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Abstract: Electromagnetic fields and eddy currents in thin electrical steel laminations are governed by the laws of
magnetodynamics with hysteresis. If the lateral dimension of the laminations is large with respect to their width, the fields
and currents generated under arbitrary excitation inside a lamination can be resolved accurately by solving a one-dimensional
finite element magnetodynamic problem across half the lamination thickness. This mesoscopic model is able to produce, by
averaging the necessary information, a homogenised laminated core model, to be used in the macroscopic modelling of
electrical devices involving ferromagnetic lamination stacks. As each evaluation of the homogenised model at the macroscale
implies a finite element simulation at the mesoscale, a monolithic implementation of the homogenisation method would be
extremely time-consuming. Hence the idea of this study to use system identification techniques to construct an algebraic
approximation of the homogenised model, to be used as a conventional constitutive relationship in two- or three-dimensional
macroscale simulations. This pragmatic two-step homogenisation approach turns out to be quite accurate and efficient in
practice, and it entails no implementation in the FE code, provided the latter offers enough flexibility in the description of the
material laws.
1 Introduction

Modelling iron losses in laminated structures is still an open
problem nowadays. This intricate problem is of critical
importance for the design of modern electrical drives but
also for understanding morphological effects in magnetic
properties. The complexity of this question is because of
different factors [1, 2]. Iron losses are the macroscopic
outcome of a combination of micro- or mesoscopic level
physical phenomena [2, 3]: namely, eddy currents, skin
effect, saturation and hysteresis. Those phenomena are
strongly influenced by the microstructure of the
ferromagnetic material [4] and by the laminated structure of
the cores, both effects occurring at geometrical scales much
smaller than the overall dimensions of real-life applications.
The interplay between magnetic fields and eddy currents in

ferromagnetic laminated cores is resolved by solving the laws
of magnetodynamics with hysteresis inside individual
laminations. The one-dimensional (1D) approximation is
reasonable if the lateral dimension of the laminations is
large with respect to their width (which is typical in the
laminated cores of electrical machines or transformers, and
in measurement devices such as Epstein frames or single
sheet testers). The response in terms of field, eddy currents
and losses of a lamination submitted to an arbitrary
excitation can therefore be calculated by means of a
transient 1D magnetodynamic finite element (FE)
simulation, solved across half the lamination thickness. This
FE model is strongly non-linear and should contain a sound
hysteresis model. It is able to produce, by averaging the
necessary information, a powerful homogenised laminated
core model, to be used in macroscale simulations of devices
involving ferromagnetic laminated cores.
A homogenisation method is needed to connect the

mesoscale model with the macroscale model in an
appropriate manner. Among the many available
homogenisation techniques, the heterogeneous multiscale
method (HMM) [5, 6] is the best adapted to this case. As
each evaluation of the homogenised model by the
macroscale solver implies a FE simulation at the mesoscale,
a monolithic implementation of the HMM would however
be extremely time-consuming and would lead to a model
too heavy for the everyday desktop work of an electrical
engineer. Hence the idea advocated in this paper to use
system identification (SI) techniques [7] to construct, as a
first step, an algebraic approximation of the homogenised
model of the form

H = H(B, Ḃ, pk ) or B(H, Ḣ, pk ) (1)

to be used, as a second step, as a conventional constitutive
relationship in two- (2D) or three-dimensional (3D)
macroscale simulations. The parametric algebraic expression
(1) must be rich enough to represent accurately the
macroscopic behaviour of the lamination. It typically
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contains saturation terms, and additional dissipative terms to
account for Joule losses and hysteresis losses. On the other
hand, it must be implementable in the FE code at hand and
should therefore not be too involved either.
The splitting of the approach into two independent steps

has many practical advantages. The two steps can be
completed individually with a conventional FE code, and
the identification of the pk parameters in (1) is implemented
readily with standard Python tools. This identification is
done region by region in practice, and it can be updated or
improved as often as needed. At the limit, the
approximation would be done element by element at each
time step and one would then recover in principle the
original monolithic HMM approach.
The paper is organised as follows. Section 2 describes the

