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Abstract—The strong interaction between hysteresis and eddy
currents in electrical steel laminations cannot be resolved without
a strongly coupled finite element modelization. The aim of this
paper is to present such a model, based on a thermodynamic
analysis, together with a methodology to identify the free pa-
rameters from standard measurements (Epstein frame or Single
Sheet Tester). As they fully characterize the material, irrespective
of load, the identified parameters are used then to quantitatively
investigate fields and losses at higher frequencies and in the
presence of higher harmonics.

Index Terms—Hysteresis modeling, eddy-currents, homoge-
nization, vector-hysteresis, higher harmonics, iron losses.

I. Introduction

Induced currents appear at various geometrical scales in
ferromagnetic samples subjected to a time-varying magnetic
field h(t). Following Bertotti [1], two main mechanisms can
be distinguished. On the one hand, induced currents that result
directly from the variation of the external magnetic field and
loop up over pathes of macroscopic dimension are called eddy
currents, or Foucault currents. They depend on the geometry
of the sample, and their rate of variation is directly determined
by that of the applied field, ∂th(t). On the other hand, a
microscopic induction mechanism also exists associated with
the broken (jerky) motion of Bloch walls (Barkhausen effect)
as magnetization changes in the sample. The dynamics of
this motion, which is ruled by the microstructure, determines
the intensity and the distribution of the microscopic induced
currents, whose associated Joule losses are conventionnally
called hysteresis losses. The density of hysteresis losses does
not depend on the geometry of the sample, neither on the rate
of variation of the applied magnetic field (hysteresis is a local
and quasi-static phenomenon), but it depends, at each point
in the sample, on the local maxima attained by the field h(t)
all through the magnetisation history. The term iron losses
generically covers the losses associated with both phenomena.

The difficulty in modelling iron losses is associated with
the fact that ferromagnetic cores generally come up as stacks
of thin isolated electrical steel laminations (whose typical
thickness is between 0.2 mm and 1.0 mm). Homogenization
techniques have been proposed to model such composite mag-
netic structure [2], [3]. They however assume simplified forms
for the current density across the lamination (resulting e.g.
from the solution of the eddy current problem) and disregard
hysteresis in general. Because a reliable mesoscopic model
fails, we believe that developing homogenization techniques
is premature at this stage. The interaction between hysteresis
and eddy currents is indeed so strong that it cannot be resolved

without an explicit field modelization inside the laminations.
The aim of this paper is to present such a strongly coupled
model that addresses eddy currents (including skin effect) and
hysteresis simultaneously. The proposed parametrized model
is based on a thermodynamic analysis, and a methodology to
identify the material parameters from standard Epstein Frame
(EF) or Single Sheet Tester (SST) experiments is described.
After identification, the material parameters can be exploited
either to analyze the behaviour of the laminated core at
higher frequencies and in the presence of higher harmonics,
or to model macroscopic devices (e.g. electrical machines) by
means of a homogenization approach like the one proposed in
[6].

II. Hysteresis material model
The hysteresis model follows from the expression of the

conservation of energy in the material Ψ̇ = Ẇ + Q̇, i.e.
Ψ̇ = h · ḃ − D with Ψ the internal energy density and
D the dissipation function. To appropriately account for the
susceptibility of empty space, the induction field is written
as the sum of an empty space magnetization and a material
magnetization associated with the presence of microscopic
moments attached to the atoms of the ferromagnetic sample,
b = J0 + J. The energy density is

Ψ(J0, J) =
J2

0

2µ0
+ u(J) (1)

with µ0 is the magnetic permeability of vacuum, and its
variation in time writes

Ψ̇ =
J0

µ0
J̇0 + hr · J̇ with hr = ∂Ju. (2)

The dissipation function

D = χ|J̇| = hi · J̇ with hi = ∂J̇D = χ
J̇
|J̇|

(3)

describes hysteresis as the magnetic analogous of a dry friction
force, whose physical origin is the pinning effect that opposes
the motion of Bloch walls. Conservation of energy now yields

(h − J0/µ0) · J̇0 + (h − hr − hi) · J̇ = 0 ∀J̇0, J̇. (4)

As the state variables J, J0 are abitrary, the factors between
parenthesis must vanish, and the constitutive relationships of
the system are obtained, namely J0 = µ0h and

h − hr − hi = 0 ⇒ h − ∂Ju − χ
J̇
|J̇|

= 0. (5)
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Figure 1: Comparison between measured data for M25050A FeSi
non-grainoriented electrical steel at 50Hz, 100Hz and 200Hz (solid
lines) and calculated data (points): Virgin and anhysteretic curve
(left), iron losses (right).

In reality, the pinning strength χ is not a constant but obeys
a statistical distribution, which can be represented with con-
trollable accuracy by combining elementary models like (5)
[4].

III. Finite element model
The measured quantities in EF or SST experiments are

currents and fluxes related to the magnetic field h and the
average induction 〈b〉 across the lamination thickness. Since
by construction those quantities are uniform across measured
samples, it is sufficient for our purposes to work with a finite
element (FE) model that consists of a 1D formulation of the
eddy current problem :∫

Ω

(
∂tb · h′ + σ−1curl h · curl h′

)
dΩ = 0 ∀h′ (6)

with h = (0, h(z), 0). A h-field formulation is chosen be-
cause the magnetic field is the natural driving quantity for
the irreversible constitutive relationship (5). Considering a
lamination of thickness 2d with an upper surface normal vector
n = (0, 0, 1), the domain of analysis Ω is a line parallel to n,
across half the thickness, and far from the edges. The boundary
condition at the center of the lamination is curl h(0) ∧ n = 0,
whereas a given external field h(d) is applied at the surface
of the lamination. Iron losses per unit surface are given by
the flux of the Poynting vector σ−1curl h(d) ∧ h(d) across the
lamination surface. The details of the implementation will be
given in the full paper.

IV. Parameter identification
Standard electric steel lamination measurements are ob-

tained under sinusoidal 〈b〉-field conditions. In order to iden-
tify them with FE simulations, the applied h-field that yields
a sinusoidal flux through the lamination must be determined.
This can be done iteratively (See full paper). Fig. 1 shows the
match obtained with a minimal number of material parameters.
A very good match over a quite large range of field intensities
(up to 1.4 Tesla) and frequencies (up to 200Hz) is observed.
It is remarkable that the large amount of measured data can
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Figure 2: Comparison between the true hysteresis loops (h,b) at the
surface and at the center of the lamination with the measured loop
(h, 〈b〉).
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Figure 3: Time evolution of h and e at the surface of the lamination,
the product of which is the delivered power.

be quantitatively reproduced with so few parameters (7 in this
case). This indicates that the physical model based on the dry
friction analogy is close enough to the reality.

V. Application
The identified parameters fully characterize the material,

irrespective of load and geometry. They can be used in 2D or
3D models, or to calculate iron losses under loads for which
measurements are hard to obtain or unavailable, in particular
at higher frequencies and in the presence of higher harmonics.
Figures 2 and 3 illustrate the rather complex phenomenology
in such situations. A 350Hz magnetic field of magnitude
200A/m superimposed with a 7th higher harmonic (2450Hz) of
magnitude 60A/m has been applied to the lamination model.
The true and the measured hysteresis loops are compared in
Fig. 2. Figure 3 shows the complex shape of the magnetic and
electric fields, whose product h ∧ e gives the iron losses.
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