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Abstract

In this work a study of multistep model predictive direct cur-
rent control in high switching frequency range will be pre-
sented. The optimization problem underlying this control
approach is represented by an integer least-square problem,
which can be solved by the sphere decoding algorithm. In this
paper, the system performance, both in transient and steady-
state will be analysed in such a way, that a direct current con-
troller can be obtained for an induction motor operated by a
two-level voltage source inverter in high dynamic drive appli-
cations, which achieves higher dynamics when compared to
the classic modulation based schemes and lower current dis-
tortion than other direct control approaches.

1 Introduction

Since the last decades the direct predictive control has become
an alternative technology to the conventional pulse width mod-
ulation (PWM) based approaches for power electronics. In-
stead of defining the duty cycle, the switch positions of the in-
verter can be directly manipulated, which means no modulator
is required. Depending on the applications, control strategies
adressing different objectives are proposed, among which di-
rect torque control (DTC) and direct current control (DCC) are
the most prominent representatives.

DTC is nowadays a well-established industrial standard. By
selecting an optimal inverter switch combination from the
switching table according to derivation of torque and flux link-
age, the stator flux vector is driven to the desired position. De-
spite its simplicity, DTC features rapid and accurate dynamic
torque responses throughout the entire operating range, and is
robust with respect to motor parameters and perturbations [1].
On the other hand, the main disadvantages of DTC are the no-
table current and torque ripple as well as its variable switch-
ing frequency behavior [2]. DCC scheme can be deemed as
an adaptation of DTC, in the sense that it is by analogy with
DTC in terms of principle and implementation despite the con-
trol objectives of DCC are transformed into producing desired
three-phase load current. The basic principle of DCC is to se-

lect the proper stator voltage vector such that the stator current
vector is kept within a hysteresis bound moving with time.

With the development of microprocessor techniques the model
predictive control (MPC) has recently been more and more
popular in the field power electronics [3, 4]. The most widely
used MPC approaches are finite-control-set MPC (FCS-MPC)
based on the enumeration / exhaustive search algorithm ac-
cording to the underlying minimization problem of the objec-
tive function [5–11]. Therefore, such approaches take expo-
nential computational effort with increasing length of the pre-
diction horizon. This is the reason why the prediction step
size is usually limited to one or two. The distortion of these
approaches is commonly higher than that of the modulation
schemes. In [12], an extrapolation strategy is proposed, in
which a switching horizon and a prediction horizon are de-
fined. The basic idea is to compute input sequences over the
switching horizon that is significantly shorter than the predic-
tion horizon, which is determined by linearly extrapolating the
promising state trajectory within their constraints. In such a
way, a multistep direct MPC can be obtained with modest com-
putational complexity. However, the accuracy is compromised.

In [13], a novel multistep direct MPC approach is introduced
by definition of a constrained finite-time optimal control prob-
lem (CFTOC). The optimization problem is formulated into
an integer least-squares (ILS) problem solved by the sphere-
decoding algorithm introduced in [14]. The approach was
implemented on a medium-voltage induction machine fed by
a three-level voltage source inverter (VSI). The focus was
mainly on the steady-state performance for the switching fre-
quency range between 200Hz and 350Hz. The performance
evaluation is given in [15]. Based on this concept, the appli-
cation for two-level VSI and high switching frequency range,
which is commonly used in the high dynamic electrical drive
systems, is studied in this paper. Both the dynamic and steady-
state performance will be compared to the space vector modu-
lation (SVM) and enumeration-based FCS-MPC.

2 Prediction Model
In this section the discrete-time models of drive systems, that is
induction motors (IM) driven by two-level three-phase voltage
source inverter (VSI), will be derived. More Specifically, the
model should capture the hybrid nature of the DCC drive sys-
tem, i.e. a system incorporating both continuous and discrete
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variables, in particular binary manipulated control variables.