1D mesoscale cross lamination model. The macroscale FE
model is presented in Section 3. Only the 2D case is
considered in this paper. The principle of the
homogenisation is then explained in Section 4 and the
algebraic approximation of the homogenised model is
discussed in Section 5. A number of examples are then
discussed in Section 6 to demonstrate the validity of the
two-step approach.
2 1D cross lamination model

The quantitative description of hysteresis and eddy currents
inside a ferromagnetic lamination is achieved by solving a
1D magnetodynamic problem with hysteresis [1, 3], which
involves the following quantities: the magnetic field
strength h, the magnetic flux density b and the electric field
strength e. Considering an individual lamination of thickness
2d with an upper surface normal vector n = (0, 0, 1), the
domain of analysis ω is a line parallel to n, across half the
thickness and far from the edges, Fig. 1. The boundary
condition at the centre of the lamination is curlh(0) × n = 0,
whereas a given external field h(d) is applied at the surface
of the lamination.
The h-field formulation is preferred for the 1D model

because the magnetic field is the natural driving quantity of
a system with magnetic hysteresis. The FE equations are

∫
v

ḃ(h, history) · h′ + s−1 curlh · curlh′( )
dv = 0 ∀h′

(2)
Fig. 1 Epstein frame and domain of analysis of the 1D cross laminatio
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with σ the electric conductivity and b(h, history) a non-linear
hysteretic magnetic relationship.
The hysteresis behaviour is described by the term

ḃ(h, history) and implemented with the ‘BH hysteresis
model’, developed by Bergqvist [8] and Henrotte [9] and
briefly sketched below. This flexible and accurate hysteresis
model is based on a thermodynamic approach in terms of
an energy density ρΨ and a dissipation potential ṙQ. The
energy density functional has a stored energy term and an
empty space term

rC = rst(J)+ m0
h2

2
(3)

with J is the magnetic polarisation, b = μ0h + J. The
reversible part hr of the magnetic field is the derivative of
the stored energy

hr(J) = ∂Jrst (4)

and the 1–1 relationship between hr and J is the anhysteretic
curve. It can be inverted and is often represented in the FE
model by the magnetic susceptibility χ which is defined by
J = χ(|hr|

2)hr and is a scalar if material isotropy is assumed
(a tensor otherwise). The non-positive dissipation
functional, on the other hand

ṙQ = −k J̇
∣∣ ∣∣ = −hi · J̇, hi = k

J̇

|J̇| (5)

is the power delivered by the irreversible part hi of the
magnetic field. The latter, being of constant amplitude and
always anti-parallel to J̇, acts analogue to a dry friction force.
Energy conservation

0 = ∂tr
C − ṙQ − h · ḃ = hr + hi − h

{ } · J̇ (6)

now implies the vector relationship h = hr + hi(J̇(hr))
graphically presented in Fig. 2. Knowing h and the
history of the material, this relationship can be solved for
hr = hr(h, history). Finally, the flux density writes

b(h, history) = m0h+ x(|hr|2)hr (7)
n model
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Fig. 2 Left-hand side: graphical representation of the vector
equation h = hr + hi. Right-hand side: Mechanical analogy with a
cell composed of a spring parallel connected with a friction
lumped element

Fig. 3 Formal representation of the homogenisation concepts
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and its time derivative in terms of the unknown field h

