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Abstract
This paper compares different energy-based magneto-mechanical models, which

describe the magnetization changes that a magnetostrictive and anisotropic material

undergoes when subjected to a quasi-static H-field excitation and tensile or compres-

sive external stress. The magnetic behavior is either characterized by considering the

phenomenological energy-based Hauser hysteresis model or by the recently intro-

duced hysteresis energy. The effect of mechanical stress is included naturally in

the energy summation of the multiscale models. Properties of the different models,

such as accuracy and parameter identification, are illustrated by comparison with

experimental data for a nonoriented FeSi3% electrical steel grade.
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1 INTRODUCTION

When designers optimize their design of an actuator, they
mainly focus on the geometry of the design without the sup-
port of the material and/or the material models. As shown
in Bernard at al and Ganet et al,1,2 the operation mode of
the actuator generates additional mechanical stress, which
alters the material behavior. This is known as the inverse
magnetostrictive effect (Villari effect), which was found in
1865.3 Villari realized the correlation between a magnetiza-
tion change and the tensile stress of iron-based materials. In
general, the mechanical stress does not only affect the perme-
ability of the material, but it also affects the area and the shape
of the hysteresis loop,4-8 mainly described with the coercivity
and remanence of the hysteresis loop.

To include the influence of mechanical stress in the design
process, electrical engineers require highly accurate mod-
els for the soft magnetic material behavior. These should be

able to properly represent the hysteresis and magnetostriction
effect of different materials without the need of tedious
parameter identifications. Tedious parameter identifications
as required by the phenomenological macroscopic models
like the Jiles-Atherton-Sablik model9 or the Preisach model10

rest on a huge amount of measured data. Therefore, these
models give a mathematical representation of the measured
data with low predictive capabilities. This is a strong point
because the conditions that prevail in real-life application are
much more diverse than standardized experimental condi-
tions. In addition, the multiaxiality and material heterogeneity
have to be included.

An option to include these phenomenons is to resort to
micromagnetic models, which make predictions of the mag-
netic behavior based on the micromagnetic domain theory.
Because they use the domain and/or grain scale, they are able
to use the energy density function as an investigation tool to
predict the magnetic behavior of a crystal.11-13 The obtained
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minimum of the energy density function describes the mag-
netic state of the domain, which depends on the externally
applied stress and the magnetic field as well as the eigen
stress14,15 and the magnetic field. The major disadvantage
of these micromagnetic models is the computational cost.
Because of this reason, these models are not appropriate for
3D or 2D simulations of macroscopic applications.

To make affordable simulations, without loosing the physi-
cal origins, multiscale models deliver a solution. These mod-
els use the same energy density function as an investigation
tool to predict the magnetic behavior of a crystal. By applying
various spatial scales with appropriate homogenization proce-
dures, they allow one to simulate the same complexity of the
magneto-elastic coupling of a polycrystalline material with
a reduced cost. This paper focuses on models that are based
on the multiscale energy-based material model by Daniel
et al.16 This material model originally was anhysteretic. In
this paper, we focus on 3 variants, which include the hystere-
sis effect in the model. Two models originate from the same
research group and the last model is our own variation on this
multiscale model.17

The paper is organized as follows. In Section 2, the energy
density function of a cubic crystal is recapitulated, as well as
the new energy function17 to include hysteresis effect. Section
3 describes the 2 homogenization procedures, from the crystal
scale to the grain scale and from the grain scale to the poly-
crystalline scale. Section 5 describes the differences between
the material models and compares the results of the mate-
rial models for FeSi3%. Section 6 summarizes the paper and
formulates conclusions.

2 DOMAIN SCALE

At the domain scale, the energy density function describ-
ing the ferromagnetic behavior of a single crystal is valid.
As described in the previous studies,16-20 some assumptions
are made. As an example, a uniform strain and a uniform
magnetic field are considered at this scale so the exchange
energy can be neglected. The domain scale is the small-
est scale leading to the “constitutive law.” Depending on
the used material model, the anhysteretic approach for the
magneto-elastic coupling6,21 is used, or as in our previous
work,17,22,23 the hysteresis effect is also introduced at this
scale. First, the anhysteretic description of the reversible
magneto-elastic behavior is recapitulated. Finally, the hys-
teresis energy density function, introduced in the previous
studies,17,22,23 is briefly recalled.

