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SUMMARY

This paper proposes a macroscopic model for ferromagnetic hysteresis that is well-suited for finite element imple-
mentation. The model relies on a consistent thermodynamic formulation. The stored magnetic energy and the
dissipated energy are known at all times and not solely after the completion of closed hysteresis loops as is usually
the case. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In a ferromagnetic sample subjected to a time varying applied magnetic field h.t/, several mechanisms
are responsible for the apparition of induced currents at different levels of the microstructure. In par-
ticular, two geometrical scales should be distinguished. Currents directly induced by the variation of
the external magnetic field are called eddy currents. They depend on the geometry of the sample and
on the rate of variation @th.t/ of the applied field. On the other hand, microscopic currents are also
induced locally because of the broken (jerky) motion of Bloch walls (Barkhausen effect). The dynam-
ics of this motion is ruled by certain features of the microstructure, and it determines the intensity and
the distribution of the microscopic currents, whose associated Joule losses are conventionnally called
hysteresis losses. Hysteresis losses density does not depend on the geometry of the sample, neither on
the frequency of the applied magnetic field (hysteresis is a quasi-static phenomenon), but it depends
on the local maxima attained by the field h.t/ all through the magnetization history of the sample.

The term iron losses covers the sum of these two intertwined phenomena. Conventional hysteresis
models such as Preisach or Jiles–Atherton [1–3], however, address one (hysteresis) independently of
the other (eddy currents). On the contrary, we present in this paper a strongly coupled model that
addresses both phenomena simultaneously so that the interplay between skin effect (i.e., eddy currents)
across laminations and hysteresis can be resolved accurately. Such coupled models are seldom reported
in the literature. With this model, material parameters for laminated structures can be identified from
measurements on a rigorous theoretical basis in order to be exploited afterwards in the modeling of
macroscopic devices (e.g., electrical machines) by means of a homogenization approach such as the
one proposed in [4].

Practically, the proposed model consists of a 1D vector finite element (FE) modelization across half
a lamination thickness. An h-field formulation is used to solve the eddy current problem, together with
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an implementation of the energy-based hysteresis model described in [5]. It is shown that this across-
lamination model describes the metrological characteristics of non-oriented electrical steel accurately
and allows an exact material parameter identification from Epstein frame (EF) or single-sheet tester
measurements at any frequency.

2. THERMODYNAMIC FOUNDATION

The proposed model builds on the thermodynamic representation of the hysteresis proposed in [5–7].
It also gets some inspiration from the kinematic hardening theory of plasticity discussed in [8–10]. The
first and second principles of thermodynamics are explicitly accounted for in the formulation of the
model. The model relies on a mechanical anology discussed in Section 2.3.

2.1. Empty space magnetization

To appropriately account for the susceptibility of empty space, the magnetic flux density is represented
as a sum

b WD J0 C J (1)

of two components: an empty space magnetization J 0 WD �0h (where �0 is the magnetic permeability
of vacuum), which is always linear and reversible, and a material magnetization J , associated with the
presence of microscopic moments attached to the atoms of the material body and that is both nonlinear
and irreversible.

2.2. Energy conservation

The hysteresis model used in this paper follows directly from the expression of the conservation of
energy in the material

P‰ D PW C PQ ) P‰ D h � Pb �D (2)

where ‰ stands for the energy density, PW WD h � Pb is the rate of magnetic work, and PQ D �D is a
dissipation function D. The dot above a symbol stands for a total time derivative.

The energy density is the sum of an empty space energy depending on J 0 and an internal energy u
depending on J

‰.J 0;J / D
J 20
2�0
C u.J / (3)

with �0 as the magnetic permeability of vacuum. Its time derivative writes

P‰ D
J 0

�0
PJ 0 C hr � PJ with hr D @Ju: (4)

We shall call the field hr reversible magnetic field because, as (4) shows, the magnetic work it delivers
is integrally converted into internal energy.

2.3. Mechanical interpretation

Hysteresis losses can be interpreted as the power delivered by a constant amplitude generalized force
parallel to the variation of the magnetization, that is, the magnetic equivalent of a dry friction force [5].
The physical origin of this force is the pinning effect that opposes the motion of Bloch walls.

