
USB Proceedings

2014 International
Conference on Electrical

Machines (ICEM)

Andel`s Hotel Berlin
Berlin, Germany

02 - 05 September, 2014

Sponsored by

The Institute of Electrical and Electronics Engineers (IEEE)
IEEE Industrial Electronics Society (IES)

Co-sponsored by

ETG - Power Engineering Society withing VDI



A robust model reference adaptive controller for
the PMSM drive system with torque estimation

and compensation
Qian Liu, Andreas Thul and Kay Hameyer

Abstract—This paper focuses on a robustness controller and
the performance of a permanent magnet synchronous machine
(PMSM) with parameter uncertainty. The proposed controller
is composed by a model reference adaptive current controller
and a torque compensator. An internal model of the PMSM
is introduced to define the transient reference behavior of the
current and torque. A simple adaptation rule of the model
uncertainty based on the Lyapunov theory and Symmetrical
Optimum is given. With this approach the performance of the
current controller and uncertainty estimation are guaranteed.
For the torque estimation, the minimum switching time and
the harmonics of the converter as well as the zero order hold
in measurement result in steady state estimation error. In this
paper, a torque estimator is given to compensate the mentioned
torque error. In the end, the simulation results demonstrate
the performance of the adaptive controller and the torque
estimator.

Index Terms—Robust adaptive control, robustness, perma-
nent magnet synchronous machine, torque estimation, torque
ripple, parameter variation, digital implementation.

I. INTRODUCTION

Currently in electrical vehicles and various industry
applications, the permanent magnet synchronous machine
(PMSM) is widely used in the drive system. This is due
to its high power density, high efficiency and good con-
trollability. With the appearance of the power electronic
devices, several control strategies are invented with different
purposes. The field oriented control (FOC) with PI controller
and voltage modulation (PWM or SVM) is very popular in
industry applications due to its simple structure and low cost
implementation. As an alternative, the direct torque control
(DTC) is introduced to achieve a fast torque response [1].
Recently the model predictive control (MPC) is introduced
to obtain an optimal performance of the entire drive system
with PMSM and the power converter [2] [3]. The mentioned
controllers are designed based on a given reference model of
the PMSM. The error and uncertainty in the machine model
lead to deterioration of the dynamic performance and even
yield instability when the controller is not properly designed.

On the other hand, one of the main disadvantages of the
PMSM is the nonuniformity in the developed torque, i.e.,
the torque ripple [4]. The torque ripple of the PMSM is
produced by the high order harmonics in the air gap flux
due to the inner geometry of permanent magnets, slots and
also the flux deviation of the permanent magnets under load.
Those high order harmonics are complicated to model for
the base frequency of the PMSM, which is usually used
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for the controller design. The winding resistance of the
PMSM varies with frequency and temperature, which can
degrade the performance of the PMSM [5]. Moreover, the
pulse width modulator (SPWM or SVPWM) with limited
switching frequency results in additional uncertainties in the
PMSM drive system such as phase shift of the voltage [6]
and voltage distortion [7].

In order to tolerate the model error and improve the
dynamic performance of the PMSM drive system, an internal
model control method (IMC) is coupled to the PI controller
in an early stage. The IMC is relatively insensitive for model
errors with a properly designed bandwidth. However, this
results in undesired oscillation and the robustness of this
approach is limited [8]. Another popular method to improve
the robustness of the PMSM drive system is to design
a nonlinear adaptive controller. In some references, the
self-tuning adaptive controller is implemented with on-line
parameter identification using extended Kalman filter (EKF)
and recursive least squares (RLS) [9] [10]. This adaptive
controller is very robust concerning the parameter errors.
However, it is computational expensive due to the numerical
RLS solution of the EKF. To reduce the computational
cost of the controller, the parameter error of the PMSM is
modeled as voltage uncertainty in the decoupled d and q axis
respectively [11] [12] [13]. The controller design based on
this single voltage uncertainty guarantees high robustness at
low computational cost.

