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Abstract—One common mechanical fault in electrical drives
applied to industrial processes are related to bearing damage [1].
These faults can be brought forward by mechanical and thermal
stress during the operation. This paper focuses on the radial
electromagnetic forces, which are known as static and dynamic
unbalanced magnetic pull (UMP), caused by rotor eccentricities.
In particular in this paper the interaction of the rotor position
and the amplitude of the static and dynamic eccentricity, the
slot harmonics and saturation effects in the entire operational
range of a permanent magnet synchronous machine (PMSM)
are studied.

I. INTRODUCTION

Electrical drives in industrial applications are manufactured

by mass production. Hence, deviations caused by the produc-

tion such as displacements of the bearing seats, uneven rotor

magnetization [2], or displacements of the rotational axis of

the rotor are unavoidable as described in [3], [4] and [5].

Amongst others, this leads to a rotor eccentricity and causes

an unbalanced magnetic pull, which mechanically burdens

the bearings. One widely applied approach to estimate this

additional stress on the bearings is an electromagnetic worst

case simulation of a particular operating point. In this paper

the UMP in the complete operational region is studied in order

to have a more sophisticated base for the approximation of the

occurring forces.

II. THEORY

The magnetic flux density in the airgap of an electrical

machine

B (α, t) = Θ (α, t) · Λ (α, t) (1)

is calculated from the magnetomotive force Θ(α, t) and the

magnetic permeance Λ (α, t), where α is an angular position

in the airgap of the machine and t is a moment in time. For

an uniform airgap the permeance can be simply described by

Λ =
μ0

δm

, (2)

with the vacuum permeability μ0 and the uniform airgap

length δm [6]. Due to slotting of stator or rotor, static or

dynamic eccentricities, or saturation of the magnetic materials

in the electrical machine, the airgap can not be assumed as

constant.

To consider these effects, the simple magnetic permeance

from equation 2 is multiplied by specific permeances λ:

Λ (α, t) =
μ0

δm

· λS · λR · λSE · λDE · λsat . (3)

Stator and rotor slotting as well as saturation are considered

by the specific permeances λS, λR and λsat respectively and

can be determined as described in [6] and [7].

Eccentricity occurs in rotating machines when the stator

center is not in the same position as the rotor’s center. Figure 1

schematically illustrates an eccentric machine with the stator

center M , the stator inner radius R, the rotor center S and

the rotor radius r. The displacement between M and S is the

eccentricity e = MS of the machine.

e

R

r
�

�(�)

M

S
�

Fig. 1: Mathematical model for the airgap calculation of an

eccentric rotating machine.

Depending on the position of the rotating axis the eccen-

tricity is dynamic or static. For the case, that the rotation

axis is at the position of the rotor center S the eccentricity is

called static eccentricity and the position of the smallest airgap

length remains at one location around the circumference. For

the other case, if the rotation axis is at the position of the

stator center M , the center of the rotor rotates on the dashed

circle. The eccentric motion is called dynamic eccentricity and

the position of the smallest airgap revolves. In general, both

types of eccentricity may occur at the same time and lead to

a mixed eccentricity.
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With the average airgap length δm = R − r the relative

eccentricity ε can be expressed as

ε =
e

R− r
=

e

δm

. (4)

For practically relevant eccentricities δm � R, the airgap

length δ (α) can be determined for the case of static eccen-

tricity as

δ (α) = δm · (1− ε · cos (α− ϕ)
)
, (5)

where α is the angular position in the airgap and ϕ the angle

of the eccentricity.

For the case of dynamic eccentricity, the airgap

length δ (α, t) becomes dependent on time:

δ (α, t) = δm · (1− ε · cos (α− ωt− ϕ)
)
, (6)

where ω is the angular frequency of the rotor.

