ∈ R
n

P = {x ∈ R
n : Hx ≤ d} , (A.5)

is called a polytope, where H ∈ R
q×n, d ∈ R

q, where q represents the number of
halfspaces defining P and all inequalities are interpreted in an element-wise manner.

Definition A.0.9 (Convex Hull [27]) The convex hull of a set S ⊆ R
n, denoted

Co {S}, is the set of all convex combinations of points vi, i ∈ {1, ...,M} in S:

Co {S} =
{

L∑
l=1

θlvi, 0 ≤ θl ≤ 1,
L∑
l=1

θl = 1

}
. (A.6)

The points vi represent the vertices of this convex hull.

Definition A.0.10 (Robust Positively Invariant Set [19]) A set Θ ⊂ R
n is

said to be robust positively invariant (RPI) for a system x(k+ 1) = f (x(k), w(k)),
if for all x(0) ∈ Θ and all w(k) ∈ W the solution x(k) ∈ Θ for all k > 0.

Definition A.0.11 (Minimal Robust Positively Invariant Set [154]) A
robust positively invariant set F∞ is said minimal robust positively invariant
(mRPI) for a system x(k + 1) = f(x(k),w(k)), if it is contained in every closed
RPI set of this system.

Definition A.0.12 (Convex Function [27]) A function f: R
n → R is convex if

its domain is a convex set and if for all x1 and x2 in its domain and any scalar θ
with 0 ≤ θ ≤ 1 the following inequality is satisfied

f (θx1 + (1− θ)x2) ≤ θf (x1) + (1− θ) f (x2) . (A.7)

Definition A.0.13 (Convex Quadratic Function [27]) A quadratic function
f(x) = xTQx+ 2cTx+ d is convex if and only if Q � 0, and a quadratic function
f(x) = xTQx+ 2cTx+ d is strictly convex if and only if Q 	 0.

Definition A.0.14 (Affine Function [27]) A function f: R
n → R

m is affine if it
is a sum of a linear function and a constant, i.e., if it has the form f(x) = Ax+ b,
where A ∈ R

m×n and b ∈ R
m.

Definition A.0.15 (Piecewise Affine Function [25]) A function f : Rn → R
m,

is piecewise affine (PWA) if there exists a partition R1, ...,RN of the domain in R
n,

and f i(x) = Aix+ bi, ∀x ∈ Ri, i = 1, ..., N

Piecewise quadratic (PWQ) functions are defined analogously.



159

Definition A.0.16 (Minkowski Set Addition [166]) The Minkowski set
addition is defined as follows:

A⊕ B := {x+ y |x ∈ A,y ∈ B} , (A.8)

where A ⊂ R
n and B ⊂ R

n.

Definition A.0.17 (Pontryagin Set Difference [99]) The Pontryagin set
difference is defined as follows

A B := {x ∈ R
n |x+ y ∈ A, ∀y ∈ B} , (A.9)

where A ⊂ R
n and B ⊂ R

n.

The indispensable relationship between Pontryagin set difference and Minkowski set
addition is that the former one is not exactly the complement of the latter one.
Actually, instead of (A B)⊕ B = A, (A B)⊕ B ⊂ A [24].

Notation A.0.1 The description F ∈ S
n denotes that matrix F is symmetric,

where S
n represents the set of symmetric matrices in R

n×n. Analogously, F ∈ S
n
+

and F ∈ S
n
++ denote that the matrix is positive semidefinite (F � 0) and positive

definite (F 	 0) respectively.

Notation A.0.2 The subscripts r, b, l associated with the state vector x, input
vector u and output vector y denote real, binary and logical value, respectively.

Notation A.0.3 The subscripts i, k associated with the state vector x, input vector
u and output vector y denote the index for the prediction horizon and the current
time instant respectively.



B Technical data of electric drivetrain

Component Model type

Drive motor Siemens 1LA5186-4AA10

Load machine Siemens Servomotor 1FT6134-6SF71-1EH0

Supply module Simodrive 1P 6SN1145-1BA02-0CA1

Power module (drive motor) Simodrive 1P 6SN1123-1AA00-0EA2

Power module (load machine) Simodrive 6SN1123-1AA01-0FA1

Control module (load machine) Simodrive 611 universal HRS

DSP system dSPACE 1103

Interface between Simodrive and dSPACE Sidi board

Table B.1: Electrical component list.

Model type Siemens 1LA5186-4AA10

Rated voltage 400V

Rated current 41.5A

Rated power 22 kW

Rated torque 144Nm

Stator frequency at rated point 50Hz

Rated slip 2,67%

Pole pair number 2

Stator resistance 0.18Ω

Rotor resistance (referred to stator side) 0.1232Ω

Stator leakage inductance 1.94mH

rotor leakage inductance (referred to stator side) 1.27mH

Mutual inductance 40.11mH

Rotor inertia 0.15 kgm2

Topology star connection

Table B.2: Parameters of the drive motor.
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Model type Siemens 1LA5186-4AA10

Rated voltage 283V

Rated current 23.1A

Rated torque 56Nm

Stator frequency at rated point 50Hz

Table B.3: Modified rated point of the drive motor.

