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Abstract—This paper focuses on the constraint han-
dling for induction machines (IMs) using model predictive
control (MPC) to enhance the optimality. Commonly, the
constraints of IMs are represented by stator current and
voltage limits, which are described as quadratic inequality
in dq-frame. Due to the spherical feature, the constraints
have to be replaced by approximation by polygon in order
to get a standard form of quadratic programming (QP).
In this paper, a novel approach is proposed to convert
the quadratic inequalities into linear ones without approx-
imation, whereat the inequality is parameter-varying. To
tackle this parameter-varying inequality, the multiparamet-
ric quadratic program (mp-QP) algorithm for reference
tracking is utilized and extended. To ensure the optimiza-
tion problem solved in real time, an explicit MPC (EMPC) via
mp-QP is applied instead of any online numerical solver.

Index Terms—Constraint handling, induction motor con-
trol, model predictive control (MPC), offline optimization.

I. INTRODUCTION

T HE induction machine (IM) is widely used in elec-
tric drive systems because of its simple and reliable

structure, low material, and manufacturing cost. To obtain high-
performed torque, speed, or position control, the vector control
[1], also called field-oriented control (FOC), was developed for
practical usage of ac machines since the 1980s and represents
nowadays the state of the art. In most cases, the requirements of
drive applications can be met by dint of field-oriented cascaded
PI controllers. However, for highly dynamic drive applications
such as electric drive systems, the cascaded PI controllers are
no longer suitable, as the small time constants of inner control
loops are added and the system dynamic is thereby deterio-
rated [2]. With the development of microcontroller techniques
in the last few decades, the model predictive control (MPC) is
increasingly discussed and proposed for electric drives [3].

MPC originated in late seventies [4] and has been devel-
oped intensively in the last three decades [5], [6]. It became
one of the most important advances in the processing industry.
In 1978, Richalet et al. presented “model predictive heuristic
control” [7], and in 1979, Culter and Ramaker applied dynamic
matrix control (DMC) to a fluid catalytic cracker [8]. In 1980s,
MPC became more popular in chemical-process industries,
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especially in the petrochemical sector [9]. In comparison to
PI controller, MPC shows strong abilities to cope systemati-
cally with multivariable systems, uncertainties, and constraints
[4]. The system constraints can be incorporated into the control
objective function, which usually is able to be formulated as
a quadratic programming (QP) problem. In [10]–[16], the sta-
bility and the optimality of constrained MPC are discussed. In
IM, the system constraints are given by maximum admissible
stator current which is dependent on the thermal classification
of the motor’s insulation system, and maximum available dc-
link voltage of the inverter, which have to be considered for
safety reason in the control strategy. However, the stator current
and voltage limits, without consideration of overmodulation
by means of space-vector modulation (SVM), are represented
in dq-frame circularly, which means that the constraints are
depicted by quadratic inequalities. They do not fulfill the stan-
dard form of QP anymore and therefore have to be rearranged.

The simplest way of constraint handling for IM is to define
the limiting values as constants. In [17], three box-constrained
inequalities are given, respectively, for d-current, torque, and
rotor flux. In [18]–[22], the constraint of q-current is formu-
lated assuming that d-current is constant. The problem of such
an approach is that the feasible regions of the system are not
comprehensively taken into account, so that the optimality can-
not be guaranteed, or the optimal control is only suitable for
a particular operating area. In [23], a penalty of stator current
is introduced in the cost function to prevent over current. It is
only applicable for the finite-set direct control based on enu-
meration, since there are finite combinations of control values.
In case of optimal control problems with continuous control
variables, the optimality will be deteriorated. Another approach
is to convert the spherical constraint curves into polygons by
approximation [24]. The quadratic inequality can thereby be
replaced by a set of linear inequalities. In [25] and [26], the
current constraint is defined by an adjustable inequality regard-
ing the actual value of d-current and the reference value of
q-current. The voltage constraint is depicted by a polygon of
radius of dc-link voltage of the inverter. However, the accuracy
of approximation is strongly dependent on the degree of the
polygon. Therefore, a tradeoff between approximation accuracy
and computational cost should be considered during controller
design.

In this paper, the dependency of maximum admissible sta-
tor current and voltage on the torque will be analyzed. The
quadratic inequalities of current and voltage can be represented
by the linear one of torque. In this way, all feasible regions
are covered without approximation for the optimal control.
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However, the limited torque depends nonlinearly on the rotor
speed, which still has to be tackled.

