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Abstract -- This paper deals with the approach of analyzing 
the magnet design based on transient behavior of an IPMSM 
during switching processes in the event of malfunction for 
automotive applications. Depending on the maximal current 
increase during the transient process the needed percentage of 
Dysprosium for the magnet design is conducted. Switching off 
strategy is introduced for both Voltage-Source- and Current-
Source-Inverter for automotive application. Both inverters are 
compared concerning the transient current increase and 
respectively the Dy-content for the magnet design.  
 

Index Terms—IPMSM, short-circuit analysis, Voltage-
Source-Inverter, Current-Source-Inverter, magnet design, 
Dysprosium, demagnetization  

I.   NOMENCLATURE 
iu, iv, iw     Phase current  
uuv, uvw, uwu   Line-to-line voltage  
T        Torque  
J       Polarization 
H       Magnetic field strength 
HKP      Magnetic field strength at knee-point 
Br       Remanence flux densitiy 

II.   INTRODUCTION 
In order to meet requirements of reducing emissions and 

air pollution, development of electrified propulsion solutions 
is proceeding rapidly. Several highway-capable and series-
producible models such as smart ed, Mitsubishi i-MiEV, 
Nissan Leaf have been introduced to the market. The 
structure of the electrical power train of a battery electric 
vehicle includes an electrical machine as traction motor, a 
DC/AC inverter, optionally with a DC/DC converter, a 
battery as energy storage and an additional on-board-
charger. Due to the fact that the energy storage device is a 
battery, which is inherently a voltage source, a voltage 
source inverter (VSI) is exclusively used as the DC/AC 
inverter for all BEVs existing on the market so far. 
Depending on the dc-link energy storage components, 
inverter topologies can be basically grouped into two main 
categories: voltage-source and current-source topologies [2]. 
While the VSIs use dc capacitors in the dc-link circuits, the 
current source inverters (CSIs) employ dc inductors in the 
dc-link circuits. In recent years research works on using a 
CSI for electric vehicles have been studied in [1], [2], [3]. 

The widespread electrical machine is the Interior 
Permanent Magnet Synchronous Motor (IPMSM) because of 
its high starting torque and its wide constant-power speed 
range, due to the high energy content of rare earth materials 
such as neodymium-iron-boron (Nd-Fe-B) [4].  

Despite of the high power density of IPMSM alternative 
solutions such as induction machines and switch reluctance 
machines are studied in the past years for automotive 
applications. The main reason behind the pressure is due to 
the increase of the rare earth material costs, which are 

multiplied during the period between 2011 and 2012. The 
increase is mainly caused by the monopolistic role of China. 
Have a closer look at the price development it is noticeable, 
that the increase of the absolute price of light rare earth 
materials such as Nd are far below the price of heavy rare 
earth materials such as Dysprosium (Dy). Fig. 1 shows the 
price development of Dy and Nd. Although the material 
requirements of Dy in an IPMSM is only about 7%, it causes 
about 65% of the entire permanent material costs and hence 
determines primarily the costs of an IPMSM.  
 

 
a) Dysprosium (Dy) 

 

 
b) Neodymium (Nd) 

Fig. 1. Material costs of the rare earth materials of a) Dy and b) Nd from 
March 2011 till July 2012 in €/kg [8]. 

 
Dy is a rare earth element used to increase the coercive 

force which affects the stability against temperature and 
external fields. While Nd is used as the basic rare earth 
material to produce magnetic flux, Dy is combined in the 
alloy in order to achieve demagnetizing stability, which is 
needed in the event of a malfunction. Therefore, a closer 
look at the transient behavior of the IPMSM in malfunction 
must be taken at. 

In order to reduce and control the torque within the 
electrical machine in the event of a malfunction, the 
electrical machine must be  

1) disconnected from the energy storage  
2) switched off by the inverter.  

In order to do so, two methods are basically used to lead the 
electrical machine to the following modes: 

• an active short-circuit mode  
• disconnected mode of operation  

In both cases a transient short-circuit current can occur. 
Especially the high transient increase of the current 
component in the d-axis is critical. If it is high enough, the 
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permanent magnets of the IPMSM ca
demagnetized. That is why it is necessar
basic rare earth magnets with materials s
alloy. 

We will discuss the approach of analy
current increase while switching off an IP
results for both types of inverters: V
introduced. Depending on the current incr
the needed percentage of Dy for the ma
IPMSM is conducted.  

III.   METHODS OF SWITCHING OFF 

A.   VSI 
In case of an IPMSM with a VSI two m

to the state of the art are described as follo
• Strategy I VSI: to switch the elec

disconnected mode of operati
switches of the VSI are open, as
2a), 

• Strategy II VSI: to switch into
circuit mode in which the high
open and the low-side switches a
ground, as illustrated in Fig. 2b). 

 

a) Strategy I VSI 

b) Strategy II VSI 
Fig. 2. Two different methods of switching off an IP
event of a malfunction a) disconnected mode b) activ
 

B.   CSI  
Using a CSI for automotive applic

converter must be integrated according to
approach of switching off the electrical m
studied in [7]. According to [7] the follow
can be used to switch off an IPMSM: 

• Strategy I CSI: to active the
turning on all six switches of
switch of the BUCK-inverter,
3a), 

• Strategy II CSI: to turn on 
button switches of one phase o
switch of the BUCK-inverter,
3b). 
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Fig. 3. Two different methods of switch
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IV.   TRANSIENT CURRENT
SWITCHING O

A.   Simulation Model 
In order to simulate the

IPMSM during the switch
Element-Analysis (FEA)-bas
electrical machine is connect
calculation is conducted by a
applied as a traction motor 
Fig.4 illustrates the detailed 
The key data of the simulated