In a thermodynamic approach, functionals are primary quantities from which constitutive relation-
ships are derived by application of general principles. The actual characteristics of the considered
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Figure 1. Mechanical analogy.

ferromagnetic material are thus introduced in the system by selecting appropriate expressions for the
functionals u and D.

There exists an analogy with the stress–strain model of St Venant with hardening. Hardening is intro-
duced by connecting nonlinear springs in parallel with a slider, that is, a friction element characterized
by a limit force � (Figure 1). The magnetic field h corresponds to the stress, whereas the magneti-
zation J corresponds to the elongation. Starting from zero, the applied magnetic field h is increased.
Before it reaches the limit � (h < �), the applied field is equilibrated by the force of the slider, and no
magnetization occurs ( PJ D 0). When h reaches the limit force �, the slider is set into motion, which
means that the magnetization J increases. The power delivered in the slider � PJ is dissipated, whereas
the recoverable energy stored in the spring increases. When the magnetic field h comes down below �

again, the slider gets locked, and magnetization is frozen ( PJ D 0).

2.4. Dissipation

The dissipation function

D D �j PJ j D hi � PJ (5)

describes hysteresis dissipation as the magnetic analogous of the work delivered by a dry friction force,
whose physical origin is the pinning forces that opposes the motion of Bloch walls. We shall call the
field hi irreversible magnetic field because, as (5) shows, the magnetic work it delivers is integrally
dissipated.

The functional (5) is not differentiable for PJ D 0 (so, one is not allowed to simply write hi D @ PJD),
but as it is convex, one can write

hi 2 @ PJD (6)

where the set

@ PJD D
®
hi ; jhi j 6 � if PJ D 0; hi D �e PJ otherwise

¯
; (7)

where ey WD y=jyj denotes the unit vector parallel to the vector y , is the subgradient of the
functional D.

2.5. Constitutive relationships and update rule

The conservation of energy (2) now implies

J 0

�0
� PJ 0 C hr � PJ D h � . PJ 0 C PJ / � hi � PJ (8)

and, gathering terms,

.h � J 0=�0/ � PJ 0 C .h � hr � hi / � PJ D 0 8 PJ 0; PJ : (9)
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Figure 2. Left : graphical representation of the vector equation (10). The gray circle represents the subgradient (7).
Right : case with n spheres.

As the state variables J and J 0 are arbitrary, the factors between parenthesis must vanish, and the
constitutive relationships are obtained: namely J 0 D �0h and

h � hr � hi D 0 ) h � hr 2 @ PJD: (10)

where we have used (4) and (6). This, at first sight, obscure equation can be given a clear pictorial
representation, Figure 2 (left). The gray sphere centered at hr is the representation of the subgradient.
Starting from the situation depicted in Figure 2, if the tip of applied magnetic field h enters the sphere,
the reversible magnetic component hr is not modified. As hr and J are in a 1-1 relationship, no change
in the magnetic polarization occurs either, PJ D 0, and both hr and J remain unmodified as long as the
tip of h remains inside the sphere. If now the magnetic field h tends to reach out of the sphere, which
is forbidden by the inclusion condition (10), the sphere must be shifted. In this case, one has PJ ¤ 0,
and (7) yields hi D � PJ . Substituting in (10) gives an evolution equation for hr :

h D hr C �e PJ .hr / D hr C hi : (11)

Defining the susceptibility tensor �.hr / by

PJ .hr / D .@hrJ / �
Phr WD �.hr / � Phr ; (12)

it appears that (11) is an implicit and nonlinear differential equation in hr (h is given, and � and � are
known material characteristics). Its solution is rather delicate and demanding in terms of computational
time, but an approximate solution can be obtained with the explicit rule, which is the implementation
of the mathematical notion of subgradient arising from (7)

hr D Update.h;h.p/r ; �/ WD

´
h � � h�h

.p/
r

jh�h
.p/
r j
D h � hi if jh � h.p/r j > �

hr otherwise
(13)
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where the exponent .p/ indicates a quantity evaluated at the previous time step. One has indeed

hi D h � Update.h;h.p/r ; �/ ==h � h.p/r

Phr D
1

�t

�
Update.h;h.p/r ; �/ � h.p/r

�

D
1

�t

 
1 �

�

jh � h.p/r j

!
� .h � h.p/r / ==h � h.p/r

where the symbol == means is parallel to, which shows that the simplified update rule ensures
jhi j D �, but hi == Phr (compare the two aforementioned equations) instead of hi == PJ as in (11). The
simplified rule is thus exact in all situations where PJ == Phr , that is, in unidirectional problems (which
is the case in all experimental setups), in the linear part of the magnetic curve, and in case of rotational
hysteresis. In other situations, the simplified rule is an approximation.