In online optimization, the parameter-varying limit is calcu-
lated in each step. Thereby, the proposed optimization problem
can be described as standard QP. There are a lot of numerical
methods to solve QP. Reference [27] proposes the interior-
point method to MPC. Reference [28] gives an overview of
algorithms based on this method. In [4], algorithms based on
active-set method for QP are introduced. In [29], a compari-
son of these two methods for MPC is given. In [30] and [31],
the optimization methods are fully delineated. Reference [32]
explains systematically efficient solutions while numerically
solving convex optimization problems. On purpose of using
constrained MPC widely in diverse systems, various algo-
rithms of numerical real-time solution are pursued [33]–[36].
However, numerical online optimization still cannot satisfy the
real-time requirement in the applications of high dynamic sys-
tems such as electric drives, in which the sampling frequency
can be over 10 kHz. In [37], an explicit solution of constrained
MPC using multiparametric quadratic program (mp-QP) is
introduced. With this concept, the optimization problem can
be solved offline, and the controller is able to be depicted by
piecewise affine (PWA) functions [38]. By means of efficient
search algorithm, the online computation time of optimal con-
trol action can be reduced to several microseconds. In [39],
an efficient approach for constrained optimal control using
mp-QP is developed. Reference [40] gives a review of the
main approaches to solve explicit MPC (EMPC) problems via
mp-QP.

In order to deal with our aforementioned parameter-varying
linear inequality, the mp-QP algorithm is utilized in this paper
in such a way that the torque limit is appended as an additional
state variable to the parameter vector.

This paper is organized as follows. In Section II, the theo-
retical background of constrained MPC is given. To attain a
standard QP form without approximation, the control-specific
quadratic inequality constraints on stator current and voltage
are converted to linear parameter-varying inequality on torque.
To deal with the proposed optimization problem, the EMPC is
introduced in Section III. Based on the mp-QP for reference
tracking, the controller is designed. In Sections IV and V, the
simulation and experimental results are presented, respectively.

II. CONSTRAINED MPC

In this section, the MPC in consideration of system con-
straints is introduced. In order to get the optimal control action,
a standard QP with inequality constraints has to be formulated
ultimately.

A. Model Predictive Control

For introduction, the discrete-time linear time-invariant
unconstrained system without dead time in the simplified form
is considered at first{

xt+1 = Axt +But

yt = Cxt

(1)

where xt,xt+1 ∈ �n,ut ∈ �m, and yt ∈ �p are, respectively,
the state, input, and output vectors of the system. Regarding to
different MPC algorithms, various cost functions are proposed.
For the purpose of speed control (reference tracking), the cost
function of MPC for reference tracking is defined by a quadratic
function

J =

Np∑
k=1

[
(wt+k − ŷt+k)

TQ(wt+k − ŷt+k)

+

Nu−1∑
k=0

uT
t+kRut+k

]
(2)

where Np and Nu represent the prediction and control horizon
length, respectively. wt+k, ŷt+k, and ut+k are the reference,
predicted output, and control vectors at time t+ k, where
ut+k = uNu−1 for Nu ≤ k < Np. Q, R are symmetric pos-
itive definite weighting matrices, which penalize the tracking
offset and control value. The control law is computed by
minimizing this cost function in each time step.

From (1), the predictions in next Np steps at time t are
computed

Y =

⎡⎢⎢⎢⎣
CA
CA2

...
CANp

⎤⎥⎥⎥⎦ x̂t +

⎡⎢⎢⎢⎣
CB . . . 0
CAB . . . 0

...
. . .

...
CANp−1B . . . CANp−Nu+1B

⎤⎥⎥⎥⎦U

(3)

where the column vectors Y
Δ
= [ŷT

t+1 . . . ŷT
t+Np

]T ∈ �h and

U
Δ
= [uT

t . . . uT
t+Nu−1]

T ∈ �l with h
Δ
= pNp and l

Δ
= mNu.

By means of vector form, (3) can be expressed as

Y = Ψx̂t +ΘU . (4)

Substituting (4) into (2), the cost function (2) is rearranged to

J = (W −Ψx̂t)
TQ(W −Ψx̂t)− 2UTΘTQ(W −Ψx̂t)

+UT (ΘTQΘ+R)U (5)

where W
Δ
= [wT

t+1 . . . wT
t+Np

]T ∈ �h. Independent on the
case, whether x̂t is corrected by the observer, this value is
known at time step t. Therefore, the only unknown variable of
the cost function at time step t is U . If there is no constraint, an
analytical solution exists providing the optimum as{

∂J
∂U

!
= 0

U∗ = (ΘTQΘ+R)TΘTQ(W −Ψx̂t) .
(6)

Thus, the optimum control action in the next time step by
utilization of the first element of U∗ is defined as

ut = u∗
t (7)

which is applied as input to system (1), while the resting part of
the control actions is discarded. At the next time step t+ 1, the
optimization (6) is shifted one step ahead and the whole proce-
dure is repeated with updated information. Therefore, MPC is
also called receding horizon control (RHC).
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Fig. 1. Computation of control signals with and without incorporation of
constraints [4].