Fig. 4. Detail of the cross section of the
 

Two switching circuits are 
The windings of the IPMSM
source in each phase. The 
implemented as resistors wit
(switching on) or infinite (swi
one steady-state operation poin
induced by changing the para
resistors at the switching point. 
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KEY DATA OF THE SI

No. of Slots 
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DC Voltage 
Max. Torque 
Max. Power 
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simulation, is the corner poin
torque of 330Nm and a rate
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increase in d-axis during the sw

 
ategy I CSI 

 
ategy II CSI 
hing off an IPMSM using CSI in the 
mode b) active short-circuit mode. 
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a transient solver. An IPMSM 
is chosen for the simulation. 
cross section of the machine. 

d IPMSM is shown in Table I.  
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B.   Simulated Results for VSI 

In order to protect the battery in the event of malfunction 
the relays between the battery and the inverter must be 
opened at the switching point. The magnetic energy stored in 
the inductance of the motor is fed into the dc link capacitor. 
Therefore the dc link voltage increases. When steady state is 
reached, line-to-line voltages of the electrical machine 
become equal to the level of the back electromotive force 
(EMF). The simulated results of the transient phase currents, 
line-to-line voltages and torque of the IPMSM are shown in 
Fig. 5.  

Fig. 5. Strategy I VSI @ T=330Nm, n=3500rpm: simulated results of the 
transient phase currents, line-to-line voltages and torque. 

Since the back EMF increases proportional with the speed 
of the electrical machine, Strategy I VSI only can be used in 
the low speed working area. As soon as the back EMF 
becomes higher than the maximum blocking voltage of the 
power electronics, the inverter can be damaged by the 
transient voltage increase by switching off the IPMSM using 
Strategy I VSI.  In this case Strategy II VSI must be 
implemented. 

 
Fig. 6. Strategy II VSI @ T=330Nm, n=3500rpm: simulated results of the 
transient phase currents, line-to-line voltages and torque.   

 
The simulated results using Strategy II VSI are shown in 

Fig. 6. After leading into the active short-circuit mode in 
which the high-side switches are open and the low-side 
switches are turned on to the ground, the line-to-line voltage 
drops down to zero. High transient currents occur and end in 
the stationary short-circuit state. The maximum current in d-
axis generates a magnetic field acting opposite to the 
permanent magnet and defines the coercive force of the 
magnet material respectively the Dy content, which will be 
detailed explained in Section V.  

C.   Simulated Results for CSI 
Equivalent to Strategy I VSI the Strategy I CSI causes 

high line-to-line voltage which is critical for the power 
electronics of the inverter. The simulated results of the 
transient phase currents, line-to-line voltages and the 
torque are shown in Fig. 7.  

 
Fig. 7. Strategy I CSI @ T=330Nm, n=3500rpm: simulated results of the 
transient phase currents, line-to-line voltages and torque. 
 

Also in this case Strategy II CSI must be implemented 
to keep the line-to-line voltages at an uncritical level. A 
transient increase of the d-axis current can be observed in 
Fig. 8. as well. 

Compared to the maximum d-axis current shown in Fig. 
6, the maximum d-axis current during the switching off 
process using CSI is lower than using VSI, which will 
positively affect the needed Dy-content. 
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Fig. 8. Strategy II CSI @ T=330Nm, n=3500rpm: sim
transient phase currents, line-to-line voltages and torq
 

V.   MAGNET DESIGN  

A.   Demagnetization Stability Based on D
Fig. 9 shows the JH-curves (po

magnetic field) of 3 permanent magn
different coercive force depending on
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magnetic flux occurs. The higher the c
higher the magnetic field strength HKP c
the knee-point. At the same time, the
reduced as the percentage of Nd decre
which reduces the energy-content of the

Fig.9. Magnetic field strength at the knee-point wi
content. 
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10.  For the magnet design it is impor
not more than a certain percentage of 
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Fig.11. Correlation of coercive force
temperature of 180°C. 
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Fig.12. Required magnetic field strengt
maximal d-axis current generated durin
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TABLE II 
COMPARISON BETWEEN VSI AND CSI CONCERNING TRANSIENT CURRENT 

INCREASE, MAGNETIC FIELD STRENGTH AND THE DY-PERCENTAGE 
 Strategy II 

VSI 
Strategy II 

CSI 
Max. transient current in 
d-axis Id  

1089 A 782 A 

Required magnetic field 
strength of knee-point HKP  

-675 kA/m -527 kA/m 
 

Dy-Content  7.4 % 6.3 % 
 
The comparison in Table II leads to the result that when 

compared to VSI 1.1% of Dy can be reduced by using CSI 
because of the less caused transient current increase in d-axis 
during the switching off process. With an assumed amount 
of 2 kg permanent magnet of the simulated IPMSM 22g Dy 
can be reduced. This leads to a cost reduction of 33€ with an 
assumed Dy cost of 1500€/kg.  

VI.   CONCLUSIONS 
This paper studies the approach to design the permanent 

magnet of an IPMSM for automotive application based on 
the analysis of the transient current increase in the event of a 
malfunction. Dysprosium (Dy) is used to protect the 
permanent magnet from demagnetization caused by the 
transient current increase. Different methods of switching off 
an IPMSM are introduced for both types of inverters: 
Voltage-Source- (VSI) and Current-Source-Inverter (CSI). 
Simulation results based on Finite-Element-Analysis are 
used to calculate the coercive force influenced by the content 
of Dy. Transient current increase while the switching off 
process is simulated as well. Depending on the current 
increase an analysis of the needed percentage of Dy and the 
magnet design of an IPMSM is conducted. A comparison 
between CSI and VSI including the reduced amount of Dy is 
presented as the final result of this paper.  
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