Model type Siemens Servomotor 1FT6134-6SF71-1EH0

Rated voltage 324V

Rated current 72A

Rated power 35 kW

Rated torque 110Nm

Rated speed 3000 rpm

Pole pair number 3

Maximum speed 3600 rpm

Maximum torque 316Nm

Peak current 264A

Constant of torque 1.68Nm/A

Winding resistance 0.039Ω

Rotating field inductance 1.3mH

Electrical time constant 33ms

Mechanical time constant 2.3ms

Inertia (with brake mechanism) 0.0625 kgm2

Inertia (without brake mechanism) 0.0547 kgm2

Encoder EQN 1325

Table B.4: Parameters of the load machine.

Model type Simodrive 1P 6SN1145-1BA02-0CA1

Rated power 36 kW

Rated voltage 400V

dc link voltage 600V

Table B.5: Parameters of the supply module.
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Model type Simodrive 1P 6SN1123-1AA00-0EA2

dc link voltage 600V

Rated current 60A

Peak current 160A

Carrier frequency 3.2 kHz

Table B.6: Parameters of the power module for the drive motor.

Model type Simodrive 6SN1123-1AA01-0FA1

dc link voltage 600V

Rated current 70A

Peak current 200A

Number of axles 1

Table B.7: Parameters of the power module for the load machine.

Model type Simodrive 611 universal HRS

Resolution switchable 14/12 bit

Pole pair number 1-6

Maximum operating frequency 108/432Hz

TTL-sensor for IM until 420 kHz

Analoge I/O 2

Digitale I/O 4

Operation mode speed- or torque-controlled

Table B.8: Parameters of control module for the load machine
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Model type dSPACE 1103 PPC Controller Board

CPU clock frequency 1GHz

Memory (local) 32MB

memory (global) 96MB

A/D converter 20 channels

D/A converter 8 channels

Timers 8

Digital I/O 32-bit

Encoder interface 8 (digital), 1 (analog)

Slave DSP Texas Instruments TMS320F240

Relevant software Real-Time Library/Interface

Table B.9: Data of DSP system.

Model type Heidenhain ROD 420

Teeth number 2000

Sampling rate ≤300 kHz

Maximum speed 16 000 rpm

Table B.10: Data of Encoder for the drive motor.

Model type HBM T10F 500

Rated torque 500Nm

Voltage output (positive) 10V

Voltage output (negative) −10V
Residual ripple (peak-to-peak) 0.4%

Frequency output delay time 0.15ms

Voltage output delay time 0.9ms

Inertia of rotor 13.2× 10−3kgm2

Table B.11: Data of torquemeter.



C Measurement of the characteristic
curve of the stator inductance
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Figure C.1: Characteristic curve of stator inductance.

In order to obtain the characteristic curve of the stator inductance, the measurement
is performed in no-load operation at high speed. In this case, the current on the
q-axis is marginal and the voltage drop on the stator resistance can be neglected.
Therefore, the stator voltage equations in steady-state are simplified by

usd = −ωμ · σ · Ls · isq
usq = ωμ · Ls · isd . (C.1)

By means of the power-invariant transformation, it follows

u2sd + u2sq = 3 · U2
1 . (C.2)

Assuming ωμ ≈ ωr, the stator inductance is calculated by

Ls =

√
3 · U2

1

(ωr · σ · isq)2 + (ωr · isd)2 . (C.3)



D Dynamic torque constraint
calculation

Torque constraint in the basic speed area is derived from the following equations:

I2dq,max = i2sd + i2sq

isd = isd,n

T el =
pL2

m

L′
r

isdisq .

Substituting isd for isq, the torque constraint is expressed as

T el =
pL2

m

L′
r

isd,n

√
I2dq,max − i2sd,n . (D.1)

Torque constraint in the field-weakening area is calculated as follows: First, the
rotor flux speed ωμ in case that the voltage constraint is active, is derived by solving
the equations

isd =
ωn

ωr
isd,n

U2
dq,max = (ωμLsisd)

2 + (σωμLsisq)
2

ωμ = ωr +
isq
τrisd

,

which result in a fourth-order polynomial equation according to ωμ:

U2
dq,max =

(
ωnLsisd,n

ωr

)2

· ω2
μ +

(
ωnτrσLsisd,n

ωr

)2

· (ωμ − ωr)
2 · ω2

μ . (D.2)

Second, the maximum torque is calculated by solving the equations

U2
dq,max = (ωμLsisd)

2 + (σωμLsisq)
2

isd =
ωn

ωr
isd,n

T el =
pL2

m

L′
r

isdisq .

Finally, the torque constraint in the field-weakening area is expressed as

T el =
pL2

m

L′
r

ωn

ωr
isd,n

√(
Udq,max

σωμLs

)2

−
(

ωn

σωr
isd,n

)2

(D.3)

with ωμ as the solution of (D.2) and Ls from the LUT illustrated in Figure C.1. Lm

and L′
r are derived from Ls assuming that σ, σ1 and σ2 are constant.



E Technical data of mechanical
drivetrain

Parameter Symbol Value

Inertia of the rotor Jr 0.15 kg ·m2

Inertia of the torquemeter Jtm 0.0132 kgm2

Inertia of the safety clutch Jcl 0.012 kgm2

Inertia of the flywheel Jfw 2.2677 kgm2

Effective length of the drive shaft leff 1.55m

Stiffness of the drive shaft c 837.8Nm/rad

Table E.1: Parameters of the mechanical drivetrain.



