IEEE TRANSACTIONS ON MAGNETICS, VOL. 49, NO. 7, JULY 2013

3163

Simulation of Magnetization Errors Using Conformal
Mapping Field Computations

Peter Offermann', Martin Hafner?, and Kay Hameyer!

Mnstitute of Electrical Machines, RWTH Aachen University, D-52062, Aachen, Germany
2Schabmiiller GmbH, D-92334, Berching, Germany

Due to their production and magnetization process, rare earth magnets, e.g. NdFeB, exhibit deviations from the targeted ideal re-
manent magnetic flux-density. As a consequence, the calculation of cogging torque, load torque and force computations of a perma-
nent-magnet synchronous machine by means of finite-element analysis are at best in fair agreement to measurements, since the men-
tioned variations of the magnet material are not covered by standard simulation models. Actual solutions to consider these variations in
the simulation of a permanent-magnet synchronous machine consist either in a full-factorial Monte-Carlo simulation or advanced sto-
chastic analysis techniques such as the creation of polynomial-chaos meta-models. Even meta-model techniques result in an exponential
growth of repetitive finite element simulations for a rise in the used polynomial’s degree or an increment of the input variables. In order
to reduce computation time, this paper unveils a methodology to build the magnet rotor field distribution with consideration of magnet
faults semianalytically for calculating arbitrary machine operation points. For this purpose a conformal mapping approach is extended
to be applicable to stochastic variations. It is shown, how the conformal mapping assumption of symmetrical field conditions can be
overcome. As a result, the proposed approach is applied to the calculation of cogging torques for stochastic varying magnetizations in a

permanent synchronous machine.

Index Terms—Conformal mapping, finite element method, magnetization error simulation, stochastic field analysis.

I. INTRODUCTION

UE to their production and magnetization process, rare

earth high energy magnets, e.g. NdFeB, exhibit a devia-
tion from the targeted ideal remanent magnetic flux-density [1].
Fig. 1 shows such variations for the measured radial, outward-
pointing flux-density from a batch of 26 arc-segment perma-
nent-magnets with diametral magnetization. Typical solutions
to consider these variations in the simulation of a PMSM con-
sist either of worst-case estimations or of full-factorial Monte-
Carlo simulations. Even in recent advances such as the applica-
tion of nonintrusive polynomial-chaos meta-models [2], sample
points from the original model—their number depending on the
number of input random variables and the meta-model’s polyno-
mial degree—need to be calculated in order to create the desired
meta-model. The meta-model itself is used to subsequently cal-
culate the Sobol-indices to perform a sensitivity analysis.

Let us assume that the given magnetization curves from Fig. 1
can be approximated by an error model which employs two
random variables [3]. For a PMSM with three pole-pairs this
implies a number of M = 12 random variables. Assuming fur-
thermore that a polynomial of order n = 2 is used for cal-
culation, applying a tensor-product quadrature scheme, N =
(n + )M = 531,441 FE-model evaluations are required for
the meta-model’s creation [4]. Even if more efficient evaluation-
point selection algorithms are applied, complete machine cal-
culations require the inclusion of further random variables, de-
scribing possible geometry variations or material data changes.
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Fig. 1. Hall-voltages of measured radial, outward-pointing flux-densities from
a batch of 26 arc-segment permanent-magnets with diametral magnetization,
taken 1.5 mm above the magnet’s surface.

Due to the exponential growth in this problem, even paralleliza-
tion (at best resulting in a linear speedup) cannot solve this
so-called curse of dimensionality.

Recent publications showed that the air gap field of surface-
mounted PMSMs can be computed for an arbitrary operation
point in case of linear material behavior by semianalytic con-
formal mapping approaches [5], leading to computation times
below a second. These techniques are due to the assumption
of linear time invariance (LTI) comparable to [6]. Excluding
the armature reaction, the CM approach can be generalized to
PMSM having a random buried magnet topology [7]. To utilize
the advantages of these approaches in stochastic variation sim-
ulations, one has to overcome the assumption of symmetrically
field conditions (e.g. the field distribution of different magnetic
poles differs in function of the stochastic input parameters).