By means of the power-invariant Park transformation, the
three-phase system is transformed into the αβ reference frame
by

ξαβ = P̃ ξabc with
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,

(1)

where ξabc = [ξaξbξc]
T and ξαβ = [ξαξβ ]T denote the param-

eter vector from the three-phase system and in the αβ reference
frame, respectively.

The VSI is capable to produce at each phase two voltage lev-
els, either Vdc

2 or −Vdc

2 , assuming that the DC-link voltage is
constant and the neutral point potential unp is fixed. Let inte-
ger variables ua,ub and uc ∈ U denote the switching state of
each phase, where

U , {1,−1} (2)

is the single-phase constraint set. The elements 1 and −1 cor-
respond to the phase voltages Vdc

2 or −Vdc

2 respectively. There-
fore, the switching state vector uabc = [ua ub uc]

T applied
to the inverter at certain time instance is selected from a 23-
element finite set defined as triple Cartesian product of the set
U

U , U × U × U . (3)

Accordingly, the voltage applied to the machine terminals in
orthogonal coordinates can be obtained via

uαβ =
Vdc
2
P̃uabc. (4)

The dynamics of the induction motor is modeled in αβ refer-
ence frame. The state space equations of the continuous-time
system are given by

ẋ(t) = Fx(t) +Guαβ(t)

y(t) = Cx(t),
(5)

where the state, input and output vectors are defined as

x = [isα isβ ψ′rα ψ′rβ ]T

uαβ = [uα uβ ]T

y = [isα isβ ]T .

(6)

The symbols is and ψr represent the stator current and the ro-
tor flux, respectively. The system matrices F , G and C are
described in the following respective forms
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G =
L′r
D

Vdc
2


1 0
0 1
0 0
0 0

 , (7b)

C =

[
1 0 0 0
0 1 0 0

]
. (7c)

The notations τs, τr and D are defined as

τs =
L′rD

RsL′r
2 + L′rL

2
m

, (8a)

τr =
L′r
Rr

, (8b)

D = LsL
′
r − L2

m. (8c)

By means of Euler Forward Method, the discrete-time model
can be obtained in the following formulation

x(k + 1) = Ax(k) +BP̃uabc(k)

y(k) = C(k).
(9)

The discrete-time system and input matrices are given by

A = I + FTs (10)

B =
Vdc
2
GTs, (11)

where I is the identity matrix of appropriate dimensions,
which in this case is 4× 4, and Ts denotes the sampling time.

3 Optimization Control Problem
In this section, the optimization problem of the multi-step
model predictive direct current controller is presented.

3.1 Constrained Finite-Time Optimal Control Problem

The objective function of the optimal control problem is for-
mulated by

J =

k+N−1∑
l=k

‖iαβ,error(l + 1)‖22 + λu‖∆u(l)‖22, (12)

where iαβ,error(l) = iαβ,ref (l) − iαβ(l) and ∆u(l) =
uabc(l) − uabc(l − 1). The weighting factor λu penalizes the
switching transitions and adjusts the trade-off between track-
ing error and switching effort. After introducing the switching
sequence over the prediction horizon at time instant k

U(k) =
[
u(k)T u(k + 1)T , ...,u(k +N − 1)T

]T
(13)

the CFTOC problem can be compacted as

min
U(k)

J(x(k),u(k − 1),U(k),yref (k))

s.t. Equation (9) ,U(k) ∈ U,
(14)

where U , U×···×U is theN -times Cartesian product of the
set U , and U denotes the set of discrete three-phase switching
states as aforementioned.

As the 2-norm is used in the objective function, the on-line
solving of CFTOC problem (14) amounts either to obtaining
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the optimal switching state via enumeration, which features
one-by-one exhaustive search through tentative candidate set
and is far from being efficient, or to solving a mixed-integer
quadratic problem (MIQP), for which efficient off-the-shelf
solvers such as CPLEX and GUROBI exist. However, such
approach does not take advantage of the particular structure of
the CFTOC problem and the receding horizon policy adopted
by MPC.