2.1 Anhysteretic approach
for magneto-elastic coupling
This work is derived from the reversible magneto-elastic
behavior,16 which is based on the definition of the free energy

of the material at the domain scale. The free energy den-
sity function W𝛼 consists of 3 terms for the anhysteretic
approach, namely, (1) the Zeeman energy density function
WH (Equation 1), (2) the magneto-crystalline anisotropy
energy density Wan (Equation 2), and (3) the stress induced
anisotropy energy density W𝜎 (Equation 3).

The Zeeman energy density function WH (Equation 1)
describes the effect of the magnetic field H = [H1,H2,H3]
on the magnetic domains this by calculating the
amount of energy required to rotate the magnetization
Ms[𝛼M1, 𝛼M2, 𝛼M3] away from the direction of the magnetic
field.19,24 Here, Ms is the saturation magnetization of the
material and [𝛼M1, 𝛼M2, 𝛼M3] are the cosine directions of
the possible magnetization states. 𝜇0 is the permeability of
vacuum.

WH = −𝜇0Ms (𝛼M1H1 + 𝛼M2H2 + 𝛼M3H3) . (1)

The magneto-crystalline anisotropy energy density Wan

(Equation 2) describes the effect of the easy directions
of the crystal on the magnetic domains. Depending on
the crystal type, some directions are more preferred than
others and they are called the easy directions. The least
preferred directions are called the hard directions.19,24

The magneto-crystalline anisotropy energy density Wan

(Equation 2) describes the amount of energy required to rotate
the magnetization Ms[𝛼M1, 𝛼M2, 𝛼M3] away from an easy
direction to a less preferred direction.19,24 For a cubic crystal,
the magneto-crystalline anisotropy energy density function
Wan is obtained using the crystal anisotropic constants K1

and K2.

Wan = K1[(𝛼M1)2(𝛼M2)2 + (𝛼M2)2(𝛼M3)2 + (𝛼M3)2(𝛼M1)2]
+ K2[(𝛼M1)2(𝛼M2)2(𝛼M3)2]

(2)

The stress-induced anisotropy energy density function W𝜎

(Equation 3) describes the effect of a mechanical stress on
the magnetic easy direction of the crystal. When applying a
mechanical stress to a crystal structure, it starts to deform.
This deformation affects the easy and the hard directions of
the crystal, that is, some directions become more preferred
while others become less preferred compared to the situa-
tion without mechanical stress. In other words, a correction
on the magneto-crystalline anisotropy energy density function
Wan is required when a stress is applied. For a cubic crystal,
the stress-induced anisotropy energy density function W𝜎 is
obtained using the saturation magnetostrictions 𝜆100 and 𝜆111,
(respectively in the 100 direction and the 111 direction) and
the stress. Equation 3 uses the Mandel notation,25 vectorizing
the stress as 𝜎 = [𝜎11, 𝜎22, 𝜎33, 𝜎23, 𝜎13, 𝜎12].
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W𝜎 = − 3
2
𝜆100

[
𝜎11

(
(𝛼M1)2 −

1
3

)
+ 𝜎22

(
(𝛼M2)2 −

1
3

)
+ 𝜎33

(
(𝛼M3)2 −

1
3

)]
− 3𝜆111

[
𝜎23 (𝛼M2𝛼M3) + 𝜎13 (𝛼M1𝛼M3) + 𝜎12 (𝛼M1𝛼M2)

] (3)

This equation is only valid when the magnetostrictive strain
(Equation 4) is isochore,16 implying that the magnetostrictive
strain is described using only the saturation magnetostric-
tions 𝜆100 and 𝜆111. When the crystal structure is perfect,
the magnetization will align with the cosine direction 𝛾 =
[𝛾1, 𝛾2, 𝛾3], which is the direction with the lowest total inter-
nal energy density (W𝛼 (𝛾) = min (W𝛼)) with W𝛼 consisting
of the sum of the 3 energy densities (Equation 5). W𝛼 depends
on the cosine directions of the possible magnetization states.
The free energy density function W𝛼 leads to the probability
function of the anhysteretic part for magneto-elastic coupling,
see Section 3.1.