F Technical data of the hypothetical
vehicle

Vehicle parameter Symbol Value

Mass m 1525 kg

Wheelbase wB 2.57m

Axle track (front / rear) bF / bR 1.544m / 1.544m

Wheel load distribution (front / rear) lF / lR 1.438m / 1.132m

Height of CoG h 0.543m

Vehicle inertia Ix 548 kgm2

Iy 1732 kgm2

Iz 1809 kgm2

Manufactured tire radius R0 0.35m

Transmission ratio of speed Ωr
Ωw

iv 2

Transmission ratio of torque Tw
Tel

it 18

Transmission ratio of steering δH
δ is 25.13

Table F.1: Parameters of the hypothetical vehicle.
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F.1 The Magic Formula Tire Model: Full Set of
Equations

All relevant equations utilized to adapt the MF in this work are stated below. In
order to simplify the notation an auxiliary input, ΔFz = (Fz − Fz0)/Fz0, denoting
the normalized change in tire load force with respect to the nominal load force Fz0,
is introduced. Numerical stability over MF’s full range of applicability is achieved
by including a small offset ε = 0.01 in some critical denominators. Due to the
assumption of zero wheel camber (γ = 0), terms involving γ do not appear in the
subsequent formulation. Furthermore, it is useful to redefine slip quantities for use
with the MF slightly deviating from the definitions given in (7.6) and (7.7):

s′x = − vsx
|vs| = sx · sgn vx (F.1)

s′y = tanα · sgn vx =
vy
|vs| = sy · sgn vx (F.2)

F.1.1 Longitudinal Tire Force

The full set of equations for the longitudinal tire force Fx (i = x, j = y) is given
below. Values for the coefficients p∗, that are introduced in this section are provided
in Table F.2.

F.1.1.1 Main Equations

Fx(s
′
x, s

′
y, Fz,ΔFz) = Fx0(s

′
x, Fz,ΔFz) ·Gxy(s

′
y, Fz,ΔFz) (F.3a)

Fx0 = Dx sin (Cx arctan [Bxs̃x − Ex (Bxs̃x − arctanBxs̃x)]) + SV x (F.3b)

Gxy =
cos (Cxy arctan [Bxy s̄y − Exy (Bxy s̄y − arctanBxy s̄y)])

cos (Cxy arctan [BxySHxy − Exy (BxySHxy − arctanBxySHxy)])
(F.3c)

s̃x = s′x + SHx (F.3d)

s̄y = s′y + SHxy (F.3e)

F.1.1.2 Main Parameters

Bx =
Kx

Cx ·Dx + ε
(F.4a)

Cx = pCx1 (F.4b)

Dx = μx · Fz (F.4c)

Ex =
(
pEx1 + pEx2 ·ΔFz + pEx3 ·ΔF 2

z

) · (1− pEx4 · sgn(s′x + SHx)
)

(F.4d)

SHx = pHx1 + pHx2 ·ΔFz (F.4e)
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pCx1 = 1.685

pDx1 = 1.21 pDx2 = −0.037
pEx1 = 0.344 pEx2 = 0.095 pEx3 = −0.02 pEx4 = 0

pHx1 = 0 pHx2 = 0

pVx1 = 0 pVx2 = 0

pBxy1 = 12.35 pBxy2 = −10.77
pCxy1 = 1.092

pExy1 = 0 pExy2 = 0

pHxy1 = 0.007

pKx1 = 21.51 pKx2 = −0.163 pKx3 = 0.245

Table F.2: Coefficients used for longitudinal tire force computation.

SV x = Fz · (pVx1 + pVx2 ·ΔFz) (F.4f)

Bxy = pBxy1 · cos
(
arctan(pBxy2 · s′x)

)
(F.4g)

Cxy = pCxy1 (F.4h)

Exy = pExy1 + pExy2 ·ΔFz (F.4i)

SHxy = pHxy1 (F.4j)

F.1.1.3 Auxiliary Parameters

μx = λμ · (pDx1 + pDx2 ·ΔFz) (F.5a)

Kx = Fz · (pKx1 + pKx2 ·ΔFz) · exp(pKx3 ·ΔFz) (F.5b)

F.1.2 Lateral Tire Force

The full set of equations for the lateral tire force Fy (i = y, j = x) is given below.
Values for coefficients p∗ introduced in this section are provided in Table F.3.

F.1.2.1 Main Equations

Fy(s
′
x, s

′
y, Fz,ΔFz) = Fy0(s

′
y, Fz,ΔFz) ·Gyx(s

′
x, Fz,ΔFz) + SV yx (F.6a)

Fy0 = Dy sin (Cy arctan [By s̃y − Ey (By s̃y − arctanBy s̃y)]) + SV y (F.6b)
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Gyx =
cos (Cyx arctan [Byxs̄x − Eyx (Byxs̄x − arctanByxs̄x)])

cos (Cyx arctan [ByxSHyx − Eyx (ByxSHyx − arctanByxSHyx)])
(F.6c)

s̃y = s′y + SHy (F.6d)

s̄x = s′x + SHyx (F.6e)

F.1.2.2 Main Parameters

By =
Ky

Cy ·Dy + ε
(F.7a)

Cy = pCy1 (F.7b)

Dy = μy · Fz (F.7c)

Ey = (pEy1 + pEy2 ·ΔFz) ·
(
1− pEy3 · sgn(s′y + SHy)

)
(F.7d)

SHy = pHy1 + pHy2 ·ΔFz (F.7e)