2.6. Saturation characteristic

If the material is assumed isotropic, the vector relationship hr D @Ju.J / (4) yields colinear J and
hr fields; it is also one-to-one. The inverse of this function is called anhysteretic magnetization curve.
Experience shows that it can be represented accurately with a parametric function

J.hr / D JaL

�
hr

ha

�
C JbL

�
hr

hb

�
; J .hr / D J.jhr j/

hr

jhr j
;

with

L.x/ D coth x �
1

x

the Langevin function. The four parameters of the double Langevin function (Ja; ha; Jb; andhb) are
identified from measurements as explained in Section 4.2. The Langevin function indexed with a b
represents the magnetization due to the motion of Bloch walls. The second Langevin function repre-
sents the additional magnetization occurring at high field intensity that is associated with the rotation
of the magnetic moments relative to the preferred axis (coherent rotation).

As the anhysteretic curve is one-to-one, it can be inverted to express hr .J / and obtain a general
expression for the energy density

u.J / WD

Z jJ j
0

hr .x/ dx ; @Ju D hr .jJ j/ eJ : (14)

Note that the Langevin function cannot be inverted analytically, but it can be inverted numerically
without difficulty. A number of invertible functions have similar characteristics and present alternatives
to describe the anhysteretic curve. The Langevin function has been preferred in this study because it
has a statistical mechanics justification briefly explained in [5].

2.7. The model with n spheres

In the form presented so far, the model has only five parameters: four to represent the anhysteretic
curve, which as we mentioned in the previous text is enough for a good accuracy, and only one, �, to
represent dissipation. Although this is already sufficient to represent the main hysteresis cycle, an accu-
rate representation of inner cycles requires larger numbers of parameters. The accuracy of the model
depends actually on a correct representation of the statistical distribution of pinning point strengths in
the ferromagnetic microstructure. The characteristics of this distribution vary largely across the dif-
ferent types of soft and hard ferromagnetic materials and must be identified from measurements for
each material.
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The idea is to decompose the magnetization J into n fractions J k

J D

nX
kD1

J k (15)

subjected to friction forces of different amplitudes �k so that the dissipation functional (5) now writes

D D

nX
kD1

�kj PJ kj: (16)

Let the set of scalar coefficients ¹!k ; k D 1; : : : ; n;
Pn
kD1 !

k D 1º form a partition of unity. If one
defines provisionally J k WD !kJ , that is, all J k are assumed parallel to J , the variation of internal
energy (14) can be written as a sum of fraction related terms

Pu.J / D

 
nX
kD1

!k

!
hr .J / � PJ WD

nX
kD1

hr

 
J k

!k

!
� PJ

k
D

nX
kD1

Puk.J k/ (17)

with

uk.J k/ WD

Z jJk j
0

hr

� x
!k

�
dx ; hkr WD @Jku

k D hr

 
J k

!k

!
e
Jk

(18)

and hence, assuming J k D !kJ ,

hr .J / D

nX
kD1

!khkr

 
J k

!k

!
: (19)

The approach we have adopted for the model with n spheres has some similarities with a mul-
tiscale approach. Localization requires that each fraction could be resolved independently. For this,
(18) is taken as a definition of the internal energy of the fraction k. The homogenization assumption,
counterpart of the localization assumption, consists in assuming (19).

Gathering all elements, one obtains

h � hkr � h
k
i D 0; k D 1; : : : ; n: (20)

This amounts to connect in series n hysteresis cells like the one depicted in Figure 1, with each cell
having a different value of � (Figure 3).