ḃ(h, history)= (m0+ (x(|hr|2)I+2ẋ(|hr|2)hrhr)∂hhr)ḣ;m∂ḣ

where I is the identity matrix (note the dyadic product hrhr).
This is the term to be substituted in (2) to obtain the
mesoscale FE modelling of a ferromagnetic lamination. The
non-linear transient formulation is solved with the Newton–
Raphson method. A typical discretisation is done with 50
equidistant nodes over the half lamination, and 360 time
steps per period over a couple of periods. Power density in
the lamination evaluated by the flux of the Poynting vector
e(d ) × h(d ) across the lamination surface, with e = σ−1curlh.
The hysteresis model is described above in its simplest

form, with only one hysteresis parameter κ. This case leads
to rectangular hysteresis loops such as those depicted in
Fig. 5. The dissipation functional can however be
generalised for a more realistic representation of minor
loops by connecting in series several cells such as the one
depicted in Fig. 2. The presentation of the generalised
theory falls out of the scope of this paper. See [10] for a
detailed explanation.
Epstein frames are conceived to achieve field homogeneity

in the frame, up to minor edge effects that are limited to a
minimum by constructional measures. The 1D
approximation is hence accurate in those devices. The cross
lamination model (2) presented above allows thus
identifying the hysteresis parameters with high accuracy by
matching Epstein measurements with 1D simulations done
in the same conditions. The details of the identification
procedure are presented in [11].

3 Macroscale FE model

Fields at the macroscopic scale will be denoted with a capital
letter. The most widely used 2D formulation for electrical
applications is the magnetic vector potential A formulation,
with the flux density then given by B = curlA. The weak
formulation of Ampere’s law reads

∫
V

H · curlA′ dV =
∫
V

Js · A′ dV, ∀A′ (8)

with Js =−gradV− ∂tA the current density and V the electric
scalar potential. The question is now to determine, on basis of
a sound homogenisation theory, a material law of the form
154
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(1a) that would represent the homogenised behaviour of a
lamination stack. This question is dealt with in the next
section.
4 Homogenisation

We begin this section with a remark about the terminology.
The term mesoscale is used throughout in this paper to
represent the geometrical scale of an individual lamination,
in contrast to the geometrical scale of the device containing
the laminated core, which we call macroscale. With regard
to the mathematical homogenisation theory, mesoscale and
microscale are equivalent terms. We simply prefer using the
mesoscale here because the thickness of a regular electrical
steel lamination cannot be rightly qualified as a microscopic
feature.
A formalised homogenisation method is needed to draw a

rigorous mathematical link between the mesoscale model
and the macroscale model. There exist several families of
homogenisation techniques. Algebraic homogenisation
techniques rely on an analytical solution of the microscale
problem [12] to build effective macroscopic material
characteristics. This approach was applied by Giordano to
the non-linear homogenisation of magneto-electro-elastic
laminated materials [13]. The mathematical developments
are rather involved and, the method being based on energy
density potentials, it is not applicable to media with
irreversibility. Another class of homogenisation technique is
that of asymptotic homogenisation methods. It originates in
the mechanics of composite materials and specifically deals
with heterogeneous media whose governing partial
differential equations have periodic and rapidly oscillating
coefficients, see for example [14]. The problem we want to
solve does not fall into this category.
The HMM is the best adapted to our case. The philosophy

of the HMM is to solve the mesoscale model locally in
regions where constitutive relationships are missing [5].
Recently, it has been applied successfully by Niyonzima to
the case of ferromagnetic laminations [6]. The mathematical
relationship between the mesoscale quantities (lower cases)
and the macroscale quantities (upper cases) is given by the
localisation and the homogenisation relationships (the
dependency in time is implicitly assumed)

H = h(d), B = kbl = 1

d

∫d
0
b(z) dz (9)

The macroscopic constitutive relationship of the HMM is the
homogenised B–H relationship associated with the path H→
h→ b→B in the diagram depicted in Fig. 3. Practically, it is
obtained by evaluating (9) onto the data of a 1D cross
lamination simulations (2). As each evaluation implies
IET Sci. Meas. Technol., 2015, Vol. 9, Iss. 2, pp. 152–159
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solving a FE problem (at least one time step) at the mesoscale,
a monolithic implementation yields a system of equations
whose size is of the order of the size of the macroscale
problem multiplied by the size of the mesoscale problem.
This is extremely memory and time-consuming, and too
heavy a model for the everyday desktop work of an
electrical engineer. Hence the idea developed in the next
section of constructing an algebraic approximation of the
homogenised B–H relationship that can be used as a
conventional constitutive relationship in the laminated core
region of the macroscale FE formulation (8). The
homogenised macroscale model is then of the same size as
the initial non-homogenised problem, and it can be solve
with a conventional FE code.
5 Two-step approach