SV y = Fz · (pVy1 + pVy2 ·ΔFz) (F.7f)

Byx = pByx1 · cos
(
arctan

[
(pByx2 · (s′y − pByx3)

])
(F.7g)

Cyx = pCyx1 (F.7h)

Eyx = pEyx1 + pEyx2 ·ΔFz (F.7i)

SHyx = pHyx1 + pHyx2 ·ΔFz (F.7j)

SV yx = μy · Fz · (pVyx1 + pVyx2 ·ΔFz) · cos
(
arctan(pVyx4 · s′y)

)
· sin pVyx5 ·

(
arctan(pVyx6 · s′x)

) (F.7k)

F.1.2.3 Auxiliary Parameters

μy = λμ · (pDy1 + pDy2 ·ΔFz) (F.8a)

Ky = pKy1 · Fz0 · sin
(
pKy4 · arctan

(
Fz

Fz0 · pKy2

))
(F.8b)

F.1.3 Scaling of the Friction Coefficient

For the longitudinal and lateral tire forces a scaling parameter λμ was incorporated
into the equations defining μx and μy (F.5a), (F.8a). In order to account for changing
road surface conditions λμ may be varied according to Table F.4, effectively scaling
the maximum available friction forces in both directions.
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pCy1 = 1.193

pDy1 = −0.99 pDy2 = 0.145

pEy1 = −1.003 pEy2 = −0.532 pEy3 = −0.083
pHy1 = 0 pHy2 = 0

pVy1 = 0 pVy2 = 0

pByx1 = 6.4615 pByx2 = 4.196 pByx3 = −0.015
pCyx1 = 1.081

pEyx1 = 0 pEyx2 = 0

pHyx1 = 0.009 pHyx2 = 0

pVyx1 = 0.053 pVyx2 = −0.073 pVyx4 = 35.44 pVyx5 = 1.9 pVyx5 = −10.71
pKy1 = 14.95 pKy2 = 2.13 pKy4 = 2

Table F.3: Coefficients used for lateral tire force computation.

Road Condition Dry Damp Wet Icy

λμ 1 0.75 0.5 0.25

Table F.4: Adjustment of the friction coefficients μx, μy for different road conditions.



G Derivation of the computations in
the operation strategy

G.1 Derivation of system matrices of the EKF

Iz · ψ̈ =
∑

FTi
y · cos δi · li +

∑
FTi
x · sin δi · li +

∑
FTi
y · sin δi · bi

2
+

∑
FTi
x · cos δi · bi

2
. (G.1)

Under the conditions that FT1
x , FT2

x , δ3 and δ4 = 0, the equation is described by

Iz · ψ̈ = FT1
y · cos δ1 · lF + FT2

y · cos δ2 · lF − FT3
y · lR − FT4

y · lR − FT1
y · sin δ1 · bF

2

+ FT2
x · sin δ2 · bF

2
− FT3

x · bR
2

+ FT4
x · bR

2
. (G.2)

Considering FTi
y = −Cαi · αi and αi =

v
Ti
y

v
Ti
x

− δi ≈ v
Ti
y

vVx
− δi and substituting

v
T1,2
y = vVy + lF · ψ̇, vT3,4

y = vVy − lR · ψ̇ in (G.2), it results in

Iz · ψ̈ = −Cα1 ·
(
vVy + lF · ψ̇

vVx
− δ1

)
· cos δ1 · lF − Cα2 ·

(
vVy + lF · ψ̇

vVx
− δ2

)
· cos δ2 · lF

+ Cα3 · v
V
y − lR · ψ̇

vVx
· lR + Cα4 · v

V
y − lR · ψ̇

vVx
· lR + Cα1 ·

(
vVy + lF · ψ̇

vVx
− δ1

)
· sin δ1 · bF

2

− Cα2 ·
(
vVy + lF · ψ̇

vVx
− δ2

)
· sin δ2 · bF

2
+

(
FT4
x − FT3

x

)
· bR
2

. (G.3)

The equation is sorted and expressed as

Iz · ψ̈ =
(−Cα1 · cos δ1 − Cα2 · cos δ2) · lF + (Cα3 + Cα4) · lR + (Cα1 · sin δ1 − Cα2 · sin δ2) · bF

2

vVx
· vVy

+
(−Cα1 · cos δ1 − Cα2 · cos δ2) · l2F − (Cα3 + Cα4) · l2R + (Cα1 · sin δ1 − Cα2 · sin δ2) · bF·lF

2

vVx
· ψ̇

+

(
Cα1 · cos δ1 · lF − Cα1 · sin δ1 · bF

2

)
· δ1 +

(
Cα2 · cos δ2 · lF + Cα2 · sin δ2 · bF

2

)
· δ2

+ (FT4
x − FT3

x ) · bR
2

. (G.4)

The discrete description of (G.4) is given by

ψ̇k+1 = ε · Ts · vVy k
+ (1 + χ · Ts) · ψ̇k + ξ · Ts · δ1k + ζ · Ts · δ2k +

bR · Ts

2Iz
· (FT4

x k − FT3
x k) , (G.5)

where

ε =
(−Cα1 · cos δ1 − Cα2 · cos δ2) · lF + (Cα3 + Cα4) · lR + (Cα1 · sin δ1 − Cα2 · sin δ2) · bF

2

Iz · vVx
χ =

(−Cα1 · cos δ1 − Cα2 · cos δ2) · l2F − (Cα3 + Cα4) · l2R + (Cα1 · sin δ1 − Cα2 · sin δ2) · bF·lF
2

