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Analytical Modeling of Manufacturing Tolerances
for Surface Mounted Permanent Magnet

Synchronous Machines
Michael Schröder, David Franck, and Kay Hameyer, Senior Member, IEEE

Abstract—No production process of electrical machines is ideal.
During the process, various stochastic manufacturing deviations
can occur. Common tolerances are for example static or dynamic
rotor eccentricities, asymmetric stator teeth if segmented sheets
are used or – for electrical machines with permanent mag-
nets (PMs) – a variable magnetic behavior caused by material or
due to the magnetization process. Manufacturing tolerances can
affect the acoustic emission of an electrical machine significantly.
To estimate the influence of tolerances in an early design stage
of an electrical machine, an analytical approach based on con-
formal mapping (CM) is presented here to model manufacturing
tolerances for surface mounted permanent magnet synchronous
machines (PMSMs) and calculate the tolerances’ impact on radial
force densities in an acceptable computational time.

Index Terms—Acoustic emission, analytical models, electro-
magnetic analysis, electromagnetic fields, electromagnetic forces,
magnetic flux density, magnetization, manufacturing, permanent
magnet machines, permeability, tolerance analysis.

I. INTRODUCTION

THE conformal mapping approach dates back to the be-
ginning of the 20th century, where Carter presented the

analytical calculation of the magnetic air gap field in electrical
machines, e. g. in [1]. 80 years later, Žarko et al. presented a
complex-valued spatial varying permeance function to describe
the influence of slotting in radial and tangential direction [2].
Assumptions made for this approach are ideal ferromagnetic
material properties in stator and rotor (relative magnetic per-
meability µr → ∞) and linear material properties in the air
and in the permanent magnets (µr = const.). As described by
Hafner et al. in [3], the CM approach allows the calculation
of the air gap’s magnetic field BAirgap (α, t) out of its main
contributing components:

BAirgap (α, t) = BPM (α, t) · λ∗ (α) +BStator (α, t) , (1)

where BPM (α, t) describes the magnetic air gap field of the
rotor created by the PMs, in dependence of the coordinate
angle α ∈ [0, 2π) and time t, under the assumption of an
unslotted, infinite permeable stator. The stator’s magnetic air
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gap field created by the current conducting coils is consid-
ered by the component BStator (α, t) and the influence of the
stator’s slotting onto the rotor’s unslotted magnetic field is
described by the relative permeance function λ (α). λ∗ (α) is
the conjugate-complex value of the relative permeance func-
tion. Those three contributing components are all complex-
valued quantities, where the real value represents the radial
component and the imaginary value represents the tangential
component – e. g. for the rotor’s magnetic field:

BPM (α, t) = BPM, rad (α, t) + j ·BPM, tan (α, t) . (2)

The force density σ (α, t) acting on a surface can generally
be calculated out of the complex magnetic field B (α, t) in the
surrounding air:

σ (α, t) =
B2 (α, t)

2µ0
. (3)

This equation can be derived from the Lorentz force and can
be simplified by means of the Maxwell stress tensor. µ0 is
the permeability of free space. For cylindrical objects, such
as the rotor of an electrical machine, (3) can be split up in a
real-valued radial force density component

σrad (α, t) =
1

2µ0
·
(
B2

rad (α, t)−B2
tan (α, t)

)
(4)

≈ 1

2µ0
·B2

rad (α, t) (5)

and an imaginary tangential force density component

σtan (α, t) =
1

µ0
·Brad (α, t) ·Btan (α, t) . (6)

The relative magnetic permeability µr of the ferromagnetic
material in an electrical machine is much higher than in
the air gap (e. g. µr, Fe ≈ 10 000 � µr, Air ≈ 1). For this
reason, the magnetic flux lines run predominantly in radial
direction through the machine’s air gap, so that the radial
flux density Brad (α, t) is much higher than the tangential
one Btan (α, t). This results in the simplified approximation (5)
which is often used in literature, if just the radial flux density
is calculated analytical and the tangential flux density is not
calculated. In [4], Wu et al. show a model which is based on
an analytical field model for the slotless fractional-slot PM
machine and accounts for the influence of both the radial and
tangential force components under any load condition.