B. Quadratic Programming

Almost all real-world physical systems have their constraints,
whether they are input, output, or state limits. As mentioned
in Section I, one advantage of MPC compared with PI con-
trollers is the incorporation of the system constraints into
control design. Hence, MPC provides a good instrument to
handle constrained system controlling.

In PI controllers, the system constraints are considered by
saturation of the corresponding values and antiwindup in case
of actuating value saturation to suppress output overshooting.
However, saturation is not a good way for MPC, which will be
clarified as follows.

Fig. 1 illustrates the difference between saturation and con-
straint consideration in MPC. To give a direct insight to the
expression, the MPC problem is defined with a control horizon
of two. The annular curves represent the values of cost func-
tion J . Fig. 1(a) shows the case, in which ut, ut+1 > umax.
By means of saturation, ut is forced to its limiting value umax,
while by constraint consideration, uc is applied to reach the
minimum of J . In the case of Fig. 1(b), the value of the next
control action ut does not violate the constraint and is therefore
applied as input to the system when saturation is executed. In
such a way, the cost function value deviates from the optimum
solution under constraint consideration, in which uc is applied
to the system.

The example shown in Fig. 1 gives a good explanation,
why constraints should be taken into account in MPC design.
Now return to the unconstrained optimization problem of MPC.
Minimizing the cost function described in (5) is equivalent to
the following problem:

min
U

J ′ =
1

2
UTHU + cTU (8)

where H = ΘTQΘ+R and c = −ΘTQ(W −Ψx̂t). It is eas-
ily obtained that the Hessian matrix H is symmetric positive
semidefinite. Thereby, the optimization problem is specified to
a convex optimization, which is illustrated in Fig. 2. The con-
trol horizon is set by two steps. In this example, there exists a
unique globally optimum solution.

The optimization problem of MPC (8) under consideration
of constraints is then depicted as follows:

Fig. 2. QP as convex optimization problem.

min
U

{
1

2
UTHU + cTU

}
s.t. GU ≤ b+ Ex̂t (9)

where the vectors G, b, and E depend on the constraint for-
mulation. For constant constraints, E is equal to zero. Since
the box-constraint can be converted to one-sided form, this
form is generally valid for all inequality constraint descrip-
tions. Therefore, the optimization problem with constraints is
a standard QP. Since the problem is dependent on the state
variable x̂t at each time step, an online solution is required
for MPC.

Commonly, the QP problems are solved by efficient numeri-
cal solvers based on active-set methods or interior-point meth-
ods. With active-set methods, only the active constraints are
considered at each iteration step, whereat the active set varies
slightly from step to step considering efficiency. However, the
active-set algorithms may become slower near to the optimum
point. With interior-point or primal dual (PD) interior-point
methods, the QP is converted to a Lagrange function with
Lagrange multipliers. The constraints are replaced by barrier
functions. By means of Karush–Kuhn–Tucker (KKT) condi-
tions [32], the system is converted to nonlinear equations;
therefore, at each iteration, the system is linear. Thus, the
computation can be accomplished by iterative linear alge-
braic solvers. The PD interior-point methods feature fast
convergence properties. However, the online computational
effort for optimal control action is tremendous despite of
the efficient numerical solvers. In Section II-C, the approach
proposed in [37] will be introduced and used as basic in
this paper to tackle the constraints of IMs using MPC in
real time.

C. Constraint Reformulation

In FOC, the stator-voltage equations for the inner loop are
given by

usd = Rsisd + σLsi̇sd + (1− σ)Lsi̇μ − ωeσLsisq

usq = Rsisq + σLsi̇sq + (1− σ)Lsωeiμ + ωeσLsisd (10)



4064 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 63, NO. 7, JULY 2016

with the constraints

i2sd + i2sq ≤ I2dq_max and

u2
sd + u2

sq ≤ U2
dq_max (11)

where Rs, Ls σ, and ωe denote the stator resistance, sta-
tor inductance, flux-leakage coefficient, and the synchronous
speed. isd, isq , usd, usq represent the stator currents and
voltages in dq-frame. Idq_max and Udq_max are the maxi-
mum admissible stator current and available inverter voltage
converted into dq-frame, respectively.