Iz · vVx
ξ =

Cα1 · cos δ1 · lF − Cα1 · sin δ1 · bF
2

Iz
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ζ =
Cα2 · cos δ2 · lF + Cα2 · sin δ2 · bF

2

Iz
. (G.6)

G.2 Analytical calculation of the vehicle lateral velocity
ṽVy

The force equilibrium is given by

m · ay =
∑

FTi
y · cos δi +

∑
FTi
x · sin δi . (G.7)

With the assumption that FT1
x , FT2

x , δ3, δ4 = 0, it follows:

m · ay = FT1
y · cos δ1 + FT2

y · cos δ2 + FT3
y + FT4

y . (G.8)

Substituting FTi
y = Cαi · αi, it yields:

m · ay = Cα1 · α1 · cos δ1 + Cα2 · α2 · δ2 + Cα3 · α3 + Cα4 · α4 . (G.9)

Considering αi =
v
Ti
y

v
Ti
x

− δi ≈ v
Ti
y

vVx
− δi and substituting v

T1,2
y = vVy + lF · ψ̇,

v
T3,4
y = vVy − lR · ψ̇, (G.9) is represented by

m · ay = Cα1 ·
(
vVy
vVx

+
lF · ψ̇
vVx

− δ1

)
· cos δ1 + Cα2 ·

(
vVy
vVx

+
lF · ψ̇
vVx

− δ2

)
· cos δ2

+ Cα3 ·
(
vVy
vVx
− lR · ψ̇

vVx

)
+ Cα4 ·

(
vVy
vVx
− lR · ψ̇

vVx

)

=

(
Cα1 · cos δ1

vVx
+

Cα2 · cos δ2
vVx

+
Cα3

vVx
+

Cα4

vVx

)
· vVy (G.10)

+

(
Cα1 · lF · cos δ1

vVx
+

Cα2 · lF · cos δ2
vVx

− Cα3 · lR
vVx

− Cα4 · lR
vVx

)
· ψ̇

− (Cα1 · cos δ1 · δ1 + Cα2 · cos δ2 · δ2) .

Therefore, the lateral velocity is calculated by

ṽVy =
vVx

Cα1 · cos δ1 + Cα2 · cos δ2 + Cα3 + Cα4

·
(
m · ay − Cα1 · lF · cos δ1 + Cα2 · lF · cos δ2 − Cα3 · lR − Cα4 · lR

vVx
· ψ̇
)

(G.11)

+ Cα1 · cos δ1 · δ1 + Cα2 · cos δ2 · δ2 .



H Test maneuvers

H.1 Lateral Transient Response Test (ISO 7401)

The Lateral Transient Response Test according to ISO 7401 is an open-loop test
will be employed to compare the open-loop vehicle response to quasi-step inputs of
the steering wheel angle against the closed-loop vehicle response with activated yaw
rate control [3]. The final value of δH is chosen in three cases such that the resulting
steady-state value of aVy corresponds to 2m s−2, 4m s−2 or 6m s−2, respectively. As
δH cannot change instantaneously in practice, it is increased at a ramp of 500 deg /s.
The three test runs are repeated for positive and negative steering wheel angles.

H.2 Sine-Steer Test (ISO 7401)

In order to analyze the frequency domain behavior of the TV-algorithm the
open-loop Sine-Steer Test according to ISO 7401 is adapted. In this test the
steering wheel frequency is altered logarithmically in a range from 0Hz to 4Hz.
The amplitude of δH is chosen such that aV,ssy = 4ms−2 at 0Hz. Each test run is
considered complete when harmonic steady-state is reached (meaning the amplitudes
settle to constant values), with three periods being the minimum run time.

H.3 Sine-steer Test with dwell input (UN 13-H)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

−δ̂H

0

δ̂H

500ms

t in s

δ H

Figure H.1: Sine-steer with dwell steering-wheel input.

According to the NHTSA’s Light Vehicle Handling and ESC Effectiveness Research
Program the Sine-Steer with Dwell maneuver is the best suited test procedure to
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asses the effectiveness of ESC-systems as it is superior in regards to the excitation
of transient over-steer responses [57]. This is manifested in the UN Regulation
13-H, Addendum 12-H where this maneuver is part of the approval tests for
passenger vehicles equipped with ESC-systems [5]. Although TV-systems are rather
considered performance enhancement functions than safety functions [165], they
are still related to ESC-systems. While ESC-systems make use of asymmetrically
distributed braking forces to excite additional yaw, TV uses tractive forces for the
same purpose instead. Hence, the open-loop sine-steer with dwell maneuver provides
an adequate test procedure to evaluate the TV-system’s performance in extreme
lateral conditions and to prove that it implicitly enhances vehicle safety as well.

The sine-steer with dwell procedure is based on the steering-wheel input depicted
in Figure H.1, being comprised of a sine function with f = 0.7Hz and variable
amplitude as well as a dwell time of 500ms introduced in the second half-cycle.
This hold-time causes the steering wheel angle to be reversed close to peak value
of ψ̇, effectively provoking an over-steer and as such hardly controllable vehicle
response [185].



I Estimation results

I.1 Lateral transient response test
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Figure I.1: Estimation of Slip angle FL.