The proposed approach proceeds in two successive steps. The
first step consists in building, region by region, algebraic
approximations of the homogenised B–H relationship by
solving the mesoscale model (2) and applying then a SI
procedure. The second step consists in using these algebraic
approximations as constitutive relationships in conventional
macroscopic FE simulations.
SI deals with the problem of building mathematical models

of dynamical systems based on observed data from the system
[7]. It is a very diverse research field in applied mathematics
with an abundant literature, a substantial part of which is
however devoted to linear systems. In the context of
non-linear SI, powerful techniques also exist that usually
proceed by assuming a model structure a priori, and
identifying a number of free model parameters. This
identification proceeds by applying excitation signals to
the system and determining the free parameters of the
parametric model structure by minimisation of the
approximation error.
The user has quite a large freedom in the choice of the

model structure. It has however to fulfil a number of
practical conditions. (i) It must be implementable as a
constitutive relationship in the FE formulation used at the
macroscale. For a A− V formulation, it will be of the form
H(B, Ḃ, pk ) and of the form B(H, Ḣ, pk ) for a H− f or
T− ω formulation. (ii) It must be versatile enough to
represent accurately the macroscopic behaviour over a large
Fig. 4 Left-hand side: Comparison of the response of the mesoscale mod
excitation signal with increasing amplitude. Right-hand side: Compariso
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range of situations. (iii) When physical insight into the
system is available, as is the case here, it should be
translated into the structure of the model. (iv) Finally, as a
macroscale constitutive relationship, it should not
deteriorate the convergence of the non-linear iterations.
Practically, model structures should be preferred whose
Jacobi matrix can be evaluated and implemented, so that a
Newton–Raphson approach can be used to solve the
macroscale problem. On basis of those arguments, several
model structures were tried out and

H(B, Ḃ, pk) = p0 + p1|B|2p2
( )

B+ p3 +
p4�����������

p25 + |Ḃ|2
√

⎛
⎜⎝

⎞
⎟⎠Ḃ

(10)

has finally proven to give satisfactory results. First of all, it
parallels the decomposition introduced in Section 2 of
the magnetic field into a reversible and an irreversible part.
The first term (p0, p1 and p2), which corresponds to the
reversible part hr of the magnetic field, is a polynomial
representation of the anhysteretic saturation curve. A
polynomial expression is preferred because polynomials are
more stable than tangent-like functions in the identification
process. The second term corresponds to the irreversible
part hi of the magnetic field. It accounts for eddy currents
(p3) and hysteresis (p4 and p5). The former is related with
the σd2 terms that appear when solving analytically the
eddy currents problem in thin laminations. For large values
of Ḃ, the latter behaves as p4Ḃ/|Ḃ|, in accordance with (5).
The parameters pk are identified so as to minimise in the
least square sense the approximation error for well-chosen
excitation signals. For the least-square minimisation, we
have used the scipy.optimize.leastsq module of Python.
The excitation signals are the macroscale magnetic

waveforms h(d, t) applied as an input to the mesoscale
model when identifying the parameters {pk}. Their
selection is a critical aspect of the two-step method. To
better account for local features of the fields (e.g. stator
against rotor and teeth against yoke), the parameter
identification is done region by region and the excitation
signals are chosen similar to the actual waveforms in the
real machine in terms of frequency content and wave shape.
el (micro) with its algebraic approximation (macro) for a triangular
n of power densities in the same conditions
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Fig. 5 Comparison in the B–H plane of the response of the mesoscale model (solid line) with its algebraic approximation (dotted line). On the
right-hand side, a zoom-in on the central part of the plot
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In practice, the chosen excitation signals are real magnetic
field waveforms evaluated at selected probe points in the
machine or they are artificially constructed to excite at once
a larger class of system inputs (see Section 6). Once the
material parameters pk are identified, the approximated
lamination models (10) are used as a conventional
non-linear constitutive relationship in the macroscopic
model (8), which is solved at each time step by a classical
Newton–Raphson scheme.
For the whole two-step approach to be useful in practice,