The torque error including the torque ripple caused by
the model imperfection is usually estimated by the sliding
mode observer [14] or the self-adaptation in the adaptive
controller [11]. The comparison between the method of esti-
mation is made in [15]. The self-adaptation torque estimation
is now widely used due to its simple structure, high accuracy
and relatively low computational cost. The estimated torque
is compensated to minimize the steady state error and also
the torque ripple to obtain a better performance for the
PMSM.

In this paper, a nonlinear model reference adaptive direct
current controller to estimate the uncertainty and disturbance
in the machine model is proposed. The adaptive controller is
designed with a simple model error estimator based on the
combination of the Lyapunov and the linear control theory.
The controller parameters are given both for the continuous
and discrete implementation, with which the stability and
performance of the proposed adaptive controller are guar-
anteed. On the other hand, due to the discretization of the
digital microcontroller and the switching of the converter,
the voltage distortion in the converter results in estimation
errors for the torque. In this paper, a self adaptation torque
estimator is introduced to reduce the torque estimation error
and the torque ripple caused by the model error.
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Fig. 1. Proposed adaptive control structure of the PMSM.

II. MODEL OF A PMSM

With the idea of the vector control of an AC machine,
the model of a PMSM can be presented in the synchronous
rotational coordinate reference frame with DC quantities.
The 2-axis model of a PMSM is shown by the following
equations (1) and (2) using power invariant transformation:

ud = Rid + Ld
did
dt

− ωLqiq + εd (1)

uq = Riq + Lq
diq
dt

+ ω(Ldid + ψF ) + εq (2)

Te = p(ψF + (Ld − Lq)id)iq (3)

where R, Ld and Lq are the stator resistance and inductances
of the PMSM. ψF is the magnetic flux of the permanent
magnets. p is the pole pair number. εd and εq are the unmod-
eled uncertainties, which include the high order harmonic
dynamics of the PMSM, environment disturbance and the
influence of the PWM voltage source.

In different operating points, the machine parameters R,
Ld, Lq and ψF are changing due to the environment tem-
perature and load condition, which deteriorates the transient
performance of the PMSM. In order to simplify the machine
model for the controller design, equations (1) and (2) are
transformed into the state space expression and all the
parameter displacement and unmodeled uncertainties can be
integrated into two variables [11] [12], which are shown
by (4):

i̇ = A0i + B0(us + ue − d) (4)

where the vectors and matrix in (4) are defined as:

i =

[
id

iq

]
us =

[
ud

uq

]
ue =

[
ωLqiq

−ω(Ldid + ψF0)

]

d =

[
dd

dq

]
A0 =

[− R0

Ld0
0

0 − R0

Lq0

]
B0 =

[
1

Ld0
0

0 1
Lq0

]

here R0, Ld0, Lq0 and ψF0 are the constant reference values
for the PMSM parameters, which are usually obtained by the
no load and locked rotor test. The vector d is the total model
error and disturbance decomposed in d and q axis, which is
operating point dependent and unmeasurable. The detailed
expression and explanation of d can be found in [12]. Since
all the unknown issues are integrated into the vector d, the
model (4) describes the transient behavior of the PMSM
without loss of generality.

III. MODEL REFERENCE ADAPTIVE CURRENT CONTROL
OF THE PMSM

The model reference adaptive controller (MRAC) regu-
lates the system to be performed in terms of a pre-defined
reference system. Therefore, the MRAC is more convenient
to give a desired transient response to the objective system
when compared to the self-tunning adaptive controller [16].
Fig. 1 shows the structure of the proposed controller for
the PMSM. The part enclosed by the dotted line is the
model reference adaptive current controller. The designed
IMC regulates the reference model to generate the desired
transient response of the current for the PMSM. Meanwhile,
the adaptation process adapts the model error and guarantees
the current transient response of the PMSM, which will be
discussed on the following sections.

A. Reference model and IMC of the PMSM

The reference model of the PMSM in d-q coordinates,
which has the same structure of the PMSM in (4), is an ideal
base frequency model without any uncertainty. The reference
model is shown by the following equations:

˙̂
i = A0î + B0(û + ûe) (5)

where A0 and B0 are defined in the last section. î and û
are the current and terminal voltage vectors of the reference
model respectively. ûe is the back-emf voltage which is
defined as: ûe = [ωLq0îq − ω(Ld0îd + ψF0)]

T . The
superscript T means the transpose of a matrix.