0 1 2 3 4 5

-2

-1

0

t in s

α
1
in

◦

Estimated value

Reference value

Figure I.2: Estimation of Slip angle FR.
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Figure I.3: Estimation of Slip angle RL.
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Figure I.4: Estimation of Slip angle RR.
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Figure I.5: Estimation of Vertical force FL.
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Figure I.6: Estimation of Vertical force FR.
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Figure I.7: Estimation of Vertical force RL.
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Figure I.8: Estimation of Vertical force RR.

I.2 Sine-steer test
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Figure I.9: Estimation of Slip angle FL.
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Figure I.10: Estimation of Slip angle FR.
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Figure I.11: Estimation of Slip angle RL.

0 1 2 3 4 5

-4

-3

-2

-1

0

1

2

3

t in s

α
4
in

◦

Estimated value

Reference value

Figure I.12: Estimation of Slip angle RR.
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Figure I.13: Estimation of Vertical force FL.
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Figure I.14: Estimation of Vertical force
FR.
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Figure I.15: Estimation of Vertical force
RL.
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Figure I.16: Estimation of Vertical force
RR.
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I.3 Sine-steer with dwell test
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Figure I.17: Estimation of Slip angle FL.
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Figure I.18: Estimation of Slip angle FR.
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Figure I.19: Estimation of Slip angle RL.

0 1 2 3 4 5
-20

-15

-10

-5

0

5

10

15

20

t in s

α
4
in

◦

Estimated value

Reference value

Figure I.20: Estimation of Slip angle RR.
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Figure I.21: Estimation of Vertical force FL.
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Figure I.22: Estimation of Vertical force
FR.
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Figure I.23: Estimation of Vertical force
RL.
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Figure I.24: Estimation of Vertical force
RR.



J Abbreviation

4WD 4-Wheel Drive

ABS Anti-lock Braking

ac alternative current

AD Analog-Digital

ASM Automotive Simulation Models

AYC Yaw Rate Control

CCS-MPC Continuous Control Set Model Predictive Control

CoG Center of Gravity

CP Contact Point

dc direct current

DOFs Degrees of Freedom

DSP Digital Signal Processor

DTM Dual Track Model

ECS Earth Coordinate System

EM Electrical Machine

EMF Electromotive Force

EMPC Explicit Model Predictive Control

ESC Electronic Stability Control

EV Electric Vehicle

FCS-MPC Finite-Control-Set Model Predictive Control

FL Front Left

FOC Field Oriented Control

FR Front Right

FWD Front-Wheel Drive

GPC Generalized Predictive Control

HiL Hardware-in-the-Loop

HW Hardware

I/O Input/Output

IC Instantaneous Center

ICE Internal Combustion Engine

IM Induction Motor

IRF Inertial Reference Frame



182 Abbreviation

ISO International Organization for Standardization

KKT Karush-Kuhn-Tucker

LMI Linear Matrix Inequality

LP Linear Programming

LPV Linear Parameter-Varying

LQR Linear Quadratic Regulator

LSTM Linear Single Track Model

LTI Linear Time Invariant

LUT Look Up Table

MF Magic Formula

MPC Model Predictive Control

mp-LP multi-parametric Linear Programming

mp-QP multi-parametric Quadratic Programming

mp-SDP multi-parametric Semi-Definite Programming

MPT Multi-Parametric Toolbox

mRPI minimal Robust Positively Invariant

MRPI Maximal Robust Positively Invariant

NEKF Nonlinear Extended Kalman Filter

NHTSA National Highway Traffic Safety Administration

NP Non-deterministic Polynomial-time

PD Primal Dual

PI Proportional Integral

PID Proportional Integral Derivative

PiL Processor-in-the-Loop

PMSM Permanent-Magnet Synchronous Motor

PWA Piece-wise Affine

PWQ Piece-wise Quadratic

QP Quadratic Programming

RHC Receding Horizon Control

RL Rear Left

RMPC Robust Model Predictive Control

RPI Robust Positively Invariant

RR Rear Right

RWD Rear-Wheel Drive

SDP Semi-Definite Programming

Sidi Simodrive-dSPACE-interface

SVM Space Vector Modulation

SW Software

TCS Tire Coordinate System

TFE Tire-Force Ellipse

TV Torque Vectoring

VCS Vehicle Coordinate System
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VSI Voltage Source Inverter





K Nomenclature

Greek Symbols

α parameter denoting the size different between the ellipsoid and the
mapped one

α coordinate after the Clark transformation

α tire slip angle

β coordinate after the Clark transformation

β nonnegative scalar parameter in LMI

β vehicle sideslip angle

γ upper bound of Lyapunov function

γ toe angle

δ steer angle and steering wheel angle

θ parameter of time-varying matrix

θ pitch angle

ε induced voltage

μ friction coefficient

τ time constant

τ torque

ϕ position angle of the masses

ϕ bank angle

ψ yaw angle

ω rotational speed

σ leakage factor

ζ damping factor

Ω mechanical speed

Θ unit simplex set

Ψ matrix parameter

Θ matrix parameter
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Latin Symbols

a vector parameter

A matrix parameter

ax longitudinal acceleration

ay lateral acceleration

b vector parameter

b track width

B matrix parameter

B set of unit ball

c torsional stiffness

c vector parameter

C tire stiffness

C matrix parameter

C convex set

d vector variable of disturbance

D matrix parameter

e vector variable of error

E matrix parameter

E set of invariant ellipsoid

F force

F matrix parameter

F vector parameter of force

g vector parameter

G matrix parameter

h vector parameter

H matrix parameter

H H-polyhedral representation

i current

I moment of inertia

I unit matrix

I set of unit matrices

J moment of inertia

J objective function

k damping coefficient

K Kalman gain

l track length

L inductance

L angular momentum

L set of vertex indices

M matrix parameter

N matrix parameter
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N set of natural numbers