3.2 Integer Least-Squares Problem

In fact, the CFTOC problem (14) highly resembles Integer
Least-squares (ILS) problems in the way that they both search
for the vector with integer entries that minimizes a certain ob-
jective function. This distinguishing feature can be exploited
to greatly reduce the computational burden, thus enabling the
implementation of long prediction horizon. The general form
of the ILS problem is

min
s∈Zm

‖x−Hs‖22 , (15)

where x ∈ Rn×1,H ∈ Rn×m, Zm denotes the m-
dimensional vector with integer entries. However, the search
space is often restricted to a finite subset D ⊂ Zm, which
yields an ILS problem subject to finite alphabet (FA) con-
straints

min
s∈D⊂Zm

‖x−Hs‖22 . (16)

The ILS problem has a simple geometric interpretation. As
the entries of s run over the integers, s spans the rectangular
m-dimensional lattice Zm. The matrixH is known as lattice-
generating matrix, and its columns represent m linearly inde-
pendent vectors that generate a lattice, i.e. the set of all linear
combinations of the basis vectors hi

L(H) = {
m∑
i=1

wihi|wi ∈ Z} . (17)

However, for any given H , the n-dimensional vector Hs
spans a skewed lattice compared to the integer lattice (see Fig.
1). Therefore, given the skewed lattice Hs and given a vector
x ∈ Rn×1, the ILS problem amounts to finding the closest
lattice point to x. Generally speaking, the ILS problem is NP-
hard both in worst-case sense [16] and in average sense [17],
however efficient algorithms abound for solving the ILS prob-
lem.

3.3 Reformulation of the CFTOC Problem

Motivated by the fact that efficient algorithms can be adapted
to solving the ILS problem, the CFTOC problem (14) is refor-
mulated into an ILS problem by techniques introduced in [13]
in the sequel. We define the output sequence Y (k) as

Y (k) = [yT (k + 1), ...,yT (k +N)]T (18)

and the output reference sequence Yref (k) is defined accord-
ingly. The output sequence can be then described by

Y (k) = Γx(k) + ΥU(k), (19)

(0,0) (0,1)

(1,0)

(0,0)

(1,1) (2,1)

(a) (b)

Fig. 1: Two-dimensional lattice generated by two different
bases.

where the two matrices are defined as

Γ =
[
CA CA2 . . . CAN

]T
, (20a)

Υ =

 CBP̃ 0 ... 0

CABP̃ CBP̃ ... 0

CAN−1BP̃ CAN−2BP̃ ... 0

 . (20b)

Therefore, the objective function (12) can be rewritten in a
compact form

J = θ(k) + 2(Θ(k))TU(k) +UT (k)QU(k) (21)

with

θ(k) , ‖Γx(k)− Yref (k)‖22 + λu‖Eu(k − 1)‖22 (22a)

Θ(k) , ((Γx(k)− Yref (k))TΥ− λu(Eu(k − 1))TS)T

(22b)
Q , ΥTΥ + λuS

TS, (22c)

where

S =


I 0 ... 0
−I I ... 0
0 −I ... 0
...

...
...

0 0 ... I

 , (23a)

E =
[
I 0 0 . . . 0

]T
. (23b)

By expanding the squared Euclidean norm (21) can be rewrit-
ten into

J = (U(k)+Q−1Θ(k))TQ(U(k)+Q−1Θ(k))+const(k).
(24)

Would the integral constraints on U(k) be ignored, The un-
constrained optimal solution to (24) amounts to

Uunc(k) = −Q−1Θ(k). (25)

Inserting (25) into (24), the objective function can be rewritten
into

J = (U(k)−Uunc(k))TQ(U(k)−Uunc(k)) + const(k).
(26)
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Fig. 2: Geometric interpretation of SD algorithm.