Since the reference model is already deterministic, a
decoupled IMC is introduced. The detailed description of the
decoupled IMC can be found in [8]. The reference voltage
û is obtained by (6):

û =
1

Timc
B0

−1ê+
1

Timc
B0

−1A0

∫
êdt− ûe (6)

where the error signal ê is defined as ê = iref − î.
And Timc is a time constant, which can be any positive
value. According to (6), the entire system including reference
model and IMC performs as a low pass filter with the
following transfer function:

î =
1

1 + Timcs
iref (7)

Therefore, the transient response of î has no overshot and
its rising time is simply determined by the time constant
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Timc. For its digital implementation, the time constant Timc

should be chosen to be larger than the sampling time.

B. Adaptation of the model error and voltage

The adaptation process of the proposed controller is based
on the error signal between the model and measured current.
Using (4) - (5), the model error is described by the following
system dynamics:

ė = A0e + B0(us − û + ue
e − d) (8)

where the error signal vector e is defined as e = i− î. The
emf error is denoted as ue

e = [ωLq0eq, −ωLd0ed]
T . Denote

us = ũ+ û−ue
e+ d̂, where d̂ is an estimated value of the

model error. Therefore, the equation (8) can be simplified
by the following notation:

ė = A0e + B0(ũ + d̃) (9)

where d̃ is defined as the difference between the estimated
and real model error with d̃ = d̂− d.

To adapt the error d̃ and voltage ũ, the Lyapunov theory
is applied. A quadratic Lyapunov function is defined by the
following equation:

V =
1

2
(eT e + d̃TΛd̃) (10)

where the matrix Λ is a positive definite diagonal matrix
with diagonal element 1

Λd
and 1

Λq
. Take the derivative of

the Lyapunov function and substitute (9) into (10), we find

V̇ = ėT e + ˙̃dTΛd̃

=eT (A0e + B0ũ) + d̃T (BT
0 e + Λ ˙̃d) (11)

Choose the adaptation rule that

ũ = −k1B
T
0 e (12)

˙̃
d = −Λ−1BT

0 e (13)

where k1 is a positive definite diagonal matrix with diagonal
elements k1d and k1q . With (12) and (13) the derivative of
the Lyapunov function can be reformed into:

V̇ =eT (A0 −B0k1B
T
0 )e ≤ 0 (14)

It is obvious that the derivative of the Lyapunov function V̇
is less than or equal to zero, zero can only be reached when
e = 0. Therefore, the invariant set of the Lyapunov function
V is {(e, d̃) : e = 0}. On the other hand, equations (9), (12)
and (13) indicate that when e = 0, d̃ = 0 also holds.
According to the Lasalle’s Invariant Set Theorem [17], the
system (9) is globally asymptotically stable to the origin,
which means that the current of the PMSM towards to the
current of the reference model asymptotically.

C. Determination of the controller parameters

In order to choose appropriate controller parameters to
guarantee the transient performance of the error signal,
equations (12) and (13) are substituted into (9) and take
the derivative. Then we have:

ë− (A0 +B0k1B
T
0 )ė+B0Λ

−1BT
0 e = 0 (15)

where (15) is a linear decoupled system in d,q coordinates
in rotor fixed reference frame. Without loss of generality,

the analysis of d-axis is illustrated. The d-axis system is
described by the following equation:

ëd + (
R0

Ld0
+
k1d
L2
d0

)ėd +
Λd

L2
d0

ed = 0 (16)

From (16) it can be noticed that k1d and Λd determine the
raising time and overshot of the error signal ed. For simple
implementation and avoidance of the overshot, the poles of
the transfer function are set to the the same real number
with:

Λd =
1

4
(R0 +

k1d
Ld0

)2 (17)

so that the closed loop system for (17) is:

Gd(s) =
1

[s+ 1
2Ld0

(R0 +
k1d

Ld0
)]2

(18)

where s is the Laplace operator. The parameter k1d can be
easily designed to fit the rising time and frequency band of
the error signal ed.