P matrix parameter

P predecessor set

P partition set

P Polyhedron

Q weighting matrix parameter

R covariance matrix parameter

R weighting matrix parameter

R resistance

R radius of wheel

R matrix parameter

R covariance matrix parameter

R set of real numbers

s tire slip

S matrix parameter

p linear momentum

q vector quantity

r reference vector

s steady state vector

S set of symmetric matrices

T torque

T time

T torque threshold

T matrix parameter

u voltage

u vector variable of control system output

U matrix variable of control system input

U system input constraint set

v velocity

v velocity vector

v vector variable of measurement noises

w vector variable of system disturbance

W matrix parameter

W disturbance constraint set

wB wheel base

x vector variable of system states

X matrix variable of system states

X state constraint set

Xf state terminal constraint set

y vector variable of system output

Y matrix variable of system output

Y output constraint set
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z vector variable of optimizer

Z set of unpartitioned regions

superscript

ˆ estimated value

∗ reference value

¯ nominal value
+ successor
′ quantities of the rotor referred to the stator side
′ representation value

c compensated

dec decoupling

F front

max maximum

min minimum

mod modified

R rear

Ti tire

V vehicle

subscript

a,b,c phase index

d dead time

dyn dynamic

eq equality

el electromagnetic

F front

FL front left

FR front right

g,in gearbox input

g,out gearbox output

gw gear wheel

inf infinity

k time instant

k time instant

l vertex index

m mutual

min minimum
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max maximum

ms machine shaft

n nominal

r rotor

R rear

rd rotor d-value

RL rear left

rq rotor q-value

RR rear right

s stator

s artificial steady-state value

sd stator d-value

sq stator q-value

ss side shaft

tb tire belt

tp tire profile

ts tire side

v vertex

vm vehicle mass

wr wheel rim
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Switzerland, 2013, pages 502–510.

[83] Hu, Z ; Hameyer, K:
”
Robust Predictive Current Control for Performance

Improvement of Induction Motors with Parameter Variation“. Proceedings of
Annual Conference of the IEEE Industrial Electronics Society. Yokohama,
2015, pages 451–456.

[84] Hu, Z ;Hameyer, K:
”
A Method of Constraint Handling for Speed-Controlled

Induction Machines“. IEEE Transactions on Industrial Electronics 63 (2016),
July, Nr. 7, pages 4061–4072.

[85] Huang, H ; Li, D ; Lin, Z:
”
An improved robust model predictive control

design in the presence of actuator saturation“. Automatica 47 (2011), April,
Nr. 4, pages 861–864.

[86] Isermann, R (Eds.): Fahrdynamik-Regelung: Modellbildung,
Fahrerassistenzsysteme, Mechatronik. 1st Edition. Vieweg+Teuber Verlag,
2006.



198 Bibliography

[87] James B. Rawlings, D. Q. M.: Model Predictive Control: Theory and
Design. Nob Hill Publishing, 2009.

[88] Jeong, S. C. ; Park, P:
”
Constrained MPC Algorithm for Uncertain

Time-Varying Systems With State-Delay“. IEEE Transactions on Automatic
Control 50 (2005), February, Nr. 2, pages 257–262.

[89] Jiles, D: Introduction to Magnetism and Magnetic Materials. 3rd Edition.
CRC Press, 2015.

[90] Johansen, T. A. ; Grancharova, A:
”
Approximate explicit constrained

linear model predictive control via orthogonal search tree“. IEEE Transactions
on Automatic Control 48 (2003), May, Nr. 5, pages 810–815.

[91] Kaiser, G: Torque Vectoring - Linear Parameter-Varying Control for an
Electric Vehicle, Technische Uniersität Hamburg, Dissertation., 2015.

[92] Kaiser, G ; Holzmann, F ; Chretien, B ; Korte, M:
”
Torque Vectoring

with a feedback and feed forward controller - applied to a through the road
hybrid electric vehicle“. Proceedings of IEEE Intelligent Vehicles Symposium.
Baden-Baden, Germany, 2011, pages 448–453.

[93] Karamanakos, P: Model Predictive Control Strategies For Power Electronics
Converters And Ac Drives, National Technical University of Athens,
Dissertation., 2013.

[94] Karamanakos, P ; Geyer, T ; Oikonomou, N ; Kieferndorf, F. D. ;
Manias, S:

”
Direct Model Predictive Control: A Review of Strategies That

Achieve Long Prediction Intervals for Power Electronics“. IEEE Industrial
Electronics Magazine 8 (2014), March, Nr. 1, pages 32–43.

[95] Karamuk, M:
”
A Survey on Electric Vehicle PowerPower Systems“.

Proceedings of International Aegean Conference on Electrical Machines and
Power Electronics and Electromotion. Istanbul, 2011, pages 315–324.

[96] Kasinathan, D ; Kasaiezadeh, A ; Wong, A ; Khajepour, A ; Chen,
S.-K ; Litkouhi, B:

”
An Optimal Torque Vectoring Control for Vehicle

Applications via Real-Time Constraints“. IEEE Transactions on Vehicular
Technology 65 (2016), June, Nr. 6, pages 4368–4378.