Using this equations for the airgap length, static and dy-

namic eccentricity can be considered for the magnetic perme-

ance as shown in [8] by using the following simplified specific

permeances:

λSE (α) ≈ 1√
1 + ε2

+ 2 · 1−
√
1− ε2

ε · √1− ε2
· cos (α) and (7)

λDE (α, t) ≈ 1√
1 + ε2

+2 · 1−
√
1− ε2

ε · √1− ε2
· cos (ωt− α) . (8)

The magnetic flux density in the airgap of an electrical

machine from equation 1 is a vector quantity and can be

divided into its two components Brad (α, t) and Btan (α, t) –

the radial and tangential component. The force density at the

intersection between the machine’s airgap and the stator can

be derived from the LORENTZ force and simplified by means

of the MAXWELL stress tensor. This results in the well-known

equations for the tangential component of the force density

σtan (α, t) =
1

μ0
·Brad (α, t) ·Btan (α, t) (9)

and the radial component [9]

σrad (α, t) =
1

2μ0
· (B2

rad (α, t)−B2
tan (α, t)

)

≈ 1

2μ0
·B2

rad (α, t) .
(10)

The magnetic permeability μ of the ferromagnetic material is

much higher than that of the airgap (e. g. μFe ≈ 10000 �
μAir ≈ 1). For this reason the magnetic flux lines run predom-

inantly in radial direction through the airgap, so that the radial

flux density Brad (α, t) is much higher than the tangential

one Btan (α, t). This results in the simplified approximation in

equation 10 [8]. The tangential force density σtan is necessary

for the torque production in the electrical machine. The

integral over the tangential force density along the airgap in

circumferential direction yields the mechanical torque T . The

radial force density σrad acts on the stator teeth and deforms

the stator. It is the main cause of vibration and noise from

electrical machines and in case of eccentricities it causes the

unbalanced magnetic pull.

The radial forces can be calculated through the integral over

the radial force density along the airgap in circumferential

direction:

Frad (t) = R · l ·
2π∫
0

σrad (α, t) dα , (11)

where l is the length of the machine in axial direction.

III. CALCULATION OF OPERATING POINTS

The following section introduces a methodology to incorpo-

rate the operation characteristics in the simulation of electrical

machines. In order to evaluate the proposed methodology a

PMSM with buried magnets in the rotor is studied [10].
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Fig. 2: Simulated map of the average torque in Nm with

overlaid mesh of operating points.

The electrical machine is modeled in a rotor-flux-fixed dq-

reference frame including cross coupling magnetization and

saturation [11]:[
Ψ̂d

Ψ̂q

]
=

[
Ldd Ldq

Lqd Lqq

] [
îd

îq

]
+

[
Ψ̂f,d

Ψ̂f,q

]
. (12)

The quadrature and direct current is varied during the simula-

tion to extract the average torque determined by the eggshell

method [12] for different excitations. The flux-linkage vector

is calculated with the geometrical summation:

Ψ̂ =
√

Ψ̂2
d + Ψ̂2

q . (13)

In order to calculate the operating points for the whole

operating range a combined control strategy is used. The

optimization problem is defined by:

minimize
îd,i,j ,̂iq,i,j∈R

J(̂id,i,j , îq,i,j) =
√

î2d,i,j + î2q,i,j

subject to Ti =
3

2
p
(
Ψ̂d,iîq,i − Ψ̂q,iîd,i

)
, ∀ i = 1, . . . ,m,

ûj = ωjΨ̂d,i ≤ ûmax, ∀ j = 1, . . . , n,

with the torque vector T1, T2, ..., Tm subject to m ∈ N and

the speed vector n1, n2, ..., nn with n ∈ N. This optimization
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problem combines the maximum torque per ampere (MTPA)

control for the base speed range and the maximum torque per

voltage (MTPV) control for the field weakening range [13].
Figure 2 shows the trajectories of the average electro-

magnetic torque calculated with different current excitations.

Further an overlaid mesh of calculated operating points (fel =
0Hz − 400Hz, Tel = 0Nm − 220Nm), using the combined

control strategy, is mapped. The rotor-flux-oriented current

vectors are defined by the operating points, which are cal-

culated for the given optimization problem. The basic speed

range is represented by the trajectory that extends along the

rising torques (MTPA-line), whereas the field weakening area

is represented by the mesh below this trajectory.
Figures 3 and 4 illustrate the direct und quadrature current

component speed-torque map for the entire operating range for

a maximum amplitude of the induced voltage of û = 360V.

This defined dq-current combinations are used to calculate for

each operating point the UMP in the entire operating range of

the PMSM.

0 1000 2000 3000 4000 5000 6000
0

50

100

150

200

J d, Slot, max [A/mm2]

n [1/min]

M
m

ec
h [N

m
]

−5

−4

−3

−2

−1

0

Fig. 3: Direct current densitiy per slot.
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Fig. 4: Quadrature current density per slot.