For the digital implementation, the Euler forward dis-
cretization of the continuous system (16) is applied with
ẋ = xk+1−xk

Ts
. Ts is the sampling time. The discrete model

of the d-axis system is:

ek+2 + [Ts(
R0

Ld0
+
k1d
L2
d0

)− 2]ek+1

+ [1− Ts(
R0

Ld0
+
k1d
L2
d0

) +
T 2
sΛd

L2
d0

]ek = 0 (19)

Choose Λd also by the equation (17), The discrete transfer
function for the d-axis system is:

Gd(z) =
1

[z + Ts

2Ld0
(R0 +

k1d

Ld0
)− 1]2

(20)

where z is the operator for the z-transformation. To guar-
antee the stability of the discrete system (20) and to avoid
the sign reverse, the following limitation for k1d must be
fulfilled:

−1 <
Ts

2Ld0
(R0 +

k1d
Ld0

)− 1 < 0 (21)

The convergence rate of (20) can be determined by k1d.
Similarly, for the q-axis in (15), the parameter Λq is chosen
as:

Λq =
1

4
(R0 +

k1q
Lq0

)2 (22)

and for the digital implementation, the following limitation
holds:

−1 <
Ts

2Lq0
(R0 +

k1q
Lq0

)− 1 < 0 (23)

Therefore, the matrix Λ is defined by equations (17) and (22)
to guarantee the transient performance. Besides for the digi-
tal implementation, the parameter k1 is limited by both (21)
and (23).

D. Estimation of the model error

The model error d is estimated by the classic symmet-
rical optimum method for a linear system. Using (8), (12)
and (13), we have the following equation:

B−T
0 ΛB−1

0
¨̃
d− (A0 − k1B

T
0 B0)ΛB−T

0 B−1
0

˙̃
d + d̂ = d

(24)
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Here the d-axis is again shown as an example with the
following differential equation from (24):

L2
d0

Λd
[ ¨̃dd − (

R0

Ld0
− k1
L2
d0

) ˙̃dd] + d̂d = dd (25)

Equation (25) is a typical symmetric optimum problem,
where d̂d can be considered as the control unit and dd is
the system disturbance.

Fig. 2. Estimation of the model error with structure of symmetric optimum.

Fig. 2 shows the estimation structure for the model error
estimation, where R(s) is the estimator. T2d and Tmd are
two time constants which are defined by:

T2d =
1

R0

Ld0
+ k1d

L2
d0

(26)

Tmd = L2
d0

1

ΛdT2d
(27)

According to the principle of the symmetric optimum, the
structure of R(s) is shown by equation (28).

R(s) =
Vd
Tids

+ Vd (28)

Tid = a2T2d Vd =
Tmd

aT2d

where a is a positive real number which is larger than 1.
Similarly, the model error dq in q-axis can be also estimated
by using the same estimator (28) but with different parame-
ters. For the digital implementation, an discrete integration is
utilized instead of the continuous one in (28). The symmetric
optimum performs well with unknown system disturbance
and has no steady state error [18] The estimated value
d̂ converges towards the model error d with guaranteed
transient performance. It should be noticed that the time
constants based on k1 and a of the adaptation process should
be much smaller than the time constant Timc of the IMC
since the adaptation process is considered as a fast inner
loop for the proposed control approach.

IV. TORQUE ESTIMATION AND COMPENSATION

According to (3), the parameter error of the PMSM results
in torque displacement. In [11] and [14] a torque estimation
with d-axis flux and q-axis current are implemented. The
d-axis flux is obtained by the division of the voltage and
rotational speed. With this idea, the torque displacement can
be calculated by (29)

ΔT =
pd̂qiq
ω

(29)