𝜀𝜇 = 3
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
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(
𝛾2

1 − 1∕3
)

𝜆100
(
𝛾2

2 − 1∕3
)

𝜆100
(
𝛾2

3 − 1∕3
)

𝜆111

√
2𝛾2𝛾3

𝜆111

√
2𝛾1𝛾3

𝜆111

√
2𝛾1𝛾2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4)

W𝛼 = WH + Wan + W𝜎. (5)

2.2 Hysteretic approach for magneto-elastic
coupling
As described in the previous studies,17,22,23 the work describ-
ing the reversible magneto-elastic behavior16 does not account
for the magnetization state at an earlier time step. By introduc-
ing an additional energy density function to the free energy
density function, at the domain scale, the irreversible effect
is added. The hysteresis energy density function (Equation 6)
describes the effect of the previous magnetization state on
the new magnetization state. This can be explained using the
energy landscape,17 which visualizes how a magnetic domain
can be trapped in a local minimum in the energy landscape.

The hysteresis energy density function uses the demagne-
tization field, which is obtained by the magnetization of the
previous step Mhys =

[
Mhys1,Mhys2,Mhys3

]
and divided by

the magnetic susceptibility 𝜒0. This equation resembles the
Zeeman energy density function (Equation 1). The hysteresis
energy density function will lead to the additional probability
function of the hysteretic part for magneto-elastic coupling.

Whys = −𝜇0
Ms

𝜒0

(
𝛼M1Mhys1 + 𝛼M2Mhys2 + 𝛼M3Mhys3

)
(6)

3 HOMOGENIZATION

In the full multiscale energy-based material model, 2 homog-
enization processes are required. The first homogenization
process relates the domain scale to the grain scale and is
called the “constitutive law”. Depending on the used mate-
rial model, this constitutive law can either be anhysteretic6,21

or hysteretic.17,22,23 The second homogenization process maps
the grain scale to the polycrystalline scale, which makes use of
the properties, interactions, and orientations of the individual
grains to obtain the effective elastic and magnetic proper-
ties of the polycrystalline material. This homogenization is
obtained using a self-consistent polycrystalline scheme, based
on the work of Hill,15 Kröner,15 and Eshelby,14 better known
as the Eshelby inclusion problem.

3.1 Constitutive law
The constitutive law starts from the free energy density func-
tion W𝛼 (Equation 5) of a domain. W𝛼 leads to the volume
fraction of the magnetic moments in a grain, by implying it
in an explicit Boltzmann-type relation. This distribution leads
to the grain magnetization Mg and the grain magnetostriction
𝜀g. The distribution is obtained using a Boltzmann distribu-
tion with an adjustable material parameter As for the anhys-
teretic constitutive law (Equation 7). The material parameter
As accounts for the domain walls, the nonuniformity of the
mechanical stress and/or magnetic fields, and other crystal
defects.

P𝛼 =
exp(−As(WH + Wan + W𝜎))

∫
𝛼

exp(−As(WH + Wan + W𝜎))
(7)

Phys =
exp(−𝛽AsWhys)

∫
𝛼

exp(−𝛽AsWhys)
(8)

Pg =
P𝛼Phys

∫
𝛼
P𝛼Phys

(9)

The probability obtained with Equation 7 is derived in Daniel
et al16 and describes the anhysteretic distribution function. To
introduce the irreversible work, an additional Boltzmann dis-
tribution function using the hysteresis energy density function
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was suggested in the previous studies17,22,23 with an addi-
tional material parameter 𝛽 for the hysteretic constitutive law
(Equation 8). The material parameter 𝛽 accounts for defocus
of the local magnetization because of crystal defects as well as
the rotation mechanism and the pinning effect.19 As suggested
by Hauser,26 the irreversible work due to pinning affects the
probability density.