The tangential force density σtan (α, t) is necessary for the
torque production in the electrical machine. The integral over
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the tangential force density along the air gap in circumferential
direction yields the mechanical torque

M (t) = r · Ftan (t) = r2 · l ·
2π∫
0

σtan (α, t) dα , (7)

where r is the radius, Ftan (t) the sum force in tangential
direction and l the length of a visualized cylinder in the
machine’s air gap.

The major radial force density σrad (α, t) otherwise acts on
the stator teeth. It deforms the stator and is so essentially the
reason for sound radiation. Due to Newton’s third law, the
radial forces act also on the rotor and especially on the rotor’s
bearing. The integral over the radial force density results in the
sum force Frad (t) in radial direction – the so called unbalanced
magnetic pull (UMP) [5]

Frad (t) = r · l ·
2π∫
0

σrad (α, t) dα , (8)

a sum force between the stator and rotor of an electrical
machine resulting from a difference in the air gap flux densities
on opposite sides of the machine. This difference in flux
density is, in general, caused by a difference in the air gaps
on the two sides [6], e. g. due to rotor eccentricity. Especially
crucial for the bearings are revolving radial forces, which are
described by the alternating component of the radial force.

A practice similar to the conformal mapping approach
is described by Zhu et al. in [7] with the so called field
reconstruction (FR) method. With this method, radial and
tangential force components can be calculated fast during
the engineering process of an electrical machine for various
stator current excitations. For that purpose, the magnetic field
of the PMs and the field induced by a current conducting
conductor in one slot are calculated separately via finite
element analysis (FEA) just once. The so computed single
fields are reconstructed subsequent to the whole magnetic air
gap field in dependence of rotor position, winding layout and
current feed. This procedure needs less calculation time than
a full FEA for every time step.

A related manner is presented by Hafner et al. in [8]. An
extension of the classical CM approach is presented there.
Additional CM parameters are computed from single finite
element (FE) computations, so that effects like slot leakage
or saturation can be considered in the model over a wide
operation range of the electrical machine.

Both approaches provide an accuracy similar to that of FE
simulations with however the low computation time that is
characteristic for analytical models.

In this paper the classical analytical CM approach is used
and expanded to model the influence of manufacturing toler-
ances. It can be assumed that the presented approach can also
be applied, if the CM functions are determined by means of
FE simulations like in [7] or [8].

II. MODELING OF MANUFACTURING TOLERANCES

This section describes the modeling of different manufactur-
ing tolerances and how they influence the relative permeance

function, the magnetic air gap field of the rotor created by
the PMs and the stator’s magnetic air gap field created by the
current conducting coils. The manufacturing tolerances have
to be considered in all of the three contributing components.

A. Relative Permeance Function

The relative permeance function λ (α) is an unit-less quan-
tity, which describes the ratio of the flux density in the
slotted air gap to the flux density in the unslotted air gap [2].
For a machine with an ideal stator without manufacturing
tolerances, a relative permeance function is calculated once
for one slot pitch and is than replicated for every slot pitch in
the entire air gap to receive the complete permeance function,
as it is described in [2]. The only parameters needed for
the calculation are the outer rotor radius, the heights of the
magnets and the air gap, the length of a slot pitch and the slot
opening factor.

If the stator is not ideal and the slot width changes from
one slot pitch to the other, for example due to asymmetrical
stator teeth if segmented sheets are used, a relative permeance
function λi has to be calculated for every different slot pitch i
and then concatenated to the entire permeance function:

λ (α) =

N1−1∑
i=0

λi

α− i∑
j=0

τS, j

 , (9)

where N1 is equal to the number of slot pitches and τS, j is
the width of the j-th slot pitch, measured at the radius r.

The described approach is to be presented for a six teeth
(N1 = 6) and four poles (2p = 4) surface mounted permanent
magnet synchronous machine. The geometrical, material and
rating data of the exemplary investigated machine are pre-
sented in Table I. It can be noted, that the presented approach
is also valid for other surface mounted PMSMs.