the mesoscale model needs be robust and reliable. We have
used for that a unidirectional implementation of (2) with h
= (0, h(z), 0). This model is unidirectional because it has
been developed to identify material parameters from Epstein
measurements, which are themselves unidirectional. Despite
the complexity of the involved hysteretic material law, this
model has proven to have good convergence properties and
to be robust. It has been thoroughly validated in a large
class of situations. All identifications presented in the next
section have been done with this unidirectional model. The
identified macroscopic material parameters {pk} are then
Fig. 6 Comparison in the B–H plane of the response of the mesoscale m
the presence of higher harmonics and minor hysteresis loops. On the rig
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called to be used in the vector approximation (10). This
using of the two-step splitting as an opportunity to vectorise
the homogenised constitutive relationship is the second
pragmatic assumption of the proposed approach. It is
justified by the fact that the {pk} parameters have a physical
meaning independent of the field direction.
6 Application

Numerical experiments show that the algebraic
approximation (10), with a set of fixed parameters {pk} can
be accurate over a quite large field strength range. This is a
strong argument in favour of the two-step approach. A
triangular waveform at nominal frequency, with an
amplitude increasing with time from zero up to the nominal
field strength is considered as a first example of excitation
signal. Fig. 4 shows that a good match is obtained between
the mesoscale model’s response and its algebraic
approximation, both for the fields and for the power
densities. Fig. 5 shows the corresponding results in the B–H
odel (dotted line) with its algebraic approximation (straight line) in
ht-hand side, a zoom-in on the upper part of the plot
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Fig. 7 Cross section of a four pole pairs PMSM motor. The typical
waveforms used for the identification have been evaluated at the
points indicated with P1 and P2 in the centre of a stator tooth and
below a rotor permanent magnet
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plane. One observes that the algebraic model reproduces
accurately the hysteresis loops of the homogenised
lamination stack behaviour. Rectangular loops are obtained
because the simplest hysteresis model, with only one cell
(see Section 2), was used for this identification.
An excitation signal consisting of a fundamental harmonic

superposed with a higher harmonic is now considered in order
to demonstrate the ability of the algebraic approximation (10)
to deal with high frequency components and account for the
presence of minor loops. In this case, a more involved
hysteresis model with seven cells was used to resolve the
minor loops in the mesoscale simulation. Fig. 6 compares
in the B–H plane the response of the mesoscale model with
its algebraic approximation. Although the match is not
perfect, it is observed that the essential features of the
Fig. 8 Left-hand side: Comparison of the response of the mesoscale mod
excitation signal built on the real waveform observed at point P1 in a stato
conditions
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minor looping effect at the mesoscale are satisfactorily
brought over to the macroscale.
The triangular waveform used above was however an

arbitrary choice. The same analysis could be done with a
sinusoidal waveform or with a realistic waveform obtained
from the application under analysis. After solving in
nominal conditions the four pole pairs permanent magnet
synchronous motor (PMSM) whose cross section is
depicted in Fig. 7, the magnetic field waveforms has been
evaluated at point P1 in the middle of a stator tooth. An
artificial excitation signal with increasing amplitude has
then been created on basis of this waveform. Again, a
excellent match is obtained, both for the fields and the
power densities, with this time a more realistic waveform,
Fig. 8. This shows that the approximate model is accurate,
not only at the point P1, but also at all places in the stator
where the local waveform of the magnetic field is similar to
that at point P1, irrespective of the amplitude. This
represents a more or less important part of the stator cross
section, according to the accuracy one wishes to reach. The
same operation can then be reproduced with a (small)
number of other probe points or the parameters identified at
point P1 can be pragmatically used all over the stator core.
Magnetic field waveforms at the rotor side, on the other