However, the estimated model error d̂q does not only
consist of the parameter error of the PMSM, but also on
the effects of the converter, such as phase shift and voltage
distortion. The phase shift caused by the SVM, the turn
on/off time and voltage distortion of the converter results
in steady state error to the estimated torque displacement

when (29) is applied. Therefore the influence of the converter
should be removed from d̂q . Since the turn on/off time
of the IGBT converter is usually less than 1 μs, which is
much smaller than the switching time of the IGBT converter
(switching frequency up to 20 kHz), the influence of the
turn on/off time can be neglected. It is complicated to
determine the voltage distortion due to nonideal IGBT. It
is not considered in this paper. On the other hand, for the
SVM, denote Tc = 1

fc
as the sampling time of the converter,

where fc is the frequency of the triangle signal. Due to
the modulation strategy, the calculated duty circle for each
IGBT is sampled with sampling frequency fc. Therefore,
a phase shift of the voltage with delay time Tc

2 exits after
modulation. Besides, the delay due to the calculation of the
digital processor is one sampling time Tc. These should be
considered for the torque displacement estimation.

Fig. 3. Structure of the torque estimator.

Fig. 3 shows the structure of the proposed torque dis-
placement estimator. The phase shift 1.5ωTc is compensated.
ωm = ω

p is the mechanical rotational speed of the machine.
The active power displacement ΔP = ωmΔT is estimated.
To avoid the division by ωm, which is very sensitive to
the measurement noise at low speed operation, an integra-
tion estimator is introduced instead. It can be noticed that
the integration estimator also behaves as a low pass filter
with speed dependent frequency band kTωm. In order to
compensate the cogging torque which is dominated by the
sixth harmonic flux component of the permanent magnets
and the torque ripple caused by the first and second current
harmonics [14], kT = 6p in fig. 3 is proposed.

V. SIMULATION RESULTS

The simulations are performed in Matlab/Simulink with
the structure from fig.1. The sampling frequency of the
converter and the measurements are 10 kHz. The converter
and the PMSM are simulated as continuous system, which
current and speed are measured by zero-order-holder with
the sampling frequency. Meanwhile the control part is im-
plemented as digital controller with sampled measurement
and a symmetric SVM is applied. The converter is modeled
as an ideal switch with 1 μs turn on/off time. A PMSM
with following parameters is used for the simulation: p = 4,
R0 = 0.2Ω, Ld0 = Lq0 = 5mH and ψF0 = 0.3485Vs.
The time constant of the IMC is set to Timc = 0.01 s. The
mechanical load torque is simulated with Tm = kmωm.

The reference torque is chosen to 20 Nm. The coefficient
km = 0.03Nms is applied in such a way that the rotational
speed of the PMSM will increase to 1600 rpm. The PMSM
is also simulated with a PI controller (decoupled IMC
with Timc = 0.01 s) to compare to the proposed adaptive
controller. The delay Tc due to the calculation of digital
processor is not considered in the simulation.
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At first the simulation is made without PMSM parameter
error. In this simulation, the torque compensation in fig.1
is not implemented. In this condition, the PI controller
has the same transient behavior as the proposed controller.
Fig. 4 shows the current and torque response of the PMSM.
Fig. 5 shows the estimated model error d̂d, d̂q and torque
displacement ΔT . It can be noticed that without PMSM
parameter error, the model error still exists due to the voltage
phase shift caused by the SVM and converter. A steady state
error of the estimated torque displacement exists when equa-
tion (29) is applied, which proved the theoretical statement
in the previous section. With the proposed estimator in fig. 3,
the steady state error is eliminated. Therefore, the proposed
torque displacement estimator is chosen for the rest of the
simulations.
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Fig. 5. Estimated model error and torque displacement for the proposed
control scheme without parameter error and torque compensation.

In order to compare the performance of the PI to the
proposed controller, in the following simulations, a sixth or-
der flux harmonic component is inserted to the PMSM. The
amplitude of the harmonic is calculated by using the method
described in [19] with PM coverage factor of 0.9. The sixth
harmonics in d- and q-axis are ψ6d = −0.032cos(6θ)Vs
and ψ6q = 0.016sin(6θ)Vs.