Fig. 1 shows a calculated permeance function in radial
direction for the described surface mounted PMSM and Fig. 2
the corresponding function in tangential direction. For the
calculation, the third tooth is displaced by 8◦. This value
is chosen, so that the effect on the permeance function is
clearly visible. In practice, the value for tooth displacement
is smaller. In order to represent the tooth displacement with
help of the CM approach, the width of the second slot and slot

TABLE I
ELECTRICAL MACHINE’S GEOMETRICAL, MATERIAL AND RATING DATA

Parameter Value Parameter Value
Rating Speed 3000min−1 Shaft Diameter 9 mm
Rating Current 2.3 A Bore Diameter 40 mm
Rating Torque 2 Nm Outer Diameter 130 mm
Phases 3 Stator Yoke Height 15 mm
Pole Pairs 2 Tooth Width 10 mm
Stator Slots 6 Air Gap Height 2 mm
Number of Turns 90 PM Height 3 mm
Copper Space Factor 47 % Rotor Slot Depth 1 mm
Rem. Flux Density 1.04 T Active Length 120 mm
Rel. PM Permeability 1.05 Pole Pitch Factor 82.5 %
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Fig. 1. Relative radial permeance function for a stator with six teeth, where
the third tooth is displaced (solid) and for the ideal stator (dotted). A schematic
of the tolerance afflicted stator is shown above the course of the function.
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Fig. 2. Relative tangential permeance function for a stator with six teeth,
where the third tooth is displaced (solid) and for the ideal stator (dotted).

pitch increases and the width of the third slot and slot pitch
decreases. For comparison, the symmetric permeance function
of the ideal stator without manufacturing tolerances is drawn
dotted in the figures. A schematic of the tolerance afflicted
stator is shown above the course of the function in Fig. 1.

If there is a static rotor eccentricity, the permeance function
is superposed by a sinusoid [9]. With help of the conformal
mapping approach, the permeance function is calculated once
for the smallest air gap δmin and once for the largest air
gap δmax. Then the permeance function λecc, stat (α), afflicted
with a static eccentricity, is computed sinusoidal between the
permeance functions for the smallest and largest air gap:

λecc, stat (α) =
λ̂min − λ̂max

δmax − δmin
· e · cos (α− ϕ) + λ (α) , (10)

where λ̂max is the maximum of the permeance functions in
radial and tangential direction for the largest air gap, λ̂min the
maximum of the permeance functions for the smallest air gap,
e the eccentricity and ϕ the angle of the eccentricity, which
is similar to the notation used in [5].

Fig. 3 shows a so calculated stator permeance function
in radial direction for the six teeth and four poles surface
mounted PMSM with a static eccentricity of 0.5 mm and an ec-

0◦ 60◦ 120◦ 180◦ 240◦ 300◦ 360◦
0.5

0.6

0.7

0.8

0.9

1.0

1.1

Peripheral Angle α −→

R
el

at
iv

e
St

at
or

Pe
rm

ea
nc

e
λ

ra
d
(α

)
−→

Fig. 3. Relative radial permeance function for a six teeth and four poles
surface mounted PMSM with a static eccentricity of 0.5 mm (solid) and for
the ideal machine (dotted).

0◦ 60◦ 120◦ 180◦ 240◦ 300◦ 360◦
−0.5
−0.4
−0.3
−0.2
−0.1
0.0

0.1

0.2

0.3

0.4

0.5

Peripheral Angle α −→

R
el

at
iv

e
St

at
or

Pe
rm

ea
nc

e
λ

ta
n
(α

)
−→

Fig. 4. Relative tangential permeance function for a six teeth and four poles
surface mounted PMSM with a static eccentricity of 0.5 mm (solid) and for
the ideal machine (dotted).

centricity angle ϕ = 0. On that account, the relative permeance
increases around 0◦ and decreases at the opposite site at 180◦.
The overlaid sinusoidal function is clearly identifiable. For
comparison, the symmetric permeance function of the ideal
machine is drawn dotted.

As expected, the same eccentricity has not much influence
on the relative permeance’s tangential component, as shown in
Fig. 4, where the computed permeance function in tangential
direction is depicted. The difference to the dotted function of
the ideal machine is comparatively small.

For dynamic rotor eccentricities, the spot of the smallest air
gap rotates with rotor speed along the machine’s circumfer-
ence. For that reason, the permeance function λecc, dyn (α, t),
afflicted with a dynamic rotor eccentricity, becomes time-
dependent, changes in every time step of the simulation and
(10) turns to:

λecc, dyn (α, t) =
λ̂min−λ̂max

δmax−δmin
·e·cos (α−ωt−ϕ)+λ (α) , (11)

where ω is the angular frequency of the rotor.
In general, both types of eccentricity may occur at the same

time and lead to a mixed eccentricity. Because of the CM
model’s linearity, both types of eccentricity can be considered
at the same time by superposition. Similarly, all three of the so
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far presented manufacturing tolerances can be superimposed
at the same time in the model.