This paper unveils a methodology to build a rotor field dis-
tribution semianalytically in order to account for nonsymmetric
excitation variations. It has been applied for a magnet model
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Fig. 2. Geometry of applied FEA for the simulation of " B(©). The outer gray
circle represents the applied Neumann boundary-condition, acting as an infinite
permeable, slottless stator.

having two random variables on a PMSM featuring 3 pole-
pairs and stator with 18 teeth to calculate the influence on cog-
ging torque. This allows bringing valuable insight for sensi-
tivity analysis by adding cause-effect correlation and reducing
the number of necessary FEA simulations by a factor larger than
thousand for the execution of a full-factorial parameter sweep.

II. METHODOLOGY

The calculation of all possible magnet-error permutations ap-
plying FEA is—independent of the applied method for uncer-
tainty propagation—unfeasible, because the necessary compu-
tational effort rises exponentially (Section I) and leads to un-
bearable calculation times even for 2D-models. The problem of
calculating all magnet-error permutations however can be split
into the much smaller task of calculating all occurring variations
for only one magnet and reconstructing the rotor ansatz-function
for hybrid CM-computations applying the principle of superpo-
sition as discussed in the following section.

A. Conformal Mapping

The principle of conformal mapping approaches [8] consists
of a separation of the air gap field 9 B into its main contributing
components:

« the air gap field excitation of the rotor " B(©) in depen-
dence of the coordinate angle ©® € [0, 2x[ under the as-
sumption of an unslotted, infinite permeable stator;

 the influence of the stator’s slotting onto the rotor’s un-
slotted-stator air gap field, described by the permeance-
function A;

« the stator’s air gap field field excitation ® B{ _') created by
the symmetric three-phase current I.
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Fig. 3. Radial component of the air gap field from the rotor of Fig. 2, featuring
six ideal-unidirectional magnetized magnets.

All described, contributing components are complex-valued
quantities with their real part! representing the radial, outwards-
pointing and the complex part? representing the tangential field
component. The resulting air gap field, in this paper restricted
to linear material behavior, can then calculated by

=

IB(0,1) =" B(©) - A"+ B(

~—

(1)

B. Rotor Ansatz-Functions With Ideal Pole Superposition

Classic CM employs analytical, infinite-Fourier-series de-
compositions to generate a rotor field description [9]. Analytical
calculation of the rotor field for arbitrary magnetization errors
however is at best unrewarding, more likely impossible. Hence
the field " B(©) is extracted from a FEA. For these simulations,
the stator can be replaced by a Neumann boundary-condition.
This forces the magnetic field’s tangential component H.(©)
to zero and ergo acts in the same way as an infinite permeable,
slottless stator (Fig. 2).

Instead of simulating the three pole pairs, the system’s LTI-
property also enables to split the FEA into p separate simula-
tions, where in each simulation only one magnet is simulated.
The air gap field then equals the accumulation of all p separate
simulations. Since all magnets in the simulation of an ideal rotor
are equal, one simulation of one magnet in the given geometry
suffices to create the complete superposition

B(©) = iﬁiz/(@) = ZP: [ﬁl (@ + 360%) (—1)<i+1>] :
- - @

A comparison of an analytical air gap field calculation with an
air gap field reconstructed from only one magnet’s FEA simula-
tion verifies these considerations and yields the extracted radial
field component depicted in Fig. 3.

ldenoted by the subscript index r
2denoted by the subscript index
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Fig. 4. Extraction of the " I3,.(® )-field taken from two single-magnet simula-
tions, their sum building a pole-pair.

III. RESULTS

A. Error Pole Superposition

In order to apply the proposed pole superposition principle
for erroneous magnets, the central question to be clarified is
whether

V.-B=0 3)
stays valid for unsymmetrical excited rotor systems. A careful
analysis of the per-pole FEA simulations solves this problem:

Fig. 4 shows the radial air gap field " B,.(©) of two per-pole
magnet simulations. An integration over the air gap field cre-
ated by one single magnet proves, that (3) stays valid, whatever
changes are applied to the magnet. A subsequent application of
the system’s LTI-property proves, that (3) keeps validity for the
superposition of unsymmetrical excitations, too. An addition of
both curves finally yields the excitation of one pole pair, as can
be seen in a comparison to Fig. 3.

