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(a) Torque ripple.
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(c) Torque.
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(d) FFT of torque harmonics.

Fig. 14: Influence of asymmetrical flux-barrier variation with
a constant distance in tangential direction on torque perfor-
mance.

V. PERFORMANCE IN CHARACTERISTIC DIAGRAMS

Promising rotor configurations, selected from the previ-
ous investigations, are simulated in characteristic diagrams.
Thereby transferability of the results from the previous two
operating points to the whole operating area including field-
weakening range is reviewed. Moreover, a complete simula-
tion is indispensable to finally assess the chosen designs. In
addition to the designs described, symmetrical combinations
of flux-barriers are analysed. Therefore, rotor configurations
improving the machine’s performance at the investigated op-
erating points are combined in order to verify the possibility of
superposing effects. As a result, combinations of advantageous
flux-barriers do not lead to a further improvement. Instead, an
opposite tendency is reviewed at several constellations. Fur-
thermore, the high sensitivity regarding the exact positioning
in the magnetic q-axis can be confirmed.

In the following an exemplary flux-barrier design with
symmetrical flux-barriers applied to the magnetic q-axis of the
rotor is discussed in characteristic diagrams and is compared
to the initial rotor design. The cross section of one pole pair of
the rotor is depicted in Fig. 15. As expected, due to a decrease
of iron losses by up to 15 % across the characteristic map, the
area of maximum efficiency is extended towards higher driving
speeds, Fig. 16a and Fig. 16d.

The torque ripples, Fig. 16b and Fig. 16e, are depicted as
relative torque ripple in the second quadrant of the d-q-current
density plane. It is apparent, that flux-barriers reduce torque
ripple at current densities around Jd > 5

A

m2 considerably. The
influence on the THD of the back-emf is presented in Fig. 16c
and Fig. 16f.

The transferability of the results from the two operating
points can be confirmed. Nevertheless, the selection of an
optimal rotor design is defined by the individual application.

Fig. 15: Exemplary rotor design discussed in characteristic
diagrams.

A duty cycle for example has to clarify the most beneficial
variation.

VI. CONCLUSION

This paper focuses on the effect of circular-shaped flux-
barriers in the rotor of a permanent magnet excited syn-
chronous machine with V-shaped rotor poles as a traction drive
of an electric vehicle. The performance improvement is studied
in terms of average torque, torque ripple, total harmonic dis-
tortion of the back-emf, stator iron losses, rotor iron losses and
efficiency. Rotor configurations with flux-barriers symmetrical
to the magnetic poles are studied as well as asymmetric
configurations. All rotor configurations consider mechanical
stress calculations to assure a sufficient mechanical strength.
After considering two exemplary operating points, promising
configurations are investigated in detail regarding the whole
operating range in characteristic diagrams. Different rotor
configurations with additional flux-barriers are presented to
reduce torque harmonics and iron losses. Therefore the regions
of high efficiency in the efficiency map can be enhanced in
comparison to the initial rotor design. Furthermore, operating
points at high speeds and high torques can be operated for
longer times without overheating due to reduced losses.

A prototype of the initial design is built up to validate the
design goals of the machine. For the future it is conceivable to
build up some prototypes of the presented rotor configurations
to verify the simulation results in practice.
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(b) Relative torque ripple of the initial rotor
design.
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(c) THD of the back-emf of the irotor design.
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(d) Efficiency of modified rotor design.
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(e) Relative torque ripple of modified rotor design
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(f) THD of back-emf of the modified rotor design.

Fig. 16: Comparison between the former and modified rotor design, with symmetrical flux-barriers at 30 ◦.
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