[97] Kerrigan, E. C.: Robust Constraint Satisfaction: Invariant Sets and
Predictive Control, University of Cambrige, Dissertation., 2000.

[98] Khosravani, S ; Kasaiezadeh, A ; Khajepour, A ; Fidan, B ; Chen,
S.-K ; Litkouhi, B:

”
Torque-Vectoring-Based Vehicle Control Robust to

Driver Uncertainties“. IEEE Transactions on Vehicular Technology 64 (2015),
August, Nr. 8, pages 3359–3367.

[99] Kolmanovsky, I ; Gilbert, E. G.:
”
Theory and Computation of

Disturbance Invariant Sets for Discrete-Time Linear Systems“. Mathematical
Problems in Engineering 4 (1998), Nr. 4, pages 317–367.



Bibliography 199

[100] Kothare, M. V. ; Balakrishnan, V ; Morari, M:
”
Robust constrained

model predictive control using linear matrix inequalities“. Automatica 32
(1996), October, Nr. 10, pages 1361–1379.

[101] Kouramas, K. I. ; Rakovic, S. V. ; Kerrigan, E. C. ; Allwright, J. C.
; Mayne, D. Q.:

”
On the Minimal Robust Positively Invariant Set for

Linear Difference Inclusions“. Proceedings of IEEE Conference on Decision
and Control. Seville, 2005, pages 2296–2301.

[102] Kouro, S ; Cortés, P ; Vargas, R ; Ammann, U ; Rodŕıguez, J:
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Linköpings Universitet, Dissertation., 2001.
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[127] Mayne, D ; Raković, S. V. ; Findeisen, R ; Allgöwer, F:
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University, Dissertation., 2001.

[129] Mitschke, M ; Wallentowitz, H: Dynamik der Kraftfahrzeuge. 5th
Edition. Berlin, Germany : Springer, 2014.

[130] Morari, M ; Lee, J. H.:
”
Model predictive control: past, present and future“.

Computer & Chemical Engineering 23 (1999), May, Nr. 4-5, pages 667–682.

[131] Muske, K. R. ; Badgwell, T. A.:
”
Disturbance modeling for offset-free

linear model predictive control“. Journal of Process Control 12 (2002), August,
Nr. 5, pages 617–632.

[132] Muslem Uddin and Saad Mekhilef and Mutsou Nakaoka:
”
Model

Predictive Control of Induction Motor with Delay Time Compensation: An
Experiment Assessment“. Proceedings of IEEE Applied Power Electronics
Conference and Exposition. Charlotte, NC, 2015, pages 543–548.

[133] Müller, S ; Uchanski, M ; Hedrick, K:
”
Estimation of the Maximum

Tire-Road Friction Coefficient“. Journal of Dynamic Systems, Measurement,
and Control 125 (2004), January, Nr. 4, pages 607–617.

[134] Nishio, K ; Kashima, K ; Imura, J:
”
Effects of time delay in feedback control

of linear quantum systems“. Physical Review A 79 (2009), June, Nr. 6, pages
062105:1–062105:6.

[135] Novellis, L. D. ; Sorniotti, A ; Gruber, P ; Pennycott, A:
”
Comparison

of Feedback Control Techniques for Torque-Vectoring Control of Fully Electric
Vehicles“. IEEE Transactions on Vehicular Technology 63 (2014), October,
Nr. 8, pages 3612–3623.

[136] Nussbaumer, T ; Heldwein, M. L. ; Gong, G ; Round, S. D. ; Kolar,
J. W.:

”
Comparison of Prediction Techniques to Compensate Time Delays

Caused by Digital Control of a Three-Phase Buck-Type PWM Rectifier
System“. IEEE Transactions on Industrial Electronics 55 (2008), February,
Nr. 2, pages 791–799.

[137] Okoro, O. I.: Dynamic and Thermal Modelling of Induction Machine with
NonLinear Effects, Kassel University, Dissertation., 2002.

[138] Olley:
”
Road manners of the modern car“. Proceedings of the Institution of

Automobile Engineers, 1946, pages 523–551.



202 Bibliography

[139] Pacejka, H: Tyre and Vehicle Dynamics. 3rd Edition. Elsevier, 2012.

[140] Palladino, L ; Duc, G ; Pothin, R:
”
LPV control of road vehicle during

braking action in curve“. Proceedings of IFAC Symposium on Robust Control
Design. Toulouse, France, 2006, pages 113–118.

[141] Pannocchia, G ; Rawlings, J. B.:
”
Disturbance models for offset-free

model-predictive control“. AIChE journal 49 (2003), February, Nr. 2, pages
426–437.

[142] Peña, D. M. l. ; Bemporad, A ; Filippi, C:
”
Robust explicit MPC based on

approximate multiparametric convex programming“. IEEE Transactions on
Automatic Control 51 (2006), August, Nr. 8, pages 1399–1403.

[143] Peter, R ; Granzow, C ; Spiess, M ; Denzler, R:
”
The vector drive rear

axle transmission“. ATZ worldwide 109 (2007), December, Nr. 12, pages 2–5.

[144] Pfeffer, P (Eds.) ; Harrer, M (Eds.): Lenkungshandbuch - Lenksysteme,
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