It is obviously that (11) does not fulfill the linear inequal-
ity specified in (9). In order to describe the problem in QP
form, the constraints are approximated by polygons, whereby
the quadratic inequality is replaced by a set of linear ones. The
higher the degree of the polygon is specified, the more accu-
rate is the approximation. On the other hand, more inequalities
are generated, which raises the computational effort. In order to
overcome this drawback, the system constraints of IMs will be
reformulated.

To convert the quadratic inequality system constraints to
linear one, the torque limit of the system is regarded. The
available maximum torque can be determined by the following
equations:

I2dq_max = i2sd + i2sq (12)

U2
dq_max = (ωeLsisd)

2 + (ωeLσsisq)
2 (13)

isd =
ωN

ωR
isd_N (14)

Te =
pL2

m

Lr
isdisq (15)

where

ωN nominal electrical rotor speed;
ωR actual electrical rotor speed;
Lσs stator-leakage inductance;
Lm mutual inductance;
Lr rotor inductance referred to the stator side;
isd_N nominal stator d-current referred to synchronous

frame;
Te air-gap torque;
p pole-pair number of IM.

Because the voltage limit is taken into account only in
the field-weakening area, where the voltage drops on stator
and rotor resistances are much smaller when compared to the
induced voltage due to rotation, the voltage boundary line
described in (10) and (11) can be simplified in the form of
(13). The direct current element isd is used instead of the
magnetizing current iμ, since the excess of current limita-
tion in transient states should be considered as well and the
applied voltage can be limited by available dc-link voltage
of the inverter. In this paper, the conventional constant-rotor-
flux method with field-weakening in (14) is applied for the
torque-limit calculation.

In consideration of (12), (14), and (15) in basic speed area
and (13)–(15) in the field-weakening area, the system constraint
on the torque can be described by

− Te ≤ Te ≤ Te , where Te

=

⎧⎪⎨⎪⎩
pL2

m

Lr
isd_N

√
I2dq_max − i2sd_N (16a)

pL2
m

Lr

ωN

ωR
isd_N

√(
Udq_max

ωeLσs

)2

−
(

ωN

σωR
isd_N

)2

(16b)

where (16a) describes the maximum torque of the IM, which
has a constant value and is only available in basic speed area. In
the field-weakening area, the maximum torque depends on the
actual rotor speed ωR and ωe, which represents the synchronous
frame speed at the operating point of actual rotor speed and
maximum torque application, specified in (16b). However, ωe

is not directly given in the control strategy, which is dependent
on the equation

ωe =
Rrisq
Lrisd

+ ωR (17)

where Rr and Lr are the rotor resistance and inductance,
respectively. ωe can then be expressed by ωR by an analyti-
cal solution of (13)–(17). The torque constraint formulation in
field-weakening area is thereby only with respect to ωR by sub-
stituting this solution in (16b). For a given rotor speed ωR, the
torque limit can be then determined by solving a fourth-order
polynomial equation.

Furthermore, it has to be considered that the voltage limit
(13) is represented by isd. In case of field-weakening operation,
the magnetizing current iμ drops slower than isd in transient
states, so that the actual electromotive force (EMF) in the q-axis

εq = ωeσLsisd + (1− σ)ωeLsiμ (18)

resulted primarily by isd and iμ is larger than the one calcu-
lated merely by isd. As a consequence, the voltage in the IM
is larger than the voltage limit in transient states in the field-
weakening area. This issue can be suppressed by applying iμ in
the voltage-limit calculation and using a rotor-flux controller,
whereat current overshoot can arise in transient procedures and
the current limit would be exceeded. In contrast, the impact of
resulted applied overvoltage in transient states in this case can
be limited by available dc-link voltage of the inverter as men-
tioned before. Therefore, the flux controller is abandoned in this
paper.

III. EXPLICIT MODEL PREDICTIVE SPEED CONTROL

OF IMS

By online optimization of problem (9), the value of x̂t is
given at each time step for the solution. Therefore, the con-
trol law u = u(t) is defined implicitly as a function of x̂t. To
reduce the computational effort, the EMPC is introduced in this
paper. The EMPC based on mp-QP, which was proposed in
[37], solves the QP for all x(t) offline to find the control law
u = u(x) explicitly. According to the actual value of x(t), the
solution is calculated online by means of the explicit form. By
extension of standard mp-QP form for reference tracking, we
convert the constraint formulated in (16), which does not match
the linear inequality, into a linear one.
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A. Multiparametric QP

The standard QP can be converted into mp-QP in such a
way that state variables are treated as a vector of parameters.
According to the constraints, the space of the parameters can
be defined by a set of regions, which are convex polyhedral
and in which the QP is feasible. The control law by solv-
ing the optimization problem is then expressed piecewise with
respect to the vector of the parameters. It is proved that the
linear MPC controller is a continuous PWA function of the
parameters [37].