With n spheres, the update rule (13) is modified as follows

hkr D Update.h;hk.p/r ; �k/ WD

´
h � �k h�h

k.p/
r

jh�h
k.p/
r j

if jh � hk.p/r j > �k

hkr otherwise
(21)

the exponent .p/ indicating a quantity evaluated at the previous time step.
The piecewise representation chosen here, with n discrete values for �, allows a rather straightfor-

ward implementation in the FE code. As the number of divisions n can be chosen arbitrarily large, it
implies no limitation on the accuracy either.
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Figure 3. Pictorial representation of the model with N internal variables.

3. FINITE ELEMENT IMPLEMENTATION

3.1. 3D formulation

As the magnetic field is the natural driving quantity for the irreversible constitutive relationship (10),
problems with hysteresis are naturally solved with an h-field formulation.

The weak formulation of Faraday’s law reads for a set of suitable chosen test functions h0 [11]:

Z
�

�
Pb � h0 C ��1curlh � curlh0

�
d� D 0 8h0 2 H (22)

with H as an appropriate functional space fulfilling Dirichlet boundary conditions.
Practically, the anhysteretic curve is represented in the FE implementation as a curve giving the

magnetic susceptibility � WD J=hr as a function of jhr j2, with hr defined by (19). The magnetic flux
density (1) is then

b.h;hr / D �0hC �.jhr j
2/ hr ; (23)

and its time derivative in terms of the unknown h writes (note the dyadic product hrhr )

Pb.h;hr / D

�
�0 C

�
�.jhr j

2/I C 2 P�.jhr j
2/ hrhr

�
@hhr

�
Ph WD �@ � Ph (24)

where I is the identity matrix. The tangent permeability tensor �@ is expressed in terms of @hhr , which
is expressed in terms of fraction quantities by a formal derivation of the update rule (21)

@hhr D

nX
kD1

!k@hh
k
r D

nX
kD1

!k @hUpdate.h;hk.p/r ; �k/: (25)

The FE resolution proceeds by time stepping over a few periods of the applied magnetic field. At
each new time step, the hkr ’s are updated according to the new value of the applied magnetic field h
following the rule (21).
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Figure 4. Finite element domain of study.

3.2. 1D formulation

The measured quantities in EFs or single-sheet testers experiments are currents and fluxes related to
the magnetic field h0 at the surface of the lamination and the average magnetic flux density hbi across
the lamination thickness, respectively. Accounting for the symmetries of the measurement tools, it is
thus sufficient to work with an FE model that consists of a 1D formulation of the eddy current problem
with h D .0; h.´/; 0/. Considering a lamination of thickness 2d with an upper surface normal vector
n D .0; 0; 1/, the domain of analysis� is a line parallel to n, across half the thickness, and far from the
edges (Figure 4). The boundary condition at the center of the lamination is curlh.0/� n D 0, whereas
a given external field h.d/ is applied at the surface of the lamination. Iron losses per unit surface are
given by the flux of the Poynting vector ��1curlh.d/ � h.d/ across the lamination surface.

4. MATERIAL PARAMETERS

4.1. Metrological characterization

The material under study, referenced as M235-35A, is a non-grain-oriented FeSi 3.2% steel lamination
of thickness of 0.35 mm. The measurements are done under standardized EF protocols. EFs (Figure 5)
are measurement apparatus utilizing the field-metric method under sinusoidal magnetic flux densities.
They are equipped with different numbers of primary and secondary windings for different frequency
ranges. Quasi-static material characteristics, on the other hand, are identified by point-by-point DC-
measurements using a flux meter. The covered magnetic flux density range is 0.1–1.5 T.

Figure 5. Left : overall dimensions of the Epstein frames. Right : sample arrangement in different layers.
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The EF used in this study has 24 stripes (of dimension 280 mm x 30 mm, Figure 5 left). The stripes
are arranged so as to compensate the anisotropy due to the rolling direction. In one layer, the stripes are
arranged alternately in accordance with the rolling direction, that is, a sample in the rolling direction
is followed by a sample perpendicular to the rolling direction. In the layer immediately below, the
sample arrangement is shifted by 90 degrees (Figure 5 right). Measurements are carried out at various
frequencies, ranging from quasi-static to 700 Hz.