Since Q is symmetric and positive definite for λu > 0, there
exists a unique invertible and lower triangular matrixH which
satisfies

HTH = Q. (27)

H can be obtained by Cholesky decomposition ofQ−1 which
is also positive definite noting that the H−1 is also lower tri-
angular hence

H−1H−T = Q−1. (28)

Then we define

Ūunc(k) ,HUunc(k). (29)

By substituting (27) and (29) ,the objective function (26) can
be rewritten into

J = (HU(k)− Ūunc(k))T (HU(k)− Ūunc(k))+ const(k).
(30)

Noting that the constant term is independent ofU(k), therefore
the CFTOC problem (14) is finally reformulated into an ILS
problem (15)

min
U(k)

‖HU(k)− Ūunc(k)‖22

s.t. Equation (9),U(k) ∈ U.
(31)

3.4 Sphere Decoding Algorithm

As aforementioned, abundant existing algorithms have enabled
the efficient solving of ILS problems, and sphere decoding
(SD) algorithm is one of the most prominent representatives.
In the following the principle of SD algorithm is briefly intro-
duced. Although SD algorithms employ different notations,
they shared a common principle that is quite intuitive as illus-
trated in Fig. 2. Instead of searching all valid points in the
lattice to find the one which minimizes the objective function
(15), SD attempts to restrict the search region to a sphere of
radius ρ centered around the given vector x, i.e.

‖x−Hs‖22 ≤ ρ2, (32)

thereby significantly reducing the computational burden, and
the complexity is demonstrated in [14, 18].

The ILS formulation (31) of the original CFTOC problem boils
down to finding the lattice pointU(k) that lies within a sphere
centered at Ūunc(k) of initial radius ρ(k) > 0. Eventually

the optimal solution Uopt(k) has the shortest Euclidean dis-
tance to the sphere center among all the candidate switching
sequences. A SD algorithm tailored from the one proposed
in [19] is employed in our case studied which exploits the fact
that U features finite set elements:

‖HU(k)− Ūunc(k)‖22 ≤ ρ2(k). (33)

The property ofH being a lower-triangular matrix now comes
in handy. By expanding the quadratic norm 33, we obtain

ρ2 ≥ (Ū1−H1,1U1)2+(Ū2−H2,1U1−H2,2U2)2+ · · ·, (34)

where the subscript unc of Ūunc and the time instant k is omit-
ted for simplicity reason.

There are only two possible switching states of each phase,
which implies that two branches stretch out from each node.
Starting from the first layer, the left node −1 is visited. The
current Euclidean distance d′ is given by

d′2 = d21 , (Ū1 −H1,1U1)2. (35)

Then evaluating
ρ2 ≥ d′2 (36)

if the condition holds, which means−1 is inside the sphere, the
search proceeds to the next layer hitting firstly the left node−1.
The current Euclidean distance is updated by simply adding a
term to the previously calculated d21, i.e.

d′2 = d21 + (Ū2 −H2,1U1 −H2,2U2)2. (37)

The first candidate switching sequenceU = [−1 − 1 − 1]T is
then obtained when the last layer has been reached. Its associ-
ated squared distance which is less or equal to the initial radius
is now adopted as the new radius of the sphere, implying the
search space shrinks, which is denoted as shrining-radius strat-
egy. Subsequently we explore the second node of the third
layer, which turns out to be beyond the sphere. Since all the
two branches that stem from the left node of second layer are
run through, we move on to the right node 1, whose distance
however exceeds the radius, then a certificate is given to the
node and all its associated branches that it provides only sub-
optimal solutions, i.e., solutions that are worse than the incum-
bent optimumU = [−1−1−1]T . Therefore, the search in this
path can be pruned. This feature distinguishes SD algorithm
from the conventional enumeration approach (see Fig. 3a). The
above described tree search is depicted in Fig. 3b, where black
solid circles denote nodes that are explored and verified to be
inside the sphere, whereas the red ones indicate those beyond
the sphere, the gray nodes are those which haven’t been vis-
ited at all. The direction of the search process is indicated with
black arrows. In summary, to find the optimal solution nodes
are visited with a direction from left to right, and from layers of
lower dimension to the ones of higher dimension unless reach-
ing a dead end or full dimension where backtracking occurs.