Fig. 6 and Fig. 7 show the current and torque response of
the PI and proposed adaptive controller with R = 2R0. It
can be noticed that the current and torque responses of the
proposed controller almost have no difference compared to
the no error case in fig. 4. In contrast, the current and toque

responses are slowed down when the PI controller is applied.
On the other hand, the current harmonics is also smaller for
the proposed controller. The torque ripple factor Tripple

Te
for

the proposed controller is reduced to 0.16 when compared
to 0.37 for the PI controller. A small steady state error of
0.08 Nm for the torque exists for the proposed controller
due the model error caused by the resistance, which results
in erroneous estimation of the torque displacement shown
in fig. 8. This steady state torque error is very small for
high speed operation but maybe critical for the low speed
operation. However, this steady state torque error can be
compensated by an additional resistance estimator.
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Fig. 6. Current and toque response with parameter error R = 2R0 for
the PI controller.
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Fig. 7. Current and toque response with parameter error R = 2R0 for
the proposed controller.
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Fig. 9. Current and toque response with parameter error Lq = 0.5Lq0

for the PI controller.
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Fig. 10. Current and toque response with parameter error Lq = 0.5Lq0

for the proposed controller.
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Fig. 11. Estimated model error and torque displacement for the proposed
controller with Lq = 0.5Lq0.

Fig. 9 and Fig. 10 show the current and torque responses
of the PMSM with parameter error Lq = 0.5Lq0 respec-
tively. With a Lq error, there exists a large id overshot for the
PI controller due to the imperfect decoupling, which can be
tolerated for the proposed controller. The estimated model
error d̂d and d̂q for the proposed controller converge fast
and eliminate the influence of the model error. Therefore,
the parameter error Lq = 0.5Lq0 is tolerated and the
PMSM performs approximately as the same as the reference
model. Besides, the current harmonics are smaller for the
proposed controller. The torque ripple factor for the proposed

controller is reduced to 0.19 when compared to 0.4 of the
PI controller. There is no steady state torque error. The
parameter error Ld = 0.5Ld0 has a small influence on
the performance of the PMSM for both PI and proposed
controller, which is not shown here.
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Fig. 12. Current and toque response with parameter error ψF = 0.5ψF0

for the PI controller.
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Fig. 13. Current and toque response with parameter error ψF = 0.5ψF0

for the proposed controller.
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Fig. 14. Estimated model error and torque displacement for the proposed
controller with ψF = 0.5ψF0.

Fig. 12 and fig. 13 show the performance for the PI and the
proposed controllers respectively with ψF = 0.5ψF0. Here
a 5Nm load disturbance is imposed at the time t = 0.15s.
For the PI controller, the imperfect decoupling caused by
the flux error results in large oscillations in the current.
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With the voltage limitation, the entire system is stabilized on
the cost of a large steady state error in current and torque.
For the proposed controller, the model error caused by the
flux error is estimated (shown in fig. 14) and compensated
to guarantee the transient performance of the current. The
torque displacement between the reference model and the
real PMSM shown in fig. 14, is compensated to generate
an accurate current reference value. Therefore, there is no
steady state torque error for the proposed controller with
flux error. Besides, the load disturbance almost has no
influence on the torque estimation and control due to the
fast estimation of the model error.

Comparing the performance of the PMSM with and
without parameter error, the parameter error has a small
influence on the transient behavior for the PMSM with the
proposed controller. The current and torque dynamics of the
PMSM behave approximately in the same way as the desired
reference system defined by (7).

VI. CONCLUSIONS

In this paper a model reference adaptive current controller
with torque compensation is introduced, with which the
PMSM can be operated approximately in the same way as
the desired reference model. The proposed control scheme
has a simple structure and is convenient for implementation.
The stability of the MRAC with PMSM is theoretically
proved by the Lyapunov theory. Meanwhile, the model error
is estimated simply by the symmetric optimum method,
with which the transient performance of the entire current
loop can be analyzed and determined. The structure of a
torque estimator is shown to eliminate the steady state torque
estimation error caused by the phase shift of the SVM and
converter. On the other hand, the torque estimator is designed
to avoid the direct division of the speed, which may be
sensitive to the measurement noise and disturbance. The
simulation results show that the parameter error has a small
influence on the PMSM with the proposed controller. The
current harmonics and torque ripple can also be significantly
reduced by the proposed controller.
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