hand, are quite different from those at the stator side in
electrical machines. In a PMSM machine, rotor fields are
not alternating but fluctuating around an average value that
depends on the load of the machine. We take a look into
this issue by considering now a typical rotor waveforms
evaluated at point P2 in Fig. 7 below the permanent
magnet. Again, an artificial excitation signal is built on
basis of this waveform so as to cover the actual field
strength range in the rotor. Fig. 9 shows the match obtained
between the mesoscale model and its algebraic
approximation.
To summarise, the Table 1 gives a comparison of the pk

parameters identified with all excitation signals considered
above. The parameter values depend, as expected, on the
excitation signal, but moderately. This again shows that the
number of probe points can be quite limited, reaching
nonetheless a sufficient accuracy. The distinction between
rotor and stator, on the other hand is essential.
el (micro) with its algebraic approximation (macro) for an artificial
r tooth. Right-hand side: Comparison of power densities in the same
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Table 1 Identified pk parameters with different excitation
signals or in different regions

p0 p1 p2 p3 p4 p5

triangular 93.3 0.26 11.5 0.035 34.5 8.32
sinusoidal 95.9 0.29 11.4 0.041 28.6 8.03
tooth waveform 77.8 0.80 9.87 0.036 36.7 8.68
rotor waveform 88.6 13.6 3.11 0.053 7.65 9.52

Fig. 9 Left-hand side: Comparison of the response of the mesoscale model (micro) with its algebraic approximation (macro) for an artificial
excitation signal built on the real waveform observed at point P2 in the rotor. Right-hand side: Comparison of power densities in the same
conditions
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7 Conclusions

Despite an urgent need for such models in industry, there does
not exist nowadays a homogenisation method able to account
for the complexity of ferromagnetic laminated cores in 2D or
3D macroscopic electrical machine simulations. The papers
[6, 15, 16] report on interesting work on this issue, but they
say little about the hysteresis model used and, first of all,
they propose methods that require an important
implementation work and that lead to models one or two
orders of magnitude larger than the initial non-homogenised
model. The HMM also provides a general theoretical
background to achieve the goal with however the same
limitations as mentioned above in terms of implementation
work and model size.
In this paper, a splitting of the HMM approach into two

independent steps has been proposed. This splitting allows
introducing two pragmatic simplifications: the multiscale
coupling is done region by region, instead of locally, and is
taken as an opportunity to vectorise a robust unidirectional
mesoscale model. Owing to these simplifications, the
two-step approach is an approximation but, in counterpart,
it provides a systematic method to construct macroscale
constitutive relationships for ferromagnetic laminated core
as a function of exact material data and of the main
characteristics of the fields at the mesoscale level.
Contrary to homogenisation approaches presented in [17, 18],

the two-step approach makes no simplifying assumptions about
material properties in the laminations (reversibility and linearity).
Contrary to homogenisation approaches presented in [6, 15, 16],
it leads to a homogenised model of the same size as the
non-homogenised model. This makes the two-step approach a
homogenisationmethod suitable for desktop engineering design.
158
& The Institution of Engineering and Technology 2015
The two-step approach is non-invasive. It can be used with
most FE software and entails no coding. The form (10) of the
parametric model structure is an outcome of this paper. It
proves accurate, with fixed parameters, over large ranges of
excitation signals. The parameters vary moderately with the
waveform. They can be given a physical interpretation that
justifies their identification based on a unidirectional
mesoscale model and their subsequent use, at the
macroscale level, in the vector constitutive relationship. The
two-step approach opens up the possibility to deal explicitly
with the questions of material selection, comparison and
optimisation in real-life applications involving electrical
steel laminated cores.
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