B. Application Conditions

To keep comparability to previous works [10], the machine
geometry presented in Fig. 5 has been employed. The imple-
mented magnet variation model comprises two error possibili-
ties [3]: Global changes of the magnet’s remanence flux-density
(random-variable £7) and position-dependent angle errors of the
magnetic flux-density (random variable &>). For the sake of an
impact estimation of these variations onto cogging torque, each
random variable is allowed to adopt only two values—either its
ideal value or its maximum deviation with the following prob-
abilities:

p(&1 =0.95) = 0.33

p(&r=1) =0.67
p(& = 0.0) = 0.5.

Fig. 6 illustrates the error cases with maximum error for both
random variables, applying a global remanence flux-density
weakening of 5% (¢, = 0.95) and an angle compression of
10° (¢ = —0.2) at the magnet’s outer edge in comparison
to an ideal magnetization. Whereas the global flux-density
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Fig. 5. Cross-section of the employed machine geometry for simulation,
having 18 stator teeth and three pole pairs with unidirectional, variably
defective magnetizations.
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Fig. 6. Influence of the considered magnet errors onto the " 3,.(€)-field for
one magnet in comparison to an ideal magnetization.
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Fig. 7. Reconstructed " B,.(©)-field with the error poles form Fig. 6 located at
2.1[rad] and 4.2[rad], all other poles without variation.

weakening only results in a scaling factor for the air gap field,
the angle error generates deviations of the air gap field’s shape
which are best visible at the magnet’s edges and its middle.
Fig. 7 shows the reconstructed " B,.(©)-field with the first error
implemented for the pole located at 2.1[rad] and the second
error located at the 4.2[rad], all other poles ideal. Both errors
poles do not influence the field of the other poles, however lead
to a small offset of the overall air gap field.
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Fig. 8. Maximal and minimal cogging torque of all possible error combinations
in comparison to the ideal rotor without magnet deviations.
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Fig. 9. Histogram of cogging torques at angle 0.1[rad].

C. Variation Analysis

For these simple conditions, a calculation of all possible rotor
combinations would result in 4° = 4096 possible models. Al-
lowing a reduction by symmetry considerations3 of a factor 32,
we assume that 128 relevant constellations still would have to
be considered. Because cogging torque requires high angle res-
olutions, we consider a spatial discretization of 100 rotor steps
over one cogging torque period. As a consequence, still 12.800
FEA-simulations are necessary with the exploitation of symme-
tries.

Applying the proposed hybrid conformal mapping superpo-
sition approach, 4 FEA-simulations are necessary to extract all
possible per-pole rotor ansatz-functions and 1 FEA-simulation
to extract the permeance ansatz-function. The creation of all
rotor-ansatz functions requires only a number of summations
which can be neglected when compared to an FEA. The cogging
torque calculation per rotor movement angle also requires no
recomputation of the created rotor-ansatz functions, only array
shifts which—once again—can be neglected. In total, the re-
quired number of FEA can be reduced by a factor of 2.560.
Fig. 8 depicts the resulting histogram error envelope of all pos-

3which often are tedious and error prone
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sible rotor variations and Fig. 9 shows the corresponding prob-
abilities along the cut at angle 0.1.

IV. CONCLUSION

This paper proposes to apply the superposition of hybrid CM
ansatz-functions, in order to decrease the computational com-
plexity of variational calculations, which always are required
for stochastic system evaluations. The validity of the model has
been explained for the case of linear materials, improvements
towards nonlinear material calculations are ongoing. The pro-
posed method has been demonstrated on the example of mag-
netization faults. It’s application reduced the number of required
FEAs for a complete cogging torque analysis dramatically and
enabled a cogging torque analysis for more than 4000 machine
variations in a calculation time of below 2 minutes. Finally, the
proposed, versatile approach is not restricted to magnet varia-
tions but could also be applied for current or material changes,
where those changes are moved into the corresponding current
or permeance ansatz functions.
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