B. Rotor Flux Density

As described by Hafner et al. in [3], there exist many
possibilities for the analytical calculation of the magnetic field
distribution in the air gap of PMSMs for a slotless stator. For
example, the rotor flux density can be calculated for internal
and external rotors, radial and parallel or radial sine and
sinusoidal direction magnetizations. For the model presented
in this paper, the calculation of radial magnetized magnets is
implemented. Parameters needed for the calculation are the
outer rotor radius, the height of the magnets and the air gap,
the remanence induction and the relative permeability of the
magnets, the number of poles as well as the pole pitch factor.

If the rotor is not ideal and the parameters change from one
pole pitch to the other, for example if the width, the height or
the remanence induction of the magnets change because of the
magnet’s manufacturing tolerances, a rotor flux density BPM, i
has to be calculated for every different pole pitch i and then
concatenated to the entire rotor flux density:

B′PM (α, t) =

2p−1∑
i=0

BPM, i

α− i∑
j=0

τP, j

 , (12)

where 2p is equal to the number of poles and τP, j is the width
of the j-th pole pitch.

Due to Maxwell’s equations, the magnetic field B (α, t) is
solenoidal, i. e. the magnetic field is a divergence free vector
field: ∇ · B (α, t) = 0. For this reason, the potentially non
solenoidal rotor flux density B′PM (α, t) from (12) has to be
adjusted by a correction term for every time step, which yields
the tolerance afflicted rotor flux density:

BPM (α, t) = B′PM (α, t)− 1

2π

2π∫
0

Re
{
B′PM (α, t)

}
dα . (13)

In other words, the mean value of the rotor flux density’s radial
component must be zero.

The effect of a smaller magnet on the radial rotor flux
density for the investigated PMSM is presented in Fig. 5 and in
Fig. 6 for the corresponding tangential component. The pole
pitch factor of the second pole pitch around 90◦ is reduced
by 15 %. This is equal to a magnet reduced in width, e. g.
due to manufacturing variations. This value is chosen, so that
the effect is clearly visible. In practice, the tolerance value
is smaller. For comparison, the rotor flux density of the ideal
machine is drawn dotted in the two figures. A schematic of
the tolerance afflicted rotor is shown below the course of the
function in Fig. 5. The smaller magnet is good recognizable
in both components. The effect of the correction term (13) is
visible in the radial component, where the tolerance afflicted
rotor flux density has a small negative offset.

To validate the CM approach, a FE simulation is performed.
The rotor of a surface mounted PMSM with the same data
as presented in Table I and a 15 % smaller magnet for the
second pole pitch is modeled. The stator is replaced by a
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Fig. 5. Radial rotor flux density for a four poles surface mounted PMSM,
where one magnet is smaller (solid) and for the ideal machine (dotted). A
schematic of the rotor is shown below the course of the function.
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Fig. 6. Tangential rotor flux density for a four poles surface mounted PMSM,
where one magnet is smaller (solid) and for the ideal machine (dotted).

Neumann boundary condition at the inner stator radius, which
represents an unslotted stator with infinite high permeability.
The resulting flux density distribution is sampled in the middle
of the original air gap. A comparison is shown in Fig. 7 for the
radial rotor flux density and in Fig. 8 for the tangential one.
The previously presented flux densities, calculated with help of
the CM approach, are drawn solid. The FE simulated functions
are plotted with dots. The entire course of the functions is in
good agreement. The transitions between two pole pitches are
slightly smoother if calculated with FE.

As shown for the permeance function, the influence of
eccentricity has to be considered for the rotor flux density
as well. Comparable to (10) and (11), the rotor flux density is
weighted by a sinusoid. With help of the conformal mapping
approach, the rotor flux density is calculated once for the
smallest air gap δmin and once for the largest air gap δmax.
Then the eccentricity afflicted rotor flux density BPM, ecc (α, t)
is computed sinusoidal between the rotor flux densities for the
smallest and largest air gap:

BPM, ecc (α, t) = BPM (α, t)+

BPM, min −BPM, max

δmax − δmin
· e · cos (α− ω − ϕ) ,

(14)
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Fig. 7. Radial rotor flux density for a four poles surface mounted PMSM,
where one magnet is smaller, calculated with CM and with FE.
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Fig. 8. Tangential rotor flux density for a four poles surface mounted PMSM,
where one magnet is smaller, calculated with CM and with FE.

where BPM, max is the rotor flux density in radial and tangential
direction for the largest air gap and BPM, min the rotor flux
density for the smallest air gap.