To introduce the algorithm of mp-QP, we consider at first the
QP of regulation problem with measurable state variables and
having cost function

J̃ = xT
t+Np

Pxt+Np
+

Np−1∑
k=0

(xT
t+kQxt+k + uT

t+kRut+k) .

(19)

As the derivation in Section II, we obtain the following QP
from (19)

V (x) = min
U

{
1

2
UTHU + xT

t FU

}
s.t. GU ≤ b+ Ext . (20)

By defining z
Δ
= U +H−1FTxt and substituting it in (20), we

attain an equivalent problem

Vz(x) = min
z

1

2
zTHz

s.t. Gz ≤ b+ Sxt (21)

where S
Δ
= E +GH−1FT and Vz(x) = V (x) + 1

2x
T
t FH−1

FTxt. Compared to (20), the parameter vector xt in (21) stands
only on the right side of the inequality. In [37], it is proved that
z is also an affine function of parameter vector x. Fulfilling
both primal and dual feasibility, the constraints can be con-
verted to linear inequalities of the parameter vector. According
to these inequalities, the parameter vector space can be parti-
tioned into a set of convex polyhedral regions called critical
regions, in which the problem is feasible. They are described
by

CRi = {x ∈ �n|Hix ≤ Ki} . (22)

The optimum solution can be obtained as a PWA function in
following form:

u∗ = fix+ gi . (23)

Now we return to our problem. By combining (9) and (16), the
problem can be summarized as follows:

min
U

{
1

2
UTHU + [x̂T

t wT
t ]FU

}
s.t.

[
I
−I

]
U ≤ E

[
Te

Te

]
(24)

where [x̂T
t wT

t ]F = cT . In order to obtain the formulation
described in (20), we redefine our parameter vector as

x̃t =

⎡⎢⎢⎣
x̂t

wt

Te

Te

⎤⎥⎥⎦ . (25)

Then, (24) is transformed into

min
U

{
1

2
UTHU + x̃T

t F̃U

}

s.t.

⎡⎢⎢⎣
0
0
I
−I

⎤⎥⎥⎦U ≤ Ẽx̃t (26)

which fulfills the form of (20).

B. Controller Design

The model predictive speed controller for IMs is designed
by taking into account the load disturbance as additional state
variable in order to get offset-free reference speed tracking. A
Kalman filter is applied to correct the predicted state variables
in consideration of state and output disturbances at each time
step. It is designed by using the form⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[
xt+1

dt+1

]
=

[
A Bd

0 I

][
xt

dt

]
+

[
B

0

]
ut

yt =
[
C Cd

] [xt

dt

] (27)

where Bd and Cd represent the matrices of state and out-
put disturbances, respectively. The state variable x and system
matrices A, B, and C are the same as MPC’s and are defined
as follows: x = ωR, A = 1, B = p·Ts

J , and C = 1. It should
be considered that the disturbance estimated from the observer
has to be compensated to the electrical rotor speed, because
the torque ut computed by the EMPC controller is hard lim-
ited by system constraints. The sampling time Ts in this system
is defined by 0.1 ms.

Since the system constraints have been already considered in
the speed control design, an unconstrained MPC is constructed
as current controller using the following formulation:[

isd
isq

]
t+1

=

[
1− Rs·Ts

σLs
0

0 1− Rs·Ts

σLs

] [
isd
isq

]
t

+

[ Ts

σLs

Ts

σLs

]
ut.

(28)

The EMF compensation is added additionally to the system
input. As for the speed loop, a Kalman filter with disturbance
modeling like in (27) is applied to get an offset-free tracking
and enhance the robustness against uncertainties. However, the
estimated disturbance has to be compensated in this case to the
system input, since the currents are hard constrained.

Fig. 3 shows the block diagram of the whole control struc-
ture. The explicit expression of control laws is computed
offline. According to the actual rotor speed, the torque limit
value is calculated online based on the formulations introduced
in Section II-C. The Kalman filter is integrated into the EMPC
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T

Fig. 3. Block diagram of the control structure with EMPC.

controller and therefore not presented in this block diagram. By
using the actual values of the parameter vector introduced in
(25), the actual critical region is searched and the corresponding
control law is calculated online. There is no system-constraint
consideration and approximation needed anymore in the current
controller. Furthermore, the flux controller is abandoned in the
control design in order to prevent from current overshooting in
transient procedures. Certainly, the system dynamic is reduced
a bit as the sacrifice.