Mg =
⎡⎢⎢⎣
∫
𝛼
P 𝛼M1 Ms

∫
𝛼
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11)

Then the probability function of the grain (Equation 9) is the
normalization of Equations 7 and 8 as shown in Equation 9.
Depending on using the anhysteretic or hysteretic constitu-
tive law, the grain magnetization and magnetostriction are
obtained by using Equations 7 and 9 respectively for P in
Equations 10 and 11.

3.2 Eshelby inclusion problem
To take into account the properties, interactions, and ori-
entations of the individual grains, to obtain the effective
elastic and magnetic properties of the polycrystalline mate-
rial, a self-consistent polycrystalline scheme is used. This
self-consistent polycrystalline scheme, known as Eshelby
inclusion problem, is described in the previous studies.6,14-17

This self-consistent polycrystalline scheme converts the
externally applied stress 𝜎m and the magnetic field H⃗m to
the locally applied stress 𝜎g and the magnetic field H⃗g
using localization Equations 12 and 13. These localization
equations do not only convert the 𝜎m and H⃗m to the crystal-
lographic orientation frame of the considered grain but also
include the influence of the medium surrounding the con-
sidered grain. Applied on the stress (Equation 12), the local
stress 𝜎g consists of the external mechanical stress and the
residual mechanical stress. The first term is a purely elas-
tic problem, which assumes that the considered grain is an
inclusion in a homogeneous material that is solved using the
stress-concentration Bg. The second term exists because of the
eigenstrain, in this case, the magnetostriction and the stiffness
of the surrounding medium, which is solved using the elastic

incompatibility tensor L𝜎
g . Bg as well as L𝜎

g only depend on the
elastic stiffness coefficients Cij of a single crystal.

𝜎g = B𝜎
g ∶ 𝜎ext + L𝜎

g ∶
(
𝜖
𝜇
m − 𝜖

𝜇
g

)
(12)

Applied on the magnetic field (Equation 13), the local mag-
netic H⃗g consists of the externally applied magnetic field H⃗m
and the demagnetizing field. The first term is the externally
applied magnetic field H⃗m transformed to the crystal reference
frame. The second term is the demagnetizing field, originat-
ing from the difference between the macroscopic magneti-
zation M⃗m and the grain magnetization M⃗g divided by the
equivalent media susceptibility.16

H⃗g = H⃗m + 1
3 + 2𝜒m

(
M⃗m − M⃗g

)
(13)

When using the demagnetizing field in the constitutive law,
by using the hysteresis energy density function, Equation 13 is
not used and H⃗m is only rotated to the crystal reference frame.
The locally obtained mechanical stress 𝜎g and H⃗g obtained for
every grain lead to the local mechanical strain 𝜀g and M⃗g by
using the constitutive law, see Section 3.1. When M⃗g and 𝜀g

are obtained for every grain, the macroscopic magnetization
M⃗m and the magnetostriction 𝜀m are obtained with a weighted
average based on the grain size:

M⃗m =
⟨

M⃗g

⟩
(14)

𝜀m = ⟨𝜀m⟩ . (15)

This self-consistent model requires an initial guess of M⃗m

and 𝜀m to obtain the new solution of M⃗m and 𝜀m. By itera-
tively replacing the initial values with the new solutions, the
self-consistent model converges.

4 HAUSER HYSTERESIS MODEL
AND STRESS-DEMAGNETIZATION
EFFECT

In the material models where the hysteresis effect is not
included in the constitutive law,6,21 the irreversible work is
included after the homogenization process, based on the work
of Hauser.26 The irreversible contribution H⃗irr

g (Equation 16)

modifies the anhysteretic magnetic field H⃗g and is parallel
to H⃗g.

‖‖‖H⃗irr
g
‖‖‖=𝛿

(
kr

𝜇0Ms
+ cr

‖‖‖H⃗g
‖‖‖
)[

1−𝜅g exp
(
− ka

𝜅g

‖‖‖M⃗g−M⃗reb
g
‖‖‖
)]

(16)
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In this equation, 𝛿 equals ±1, it start as +1 and every time
the loading direction inverses the sign changes. The param-
eters kr, cr, ka, and 𝜅g are material parameters, where 𝜅g

also changes every time the loading direction is inverse
(Equation 17). Here, 𝜅0

g is the previous value of 𝜅g, and

M⃗reb
g is the previous value of M⃗g when the loading direction

is inverse.