Results of the analytical calculation with a static eccentricity
of 0.5 mm and a comparison to the results determined by FE
are shown in Fig. 9 for the radial rotor flux density and in
Fig. 10 for the tangential one. They are in good agreement.

C. Stator Flux Density

The stator’s magnetic air gap field is created by the current
conducting coils. In [3] is described, that the magnetic field
distribution due to a current of one ampere in a single slot,
assuming an infinite slot depth and an infinite permeability
in an otherwise slotless stator, can be obtained by conformal
mapping. For the ideal machine without manufacturing tol-
erances, this field distribution is calculated just once and is
then assembled to the stator flux density in dependence of the
winding scheme and the phase currents.

In order to model the influence of manufacturing deviations
on the stator flux density, this current field distribution has to
be calculated with the CM approach for every different slot
geometry, which is similar to the calculation of the tolerance
afflicted stator permeance function. The field distribution is
then determined for every coil of the winding scheme. One
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Fig. 9. Radial rotor flux density for a four poles surface mounted PMSM
with a static eccentricity of 0.5 mm calculated with CM and with FE.
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Fig. 10. Tangential rotor flux density for a four poles surface mounted PMSM
with a static eccentricity of 0.5 mm calculated with CM and with FE.

coil consists of a forward conductor and a corresponding
backward conductor. The slots which do not belong to the
coil are connected linear. Fig. 11a shows the flux density
distribution for the second coil, which is winded around the
second tooth. Again, the third tooth is displaced, so that the
course of the function for the second slot pitch (60◦–128◦)
is slightly different than the negative course for the third slot
pitch (128◦–180◦). In the next step, the linear connections
are weighted with the permeance function from Fig. 1 which
results in Fig. 11b. In order to take an eccentricity into ac-
count, the whole function is first divided by the permeance
function λ (α), where the eccentricity is not considered:

BStator, w/oλ (α) = BStator,λ (α) /λ
∗ (α) , (15)

which yields the permeance free stator flux density distri-
bution BStator, w/oλ (α) for one coil. This result is revealed
in Fig. 11c. The last steps are the multiplication with the
eccentricity afflicted permeance function λecc (α, t) and the
adjustment by a correction term for every time step, to obtain
a divergence free flux density for the stator. The final stator
flux density distribution, where the tooth displacement and the
eccentricity are considered, is shown in Fig. 11d. The influence
of eccentricity is difficult to see in this figure. Now, this
function can be weighted by the coil’s number of turns and
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Fig. 11. Building of the radial stator flux density for the second coil of a
six teeth and four poles surface mounted PMSM, where the third tooth is
displaced and with a static eccentricity of 0.5 mm.

the current in the coil for every time step. Consequently, coil
manufacturing tolerances, like different numbers of turns per
coil, can be considered in this step as well.

D. Air Gap Flux Density

Now, the manufacturing tolerances are considered in all of
the three contributing air gap field components. The resulting
magnetic air gap field BAirgap (α, t) for the electrical machine
with tolerances is calculated with the help of (1) for every time
step. In Fig. 12, the resulting radial air gap field for the surface
mounted PMSM is presented in solid. The machine has an
exemplarily dynamic eccentricity of 0.5 mm and is operating
with the rated current of 2.3 A. Shown is the resulting magnetic
air gap field for the first time step of the simulation.

A FE simulation is performed again in order to validate the
CM approach. The conditions chosen are the same as for the
CM approach and are presented in Table I. The resulting flux
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Fig. 12. Radial air gap flux density for a six teeth and four poles surface
mounted PMSM operating with the rated current of 2.3 A and a dynamic
eccentricity of 0.5 mm. Shown is the first time step.
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Fig. 13. Tangential air gap flux density for a six teeth and four poles surface
mounted PMSM operating with the rated current of 2.3 A and a dynamic
eccentricity of 0.5 mm. Shown is the first time step.

density distribution is sampled in the middle of the air gap.
A comparison is shown in Fig. 12. The function determined
by FE is drawn dotted. The overall courses of both functions
are in good agreement. They differ slightly for the largest air
gap in the region around 180◦. There, the CM approach yields
smaller values than the FE simulation.