IV. CALCULATION OF THE UNBALANCED MAGNETIC PULL

In order to evaluate the influence of dynamic and static

eccentricity on the behavior of the UMP, different positions

of the smallest airgap of the eccentricity vector are modeled

(Figure 5 and Figure 6).

d

dq

q

Fig. 5: Simulated positions of dynamic rotor eccentricity.

t

s

Fig. 6: Simulated positions of static rotor eccentricity.

To consider effects of slotting and saturation, a finite ele-

ment (FE) model is employed.

To determine the forces caused by eccentricity on the

machine’s behavior the Eggshell method [12] is employed.

Figure 7 illustrates the result of the computation of the

electromagnetic forces on the circumference of the rotor:

Fig. 7: Electromagnetic forces on the cirumference of the rotor.

These forces are decomposed into a tangential and a radial

component. The radial component of these electromagnetic

forces are presented in Figure 8. The radial force consists

of the slot harmonics with N = 48 , the order of the poles

2p = 8 and the harmonic order caused by the variing

permeance through the eccentricity Nex = 1 . The radial

forces are integrated along the circumference of the rotor in

order to calculate the unbalanced magnetic pull. This is done

for each position of the rotor at rotor-fixed-coordinate frame
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Fig. 8: Radial component of the electromagnetic forces versus

the angle along the cirumference (ε = 2/7 ).

for dynamic eccentricity and stator-fixed-coordinate frame for

static eccentricity. The rotation-angle-dependent behavior of

the UMP will be thereafter evaluated. The presented operating

points in section 3 are used to calculate the UMP for different

current excitations in the entire operational range of the used

PMSM. To study the influence of the eccentricity angle of the

rotor, the positions of the eccentricity are varied according to

Figure 5 and 6.

V. RESULTS

A. Dynamic eccentricity

The influence of the position of the eccentricity vector is

presented in Figure 9.
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Fig. 9: UMP versus the mechanical angle for different posi-

tions of the eccentricity vector.

From Figure 9 can be concluded that the position of the

eccentricity has a not significant influence to the UMP. The

UMPs caused by the displacements in d- and q-axis are

identical and between the axes is only slightly lower than

the first. The amplitude and the harmonics are effected by

the specific permeance of the rotor λR. In case of a PMSM

with buried permanent magnets, the rotor has no slots and the

specific permeance is only influenced by the geometry of the

rotor. As illustrated in Figure 9, the specific permeance of the

rotor has a minor effect when compared to the slot harmonics

of the stator.
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Fig. 10: UMP as a function of the mechanical angle for

different amplitudes of the eccentricity vector (δm = 700μm).

In Figure 10 the effects of rising amplitude of the eccen-

tricity vector on the amplitude of UMP are illustrated. The

increase in the eccentricity effects an nearly linear increase

of the average and all harmonics of the UMP in the range of

practically occurring eccentricity amplitudes (Figure 11).
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Fig. 11: Harmonics of the UMP as a function of the amplitude

of the eccentricity vector (δm = 700μm).

A tolerance analysis of the electrical machine used in the

simulation has revealed that the most likely eccentricity is in

the range of e = 50μm i.e. ε = 1/14 (δm = 700μm). For this

reason, the following results are presented for this amplitude

of the eccentricity vector in order to make the results more

comprehensible.

Figure 12 shows the calculated average UMP and the

operating points for different current excitations. It is apparent

that the UMP depends on the position of the flux linkage,
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Fig. 12: Simulated map of the average UMP in N with overlaid

mesh of operating points.
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Fig. 13: Speed-torque map of the average UMP.

relative to the position of the eccentricity vector. Starting from

the no-load point, the average of the UMP increases with

the increase of the quadrature current and the negative direct

current. Depending on the quadrature current the average UMP

reaches its maximum, while depending on the direct current

the UMP increases continuously.

Figure 13 illustrates the average UMP in the speed-torque

map. The maximum of the average UMP depending on the

quadrature current can also been seen in base speed range

of the machine at 55 Nm. In the field weakening range the

quadrature current decreases for a given torque and the direct

current increases. This effects an increase of the UMP up to

the maximum for the whole speed-torque map.