The parameters of our MPC problem (9) transformed into
(26) are defined by

Np = 7, Nu = 1, Q = 1, R = 1× 10−3 (29)

with covariance matrices of state and output variables

Qa = diag(ones(1, 2)), Ra = 1× 104 (30)

for the simulation, and

Np = 7, Nu = 1, Q = 1, R = 0.4 (31)

with covariance matrices

Qa = diag(ones(1, 2)), Ra = 5× 105 (32)

for the test bench.
To solve the mp-QP depicted in (26) with dynamic constraint,

the MATLAB Toolbox YALMIP [41] is utilized in this study,
in which the multiparametric toolbox (MPT) [42] is invoked.
The solution of the proposed problem consists of control laws

defined in 20 polyhedral regions in �3 state space. Fig. 4(a) and
(b) illustrates the critical regions projected, respectively, on the
plane surfaces [x w] with Te = 50 Nm and [x Te] with w =
150 rad/s. The explicit control laws of the MPC controller are
shown in Fig. 5, which can be identified as a PWA function of
the parameter vector in each region, respectively.

IV. SIMULATION RESULTS

The parameters given in Table I are used both for the simula-
tion and on the test bench. The sampling time of the simulation
is configured by Ts = 0.1 ms. In order to reduce the online
computational effort, the analytical calculation of torque limit
introduced in Section II-C and shown in Fig. 3 would be moved
offline.

Fig. 6 illustrates the offline computation results of torque
limit, which is stored in a look-up table and applied for the
online computation. The purpose of this paper is to show and
validate the new method of constraint handling of IMs using
MPC. Since the same drive cycle will be utilized for both the
simulation and the test bench, the system constraints are newly
defined in order to prevent from electrical and mechanical dam-
age, which is shown in Table I. Therefore, the system dynamic
will be diminished. However, it should be focused on in this
paper that the system resource is optimally organized under the
new constraint condition.

The simulation runs as follows. Initially, the reference rotor
speed is changed abruptly to 1400 r/min, whereat the load
ramps up from 0 to 55 Nm within the first 9 s. After 10 s, the
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Fig. 4. State-space partition. (a) State-space partition over [ωR w]-subspace. (b) State-space partition over [ωR Te]-subspace.

Fig. 5. Explicit control law. (a) Explicit control law u∗(x) in [ωR w]-subspace. (b) Explicit control law u∗(x) in [ωR Te]-subspace.

TABLE I
IM PARAMETERS FOR THE STUDY

load torque falls to 12 Nm. A few seconds later, the reference
speed is increased to 2000 r/min in step form, which is larger
than the rated speed.

As shown in Fig. 7, the MPC controller demands the maxi-
mum torque, which is limited to 56 Nm in the basic speed area,
as long as the reference speed is not reached. Once the rotor
speed is equal to the reference value, the required drive torque
drops to the actual value of the load torque and follows it. In
the phase of speed increase from 1400 to 2000 r/min, which
is mainly in the field-weakening area, the reference torque

Fig. 6. Result of torque-limit calculation.

required by the MPC controller coincides with the curve shown
in Fig. 6 in the field-weakening area. As soon as the transient
procedure is finished, the reference torque is reduced to the load
torque again.
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Fig. 7. Rotor speed–reference torque.

Fig. 8. Stator current–reference torque.

Fig. 9. Stator voltage–reference torque.

Fig. 8 shows the stator current change in the simulation.
According to Table I, the admissible amplitude of the phase
current Îabc corresponding to Idq_max is calculated to be 32.7
A. The maximum current by dint of 1/ωR method is delivered
when the maximum torque is required in the basic speed area.
As shown in Fig. 8, the amplitude of the current is well limited
to Îabc by using the torque constraint.

The admissible amplitude of the phase voltage Ûabc is cal-
culated analogically as by Îabc, whose value is equal to 231
V. As mentioned in Section II-C, the voltage limit is first con-
sidered in the field-weakening area. The maximum voltage is
demanded in the case of maximum torque requirement in the

Fig. 10. Overshooting of εq due to isd and iµ.

field-weakening area. In Fig. 9, it is presented that the maxi-
mum voltage is reached at the nominal point. However, during
the transient procedure of the field-weakening operation in case
of maximum torque requirement, the stator voltage exceeds the
limit value. The clarification of this phenomenon has been given
in Section III, which is confirmed in Fig. 10.