4.2. Identification strategy

Working with n fractions, the hysteresis model has 2nC 4 parameters to identify: the four free param-
eters of the double Langevin function (2.6.) and the 2n fraction related parameters �k and !k . Because
the measured data is unidirectional, it is sufficient to work with scalar values. Parameter identification
is done in two steps.

The parameters describing the local pinning forces �k (�1 < ::: < �n) and their weighting
parameters !k are first determined on the basis of the coercive field versus maximum magnetic field
characteristic. This hc.hmax/ characteristic is obtained from the measurement of a series of hysteresis
loop of increasing amplitudes hmax and then identified with the parametrized staircase function

Nhc.hmax/ D

m.hmax/X
kD1

!k�k (26)

where m.hmax/ is the higher fraction index k for which �k < hmax , that is, �k > hmax ;8k >

m.hmax/. The identification is done by least-square fitting with the Levenberg–Marquardt algorithm.
As the cost functions need continuous differentiable functions to minimize, a modified heaviside func-
tion is used having a finite gradient at the steps. The identified staircase function, with n D 6 fractions
is shown in Figure 6.

The four parameters of the double Langevin function (2.6.) are identified on the basis of the first
magnetization curve. Comparing the modeled first magnetization curve with the measured one for
increasing values of the applied field h, the parameters describing the double Langevin function can
be identified readily.

In order to validate the identified �k and !k parameters, the response of the model in terms of
hysteris loops and iron losses is compared with the available measurements. Figure 7 (left) shows
quasi-static hysteresis loops obtained by feeding the model directly with the Epstein-measured mag-
netic field h.t/. Figure 7 (right) shows the match of the first magnetization curves and Figure 8

Figure 6. Coercive field hc as a function of the applied field amplitude hmax . Measurement (solid line) and
approximation (dotted line).
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Figure 7. Left : quasi-static hysteresis loops, measured (dotted lines) and modeled (solid lines). Right : first
magnetization curve, measured (dotted lines) and modeled (solid line).

Figure 8. Quasi-static iron losses (hysteresis losses), measured (dotted line) and calculated (solid line).

Figure 9. Hysteresis loops at higher frequencies, measured (dotted line) and calculated (solid line). Left : 50 Hz.
Right : 200 Hz.
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the match of iron loss curves. In all cases, the model shows its ability to reproduce the quasi-static
measurements with an excellent accuracy.

In order to analyze the ability to reproduce dynamic hysteresis loops, hysteresis loops at 50 Hz
(Figure 9 (left)) and 200 Hz (Figure 9 (right)) are compared. The proposed hysteresis model describes
the bulging of the hysteresis loops quite accurately.

5. CONCLUSION

The motivation for this work is the development of constitutive models for the hysteresis phenomena.
The proposed model, on the basis of the thermodynamic principles, is energy-consistent. A variational
approach provides a robust and coherent framework to efficiently handle the strong nonlinearity of the
problem within an FE scheme. A practical explicit update rule exists that is exact in most situations
and in particular in the unidirectional case. Besides mathematical and physical elegance, this model
has practical advantages. Unlike the model of Preisach and Jiles–Atherton, it is readily vectorial, and
the number of parameters is not limited. Moreover, it relies on an energy balance of which the stored
magnetic energy and dissipated energy are known at all times.

With this approach, hysteresis losses, accounting for vector effects (rotating hysteresis) and the pres-
ence of higher harmonics, can be evaluated with controllable accuracy. This opens up the possibility
of accurate evaluations of magnetic losses in real-life electrical engineering devices: from the predic-
tion of iron losses in electrical engineering devices (rotating machines, actuators, and brakes) to the
accurate modeling of hysteresis in magnetostrictive actuators and smart materials.

The hysteresis model proposed in this paper represents a significant improvement with respect to
conventional post-processing techniques based on measured loss characteristics. Because it relies on a
physical assumption that it is vectorial and dynamic from the beginning (the analogy with a dry friction
force), the identified parameters represent the material in general and not under specific experimental
conditions. In other words, although the identification was done with experimental data assuming a
sinusoidal in time and unidirectional b field, the identified parameters can be used in 2D and 3D and
in the presence of higher harmonics. Another further improvement will be to deal with laminated
structures explicitly by means of appropriate multi-scale techniques.
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