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Introduction
Non-oriented (NO) soft magnetic steel sheets (SMSSs) exhibit specific properties such as saturation 
due to material properties and dynamic hysteresis due to induced eddy currents . Modeling of mag-
netization dynamics, transients and iron losses in laminated structures is a complex problem, still 
open nowadays and of critical importance in different areas of applied research .
The quantitative description of the magnetization process in thin and long sheets neglecting edge 
effects can be reduced to the integration of 1-D penetration equation [1, 2] . In this paper, however, 
this problem is solved using the parametric magneto-dynamic (PMD) model [3, 4] . This model 
offers the flexibility to implement various inverse hysteresis models to analyze their ability to han-
dle the intricate problem . The applied hysteresis model to represent the constitutive relation of the 
SMSS plays a central role for the resulting eddy current and flux distributions due to different 
magnetization trajectories in different layers of the sheet .
The aim of this work is to present a comparative analysis of most of well-known hysteresis models 
in combination with the PMD model for prediction of magnetization dynamics and power loss 
calculation under arbitrary excitation waveforms .
Parametric Magneto-Dynamic Model
The PMD model is based on the discretization of the observed SMSS into Ns equally thick slices . 
Based on average values and Faraday’s law, induced eddy currents ies inside all the slices can be 
calculated, which directly affect the excitation of magnetic field inside individual slices . Consider-
ing this by expressing the equilibriums of magneto-motive forces (mmfs) in all the slices of the 
SMSS using Ampere’s law, the PMD model is expressed in form of a simple matrix differential 
equation (1) [3, 4]
Θ=Nip=H(Φ)lm+Lm[dΦ/dt]=RmΦ+Lm[dΦ/dt] . (1)
In (1) Θ represents a vector of the mmfs generated by the applied current ip in the excitation wind-
ing, H(Φ) is a vector of average magnetic field strengths as hysteretic functions of the average 
magnetic fluxes in the slices and lm is the magnetic path length . N is a vector with number of turns 
N of the excitation winding, Rm is a vector of nonlinear reluctances and Lm is the magnetic induc-
tance matrix of the SMSS [3, 4] .
The presented PMD can be both current- [using (1)] and voltage-driven, where (1) can be coupled 
with an external excitation circuit calculating induced voltage ui in the excitation winding by (2)
ui=NT[dΦ/dt] . (2)
Hysteresis models
The development of hysteresis models is influenced by generally conflicting demands regarding 
accuracy, simplicity, and physical behavior . The major driving forces are the ability to describe the 
shape of the hysteresis loops and determine iron losses . Initially magnetic hysteresis loops were 
modeled using mathematical models, e .g . the Preisach model or the Stop-and-Play models [5] . 
Later on, physical based models such as the Jiles-Atherton [6] or the GRUCAD model [7] were 
proposed .
One of the most known and used model is the Jiles-Atherton (J-A) model [6] . This model has been 
largely employed due to some advantages such as relatively small number of parameters and good 
computational performance . Nevertheless the J-A model’s popularity, there are still some issues 
with the identification of model’s parameter and its stability [8] . Especially when modeling distort-
ed and irregular hysteresis loops, the deviation between the modeled and measured loops is often 
not adequate . In the present paper, we focus in addition on an alternative description, which relies 
in contrast to the J-A model on the decomposition of total field strength into reversible and irrevers-
ible terms [7] . This model could be easily extended to include other energy contributions .
As an alternative transplantation type hysteresis models directly based on measured major loops or 
first-order reversal curves are suited for certain applications . The simplest of such models is the 

Tellinen (TLN) model [9], where more advanced models represent the Zirka-Moroz (Z-M) hyster-
esis models, which can be history-independent or history-dependent [2] .
Application of individual models depends on the complexity, accuracy and other model’s proper-
ties . In this paper several of the most used and well known hysteresis models are evaluated and 
analyzed . The inverse [H(B)] formulations are used due to the straightforward implementation in 
the PMD model of SMSSs .
Results
Different hysteresis models were evaluated by comparing the calculated and measured major and 
minor dynamic hysteresis loops for NO steels under sinusoidal and distorted excitation waveforms . 
In this digest the results for M400-50A SMSS samples are presented, where only the TLN and the 
GRUCAD models are compared . In Fig . 1 the measured and calculated dynamic hysteresis for 
frequency f=1000 Hz and Bmax=1 .5 T are presented . In Fig . 2 the comparison of the TLN and the 
GRUCAD models for distorted voltage excitation is shown . The calculated results show differences 
when different hysteresis models are applied to the PMD model .
Conclusion
In the full paper several of widely used hysteresis models implemented in the PMD model are ana-
lyzed and discussed in detail . These models are compared in terms of identification procedure 
facilities, accuracy, numerical implementation and computational effort .
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Fig.1. Calculated dynamic hysteresis due to eddy 
currents for sinusoidal excitation

   

Fig. 2. Calculated dynamic hysteresis due to eddy 
currents for sinusoidal excitation with added 5th 
harmonic with a phase shift of 45°
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