In the following, the comparisons between proposed
approach and PI controller as well as EMPC with approxi-
mated constraints are given. To compare the dynamics of the
proposed EMPC controller and the PI controller, the following
reference speeds are applied in sequence: 500, 600, 650, 675,
and 680 r/min. The offsets from each reference-value change
are reduced step by step. The parameters of the PI current
and speed controllers are tuned by means of magnitude and
symmetric optimum, respectively. The IM is driven without
load. Fig. 11(a)–(e) shows the step responses with different
step changes, respectively. The PI controller achieves com-
parable dynamic as the proposed EMPC in the case of large
reference change. Because of the significant control deviation,
the maximum permissible torque is applied by the PI con-
troller as shown in Fig. 11(a). However, the manipulated value
of the PI controller reduces when the reference change gets
smaller. The smaller the step change is, the smaller is the refer-
ence torque applied by the PI controller, which is illustrated in
Fig. 11(b)–(e). Generally, the parameter optimization of the PI
controller can only be designed within a constricted operating
range. In contrast, the proposed approach applies the maximum
permissible torque independent on the size of reference change
to obtain the high dynamic.

To present the advantage of the proposed EMPC approach
compared to the EMPC with approximated constraints, the
following constraints are defined:

0 ≤ isd ≤ isd_N

−
√

I2dq_max − i2sd_N ≤ isq ≤
√

I2dq_max − i2sd_N

−Udq_max√
2

≤ usd ≤ Udq_max√
2

−
√
U2
dq_max − u2

sd_ref ≤ usq ≤
√

U2
dq_max − u2

sd_ref .

(33)
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Fig. 11. Optimality comparison between EMPC and PI. (a) Step change = 500 r/min. (b) Step change = 100 r/min. (c) Step change = 50 r/min.
(d) Step change = 25 r/min. (e) Step change = 5 r/min.

The stator current on the d-axis isd is limited by the nominal
magnetizing current and should be larger and equal to zero,
where the q-component of the stator current isq is constrained
by the positive and negative value of the rated current on the q-
axis. Since the stator voltage on the d-axis is much smaller than
the one on the q-axis at high speed due to the leakage factor, it
is constrained by a constant value, whereas the constraint of the
q-component voltage is determined by the maximum voltage
and the actual reference voltage on the d-axis. Therefore, both
the current and voltage constraints are approximated by poly-
gons in the form of rectangles. Because the dq-components of
stator current and voltage are decoupled, two EMPC controllers
are able to be implemented separately to reduce the dimension
of the state space. The torque constraint of the speed controller
is given by the rated torque. After the offline optimization, 29
polyhedral regions in �3 state space are defined for each EMPC
current controller.

The simulation result of the proposed EMPC approach and
the EMPC with the approximated constraints defined in (33)
is presented in Fig. 12. At first, the reference speed is set by
1400 r/min, which is in the basic speed area. In this area, the
system is only constrained by the current inequalities, because
the stator current on the d-axis remains at its rated value,
which means that the maximum torque is reachable for both
approaches. Therefore, there is no difference of system dynam-
ics between both approaches as shown in the figure. Then, the
reference speed rises to 2000 r/min, which lies in the field-
weakening area and the voltage constraints should be taken
into account. In the optimization of EMPC with approximated
constraints, only the area inside the rectangle defined by the
voltage inequalities is feasible, whereas the feasible area of
the proposed approach is represented by the voltage ellipse

Fig. 12. Dynamics comparison between proposed EMPC and EMPC
with approximated constraints.

defined by the original voltage description derived from (10)
and (11). Therefore, less system resource, i.e., voltage in case of
field-weakening, can be used by the EMPC with approximated
constraints. Due to this issue, the system dynamic is impacted
by the approximation as shown in the figure. As mentioned
before, the performance can be improved if the approxima-
tion is more accurate. However, the hexagonal approximations
of current and voltage constraints lead to 1057 polyhedral
regions, since the dq-components are no more decouplable due
to the inequality formulations. Thereby, the online computa-
tional effort is enhance significantly, whereat the feasible area
is still smaller than the proposed approach.

V. EXPERIMENTAL RESULTS

The simulation results presented in Section IV exhibit a good
performance concerning constraint handling. In this section,
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Fig. 13. Start up. (a) Rotor speed–reference torque. (b) Stator current–
reference torque.

the proposed method will be validated on a laboratory test
bench, which is composed of an IM with four poles with nom-
inal power of 22 kW driven by a voltage-source inverter and
a permanent-magnet synchronous machine (PMSM) with six
poles. The parameters on the data sheets of both machines can
be found in the appendix. The control algorithm is implemented
on a digital signal-processor (DSP) platform using dSPACE
1103 hardware. The sampling time of the system is defined as
same as in the simulation. As mentioned before, the voltage and
current limits for the validation are redefined for safety reasons
as in Table I.