Compared to the algorithm used in [13], the computational
complexity of the algorithm in this work is further reduced by
means of Schnorr- Euchner SD.
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𝑚 = 3

𝑚 = 2

𝑚 = 1

(a) Brute-force tree search employed in enumeration

𝑚 = 3

𝑚 = 2

𝑚 = 1

(b) Efficient tree search employed in SD algorithm

Fig. 3: Two typical tree search techniques for solving ILS problems.
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(b) Dynamic response of enumeration-based
FCS-MPC with N = 1
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(c) Dynamic response of MSMPDCC with N =
5

Fig. 4: Dynamics during reference current steps for different approaches at fsw = 3000Hz.

4 Simulation Results
Simulation results are presented in this chapter for evalua-
tion of the multi-step model predictive direct current control
(MSMPDCC) approach proposed in the previous section in
terms of the dynamic and steady-state performance. In [13]
it is introduced, the total harmonic distortion (THD) decreases
generally with increasing switching frequency. Therefore, the
weighting factor λu of MSMPDCC and FCS-MPC based on
enumeration is tuned in such a way, that the same switching
frequency is garanteed as the SVM approach. Fig. 4 shows
the dynamic performance of Field Oriented Controller (FOC)
based on PI and SVM, FCS-MPC based on enumeration with
single prediction step and MSMPDCC with prediction step
N = 5. The sampling frequency fs = 20kHz and the switch-
ing frequency of the inverter fsw = 3kHz.

Initially, the induction motor is running with a mechanical ro-
tor speed of 800rpm under no-load operation, when the rotor
flux which features the relatively slow dynamics settles to its
steady-state value, a step from 0p.u. to 1p.u. in the quadrature
current reference isq,ref is imposed. It can be identified that
the dynamical response of both FCS-MPC based on enumer-
ation and MSMPDCC is far more prompt than that of SVM.
The settling times of enumeration-based FCS-MPC and MSM-
PDCC are nearly identical. It is due to the fact that the voltage
margins that are predominantly affected by the rotor speed are
essentially the same. Regarding the steady-state performance,
the current THD of the above three cases are computed via
FFT analysis, which yields 4.335%, 6.505% and 6.121% re-
spectively.

It can be concluded that during transient the length of predic-
tion horizon has no profound impact on the dynamical perfor-
mance of the MPDCC, which is on the contrary limited only
by the available voltage. Generally, the MPDCC approach is
superior to the conventional FOC with SVM in transient per-
formance when featuring the same switching frequency of the
inverter. However the steady performance of the proposed
MPDCC approach is inferior to that of the SVM since for di-
rect control scheme, voltage vector chosen from the hexagon
is applied during the whole sampling interval. On the con-
trary, the SVM technique allows for a combination of the two
adjacent active voltage vectors together with the inactive ones,
which yields a smoother control action, therefore lower current
THD.

Fig. 5 shows the relationship between THD and switching fre-
quency as well as prediction horizon. In general, the N = 1
curve overlies the others at most of the switching frequencies.
Therefore, the steady-state performance can be improved by
increasing the prediction horizon, which is applicable by the
MSMPDCC approach as aforementioned.

5 Conclusions

In this work the multistep direct current control approach is
studied for the application in high switching frequency range.
The original optimal problem is reformulated into an ILS prob-
lem. By incorporating an efficient sphere decoding algorithm,
the computational burden is dramatically alleviated. There-
fore, the implementation of a considerably long prediction
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Fig. 5: ITHD as a function of fsw.

horizon is possible. The long prediction horizon takes advan-
tage of the high dynamic performance of the FCS-MPC and
has a better steady-state performance compared to that of sin-
gle prediction step.
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