𝜅g = 2 − 𝜅0
g exp

(
− ka

𝜅0
g

‖‖‖M⃗g − M⃗reb
g
‖‖‖
)

(17)

kr = k0
r

(4
3
− Ng

)
(18)

The parameter kr is determined by Equation 18, where
k0

r is a material constant, which accounts for the stress
effect on the coercive field. Ng (Equation 20) defines the
“stress-demagnetization effect,” which is also used to calcu-
late the fictitious configuration field H⃗conf

g (Equation 19) to
correct the model for changes in the domain configuration due
to the applied stress. Here, 𝜂 is a material parameter and 𝜎

eq
g

(Equation 21) is the equivalent stress for 𝜎g in the direction of
the magnetic field (h⃗ = H⃗∕||H⃗||). The local effective field H⃗x

m

(Equation 22) consists of the sum of the 3 field components
H⃗g, H⃗conf

g , and H⃗irr
g , which leads to the macroscopic effective

field H⃗x
m.

H⃗conf
g = 𝜂

(
Ng −

1
3

)
M⃗g (19)

Ng = 1
1 + 2 exp

(
−K𝜎

eq
g

) (20)

𝜎
eq
g = 3

2
h⃗
(
𝜎g −

1
3

tr
(
𝜎g
)

I
)

h⃗ (21)

H⃗x
m =

⟨
H⃗x

g

⟩
=
⟨

H⃗g + H⃗conf
g + H⃗irr

g

⟩
(22)

5 COMPARING MODELS

In this section, 3 energy-based models are compared with
each other and with a number of measurements. The
energy-based material model uses the theory described in
Sections 2 to 2.2. The models are the simplified model of
Daniel et al,21 the full multiscale energy-based material model
of Daniel et al,6 and the own model introduced in Vanoost
et al.17 The measurement results are obtained from Rekik.27

5.1 Measurements
The models are compared based on a positive magnetostric-
tive material FeSi3%, which suffers from the nonmono-
tonic effect.6,17,21,27 The measurement results are shown in
Figure 3.

5.2 Simplified material model of Daniel et al
Figure 1 shows the simplified model of Daniel et al.21 The
simplification consists of considering the material as a sin-
gle crystal, where the energy density functions are converted
to address the macroscopic behavior instead of the micro-
magnetic behavior using Equations 23, 25, and 26. The main
modification occurs to the anisotropic energy density func-
tion (Equation 26), which is an uniaxial anisotropy along the
𝛽 direction. The energy functions are used in the Boltzmann
distribution, as described in Section 3.1, to obtain the anhys-
teretic distribution P𝛼 (Equation 7). The parameters used to
obtain the simulation results of Figure 3 are given in Table 1.
The material parameters are obtained by measurements.21

The anhysteretic parameters, Ms and 𝜆s, are the maximum
obtained magnetization and magnetostriction of the material
when no stress is applied. Based on an anhysteretic measure-
ment, As is obtained. 𝜂 requires a susceptibility measurement
under stress. The 4 parameters describing the hysteresis effect
are obtained according to Hauser.26 They require a major
hysteresis loop when no stress is applied.

WH = −𝜇0H⃗M⃗𝛼 (23)

𝜀 = 𝜆s

(3
2
�⃗�m�⃗�

T
m − 1

2
I
)

(24)

Wsigma = −𝜎 ∶ 𝜀 (25)

Wan = −J(𝛼𝛽)2 (26)

5.3 Full material model of Daniel et al
Figure 2 shows the full model of Daniel et al.6 The main
difference between the simplified model and the full model
is the use of the self-consistent polycrystalline scheme as
described in Section 3.2, which requires crystallographic tex-
ture data of the material and the anhysteretic constitutive law.
The energy function at the constitutive law is used in the
Boltzmann distribution, as described in Section 3.1 to obtain
the anhysteretic distribution P𝛼 (Equation 7). The parameters
used to obtain the simulated results of Figure 3 are given in
Table 2. As described in Daniel et al,6 the material parameters
are identified using anhysteretic measurements at low fields
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FIGURE 1 Flowchart simplified material model of Daniel et al21