In the following, the results of three tests will be presented:
the first test shows the current limit by dint of the proposed
method in a start-up process; the second test indicates the
optimality of the implementation; the last test delivers the
measurement results to be compared to the simulation results.

In the start-up test, a load torque of 13 Nm is imposed to
the shaft. Then, the reference speed is changed to 1000 r/min.
As shown in Fig. 13(a), the reference torque calculated by the
speed controller jumps to the maximum available torque at
the same time. The reference torque falls to the value equal
to the load torque after the transient procedure is terminated.
Parallelly, as shown in Fig. 13(b), the stator current is well lim-
ited in the whole process, especially in the transient procedure.

Fig. 14. Diverse speed requirements. (a) Rotor speed–reference torque.
(b) Stator current–reference torque.

The amplitude of the stator current shown in the figure is below
35 A, which is a bit higher than the theoretical limit due to the
noises.

In the second test, the IM is driven as in the simulation with
different step changes, in order to check the optimality of the
control algorithm. In Fig. 14(a), it is evident that despite of the
diminished offsets, the maximum admissible torque is enforced
for each transient procedure. It confirms that the maximum sys-
tem resource is required no matter how large the offset is, which
implicates the optimality of the control algorithm. The stator
current curve is illustrated in Fig. 14(b). The current is limited
to the admissible current except in the second transient proce-
dure. However, the current limit is exceeded for about 5 ms
and the peak value is about 39 A. Usually, the admissible peak
current of power electronics is much higher than the one for
continuous operations. Therefore, the exceeding in this case
will not plague the hardware and is not critical. In case of maxi-
mum torque requirement for long durations, no overcurrent will
arise, which is depicted in the first test.

In the last test, the similar drive cycle is executed. The load
torque ramps from the beginning until 55 Nm. Due to the signal
noises, the maximum admissible torque is not applied to the
load. The reference speed is set to 1400 r/min same as in the
simulation. After the steady state is reached, the load is changed
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Fig. 15. Drive cycle. (a) Rotor speed–reference torque. (b) Stator
current–reference torque. (c) Stator voltage–reference torque.

from 55 to 12 Nm. After a few seconds, the reference speed is
set to be 2000 r/min as in the simulation.

In Fig. 15, the experimental results are shown. In the first
phase, about in the first 2.8 s in Fig. 15(a), the reference torque
follows the load because no control offset exists. As soon as
the reference speed changes to 1400 r/min, the speed con-
troller enforces the reference torque to the maximum torque
in order to reach the reference value as quickly as possible.
Once the reference value is met, the reference torque drops to
the current load torque and increases with it. At about the 20th

second, the load drops to 12 Nm. After the reference speed is
required to 2000 r/min, the reference torque rises first to 56 Nm
and then follows the maximum torque curve since entering
the field-weakening area until the reference speed is reached.
This measurement result coincides with the simulation result
presented in Section IV.

The stator current curve in one phase is presented in
Fig. 15(b). As the maximum admissible torque is required at
the third second, the stator current reaches its limit. From the
9th second to the 19th second, the stator current remains around
the current limit, as the load is approximately equal to the
maximum torque. In the next procedure of maximum torque
requirement, the stator current rises to the limit and then drops
because of the field-weakening operation. Thus, the current
limit via torque limit is validated.

The reference values of the stator voltage are described in
Fig. 15(c). Since the IM is in standstill at the beginning, the
stator voltage results mainly from the voltage drop of the sta-
tor resistor on the d-axis, which is marginal compared to its
limiting value. Due to the little speed overshooting shown
in Fig. 15(a), the voltage limit is arrived at around the 5th
second. Because of the load reduction at the 20th second,
the rated speed is exceeded, so that the maximum voltage is
reached again. Due to the maximum torque requirement in
the field-weakening area around the 23rd second, the refer-
ence voltage exceeds the maximum admissible voltage, which
confirms the explanation in Section II and agrees with the sim-
ulation result. Consequently, the control algorithm with the
proposed constraint handling is validated by the experimental
results.

VI. CONCLUSION

In this paper, it was attained that the system constraints can
be considered without approximation by polygons when using
MPC controllers for IMs, and the controller has to work in real
time. By means of the reformulation of the system constraints
with respect to the maximum admissible torque and mp-QP for
reference tracking with extension of an additional variable, an
EMPC controller was designed, which fulfills these require-
ments. This method is suitable not only for speed-controlled
IMs but also for torque-controlled IMs, in which the output con-
straints should be handled instead (see [4]). The variation in the
system parameters is not considered in this work and is handled
separately in [43].
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