Fig. 13 shows the corresponding resulting tangential air gap
field and the comparison between the analytical CM approach
and the FE simulation. The difference between the two courses
is apparently greater. Especially in the regions around 40◦,
140◦, 220◦ and 320◦ the results determined by FE are larger.

III. MANUFACTURING TOLERANCES INFLUENCE ON
RADIAL FORCE DENSITIES

After the whole magnetic air gap field is determined, the ra-
dial force density is calculated by means of (4). This results in
a matrix which contains the radial force density σrad (α, t) for
every discrete point in space and time. A 2-D discrete Fourier
transformation yields the force density magnitudes σ̂rad (ν, µ)
over spatial and frequency order, as described in [10].

Fig. 14 shows the so computed force density magnitudes σ̂rad
for the six teeth and four poles surface mounted PMSM
without manufacturing tolerances as a function of spatial
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Fig. 14. Radial force density magnitudes for a six teeth and four poles surface
mounted PMSM without manufacturing tolerances as a function of spatial
order ν and frequency order µ.

0 4 8 12 16 20 24 28 32 36 40 44 48
−10

−8

−6

−4

−2

0

2

4

6

8

10

Frequency Order µ

Sp
at

ia
l

O
rd

er
ν

Force Density Magnitude σ̂rad in dB (re 1 N/m2)

−20

−10

0

10

20

30

40

50

60

70

Fig. 15. Radial force density magnitudes for a six teeth and four poles surface
mounted PMSM with a dynamic eccentricity of 0.5 mm as a function of spatial
order ν and frequency order µ.

order ν and frequency order µ. The height of the magnitudes
is represented by different colors. E. g. dark red stands for
a height of over 70 dB with reference to 1 N/m2. This is
equivalent to approximately 7500 N/m2. The magnitude of
every fourth frequency order is distinctive, because of the
machine’s four poles. The same behavior can be seen for
the spatial order, where every sixth order dominates, which
matches with the number of stator teeth.

The same calculation is performed for the machine with
a dynamic rotor eccentricity of 0.5 mm. The resulting force
density magnitudes are presented in Fig. 15. Around the main
orders from Fig. 14, additional orders with a minor amplitude
occur at ±1 of the spatial and frequency order, because of the
dynamic rotor eccentricity. These so computed orders match
with the orders calculated by analytical considerations [9], but
with the benefit that the magnitudes of the additional orders
can be estimated as well.

The effect of static tolerances, like static eccentricity or
deviations in the teeth’ geometry, compared to dynamic devi-
ations, like dynamic eccentricity or magnet tolerances, where
the error rotates with rotor speed, can clearly be distinguished
in the spectra. Whereas static tolerances just excite new force

densities with the same spatial orders as the ideal symmetric
machine, dynamic tolerances arouse new frequency orders in
addition, as shown in Fig. 15. Sum forces, like the torque (7) or
the unbalanced magnetic pull (8) can be derived and analyzed
from the force densities as well.

IV. CONCLUSION

This paper addressed the analytical modeling of manufac-
turing tolerances for surface mounted PMSMs with the help of
the conformal mapping approach. The modeling of different
manufacturing tolerances was described and the tolerances’
influence on the relative permeance function, the magnetic air
gap field of the rotor and the stator’s magnetic air gap field
was shown. The analytical calculated rotor’s air gap field as
well as the whole resulting air gap field for different tolerance
cases were compared to results determined by means of finite
element simulations and are in good agreement. Results for
the radial flux density component are more accurate than for
the tangential component.

The force density magnitudes for a machine without manu-
facturing tolerances and with a dynamic rotor eccentricity were
exhibited as a result computed with the presented approach.
The orders match with the orders calculated by analytical
considerations, but with the benefit that the magnitudes of
the orders can be estimated as well. So the impact on radial
force densities can be calculated and compared within seconds
for different machine topologies and different manufacturing
tolerances, whereas FE simulations need at least one full
electrical period of calculations.
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