The results for the harmonic component of the UMP are

presented in Figure 14. The harmonic component is a dis-

tinctive proportion of the UMP and increases in direction

of increasing quadrature current and direct current. However

the increase depending on the direct current dominates also

for the harmonic component. In the speed-torque map of the

harmonic component (Figure 15) has also its maximum at

high frequencys and high torques. In the base speed range

the harmonic component increases with the increase of torque

almost continuously. In the area of low torque the harmonic
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Fig. 14: Simulated map of the harmonic component of the

UMP in N with overlaid mesh of operating points.
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Fig. 15: Simulated map of the average torque in Nm with

overlaid mesh of operating points.

component is modest.

Figure 16 presents the behavior of the UMP as a function of

the rotation angle of the rotor for two chosen operating points:

at nominal point (3.000 rpm, T = 200Nm) and at maximum

flux weakening point (6.000 rpm, T = 100Nm). The UMP
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Fig. 16: UMP versus the mechanical angle for two different

operating points.
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Fig. 18: Simulated map of harmonic component 24 .

at 6.000 rpm has a higher harmonic and average component

than the UMP at 3.000 rpm. The harmonic components of both

operating points calculated with FFT, are shown in Figure 17.

The UMP harmonics for the operating point at maximum flux

weakening are generally higher than at the nominal operating

point. This is caused by the higher proportion of direct current,

which leads to a higher UMP, as shown in Figure 13 and 15.

The order 24 and 48 are the dominant harmonics for both

operating points. The order 48 is caused by the stator slotting

and the harmonic component 24 by saturation.

The dependencies of these harmonic components are shown

in Figure 18 and 19. Both components are increasing with the

increase of the direct current. The order 24 is also dependent

on the quadrature current, while the order 48 caused by stator

slots is almost independent of the quadrature current.

B. Static eccentricity

The calculation of the static eccentricity is analogous to the

method described for the dynamic eccentricity. The UMP is

calculated by integration of the radial force density on the

circumference of the rotor.
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Fig. 19: Simulated map of harmonic component 48 .
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Fig. 20: UMP caused by static eccentricity in rotor fixed

reference frame for position t and s (50μm).

Figure 20 presents the UMP caused by static eccentricity in

rotor-fixed frame, calculated for the nominal point (3.000 rpm,

T = 200Nm). The UMP acts in the direction of the smallest

air gap. This position of the air gap rotates from the perspective

of the rotor, and therefore the UMP is also rotating. The dif-

ference in the position of the static eccentricity only influences

the angular position of the UMP. For both cases the order 24

and 48 are dominant, caused as described by stator slotting

and saturation. In order to describe the behavior on the time

domain, the UMP is transformed to the point of smallest air

gap in the stator-fixed frame.

Comparing the results presented in Figure 12 and 14 for

the dynamic eccentricity, the stator currents are varied for the

same eccentricity amplitude e = 50μm e.g. ε = 1/14 and

decomposed into an average and harmonic component. The

result are illustrated in Figure 21 and 22.

It can be seen that the results differ in a negligible extent.

An examination of the harmonics distribution give the same

result as shown in Figure 18 and 19.
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Fig. 21: Simulated map of the average UMP in N with overlaid

mesh of operating points (static eccentricity).
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Fig. 22: Simulated map of the harmonic component of the

UMP in N with overlaid mesh of operating points (static

eccentricity).

VI. CONCLUSION

In this paper a methodology to study the influence of the

position and the amplitude of the eccentricity for the whole op-

erational range of PMSM is discussed. It has been shown that

the position of the eccentricity has a not significant influence

on the behaviour of the UMP and is therefore neglected. The

amplitude of the eccentricity vector influences the amplitude

of the UMP including all harmonic force components. For

technical relevant eccentricities, the influence is approximately

linear for the average and the dominant harmonics of the UMP.

In most cases it is sufficient to displace the rotor at an arbitrary

position and amplitude. Local force distribution due to static

and dynamic eccentricity reveal the same circumference but

differ in their frequency components. When applying the stator

fixed reference frame in case of a static eccentricity and a rotor

fixed reference frame in case of dynamic eccentricity both

types of eccentricity show the same characteristics. Therefore

a transformation from static to dynamic eccentricity in the

simulations and vice versa is valid.

In conclusion it is sufficent to simulate one type of ec-

centricity (static or dynamic) with an arbitrary value of

displacement (rotor or stator) to evaluate all possible airgap

unbalances. When varying the current excitation the UMP

for all possible operation points and all possible eccentricities

can be calculated with a reduced computational effort when

compared to classical computation methods. This allows for

the application of the proposed model in stochastic simulations

and enables an a priori design and lifetime estimation of

bearings.
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