TABLE 1 Material parameters: simplified material model of Daniel et al21,27

Material Ms J 𝜆s As 𝜂 k0
r cr ka 𝜅 ini

FeSi3% 1.45106 0 1210−6 3.510−3 210−4 150 0.1 1910−6 1

Unit A∕m J∕m3 m∕m m3∕J - J∕m3 - m∕A -

FIGURE 2 Flowchart full material model of Daniel et al6

for different (uniaxial) stresses, 2 magnetostriction measure-
ments at high fields (perpendicular to each other), and a major
hysteresis loop when no stress is applied.26 Although more
material parameters are required, compared to the simplified
model, Ms, K1, K2, 𝜆100, 𝜆111, C11, C12, and C44 are defined
at the crystal scale. They are standard physical constants that
can be found in physics textbooks like Bozorth4 and Cullity
and Graham,24 which is an improvement.

5.4 Our material model

Figure 4 shows the variation of the multiscale energy-based
material. The main difference between the full model and our
model is the use of the hysteresis energy density function
(Equation 6) at the constitutive law, see Sections 2.2 and 3.1.
This means the hysteretic distribution Pg (Equation 9) instead
of the anhysteretic distribution P𝛼 is used. The self-consistent
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FIGURE 3 Simulated major loops of nonoriented FeSi3% with the different models and the measurements. This is done for different levels of
applied mechanical stress, a tensile stress is indicated with a dotted line, whereas compressive stress is indicated with a continuous line

TABLE 2 Material parameter: full material model of Daniel et al4,6,24,27

Material Ms K1 K2 𝜆100 𝜆111 C11 C12 C44

FeSi3% 1.61106 38 0 2310−6 −4.510−6 202109 122109 229109

Unit A/m J/m3 J/m3 m/m m/m Pa Pa Pa

Material As 𝜎c 𝜂 k0
r cr ka 𝜅 ini

FeSi3% 310−3 20106 210−4 150 0.1 1510−6 1

Unit m3/J Pa - J/m3 - m/A -

FIGURE 4 Flowchart full material model17

TABLE 3 Material Parameters: own model4,6,17,24,27

Material Ms K1 K2 𝜆100 𝜆111 C11 C12 C44

FeSi3% 1.61106 38 0 2310−6 −4.510−6 202109 122109 229109

Unit A/m J/m3 J/m3 m/m m/m Pa Pa Pa

polycrystalline scheme as described in Section 3.2 requires
crystallographic texture data that is used with the difference
that the crystallographic texture data is simulated instead of
measured according to other studies.17,22,23 The used param-

eters to obtain the simulated results of Figure 3 are given
in Table 3. As described in Vanoost,17 the required material
parameters are almost all defined at the crystal scale. This
means they are standard physical constants that can be found
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in physics textbooks like Bozorth4 and Cullity and Graham,24

The parameter As is calculated according to Daniel et al and
Vanoost et al16,17 As = 3𝜒0

𝜇0M2
s

, while the parameter 𝛽 depends

on 𝜎eq. For FeSi3% 𝛽 equals (Equation 27) with 𝜎eq obtained
using Equation 21.

𝛽 = −9 ·10−26(𝜎eq)3−3 ·10−17(𝜎eq)2−6 ·10−10(𝜎eq)+0.9372
(27)

6 CONCLUSIONS

This paper compares 3 different energy-based material mod-
els, namely, the simplified material model of Daniel et al,21

the full material model of Daniel et al,6 as well as our own
material model.17 All these models are able to predict the mea-
sured magneto-elastic behavior, but our model predicted this
without the need of tedious parameter identification work and
is able to take the nonmonotonic effect in consideration. It is
shown that by using the hysteresis energy density function,
we are able to obtain good agreement between simulation
and measurement. Our model uses only standard physical
constants which can be found in physics textbooks, with the
exception of 𝛽. Therefore, further research is required on
this parameter 𝛽, to obtain a material model that uses only
standard physical constants.
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