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Potential Formulation Without Cuts
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This paper discusses non-conforming sliding interfaces for motion in combination with a magnetic scalar potential formulation. La-
grange multiplier are used to implement the relative motion of stator and rotor. The utilization of the specific Lagrange multiplier
approach implies the application of a magnetic scalar potential formulation in 3D Finite Element (FE) modeling of electrical machines
because up to the present a canonical definition of biorthogonal basis functions for the magnetic vector potential is not available.
Classical magnetic scalar potential formulations require the definition of cuts to make the potential single-valued. The presented ap-

proach uses a decomposition of the magnetic field into a scalar potential and loop fields defined on the whole domain to avoid the explicit
definition of cuts.

Index Terms—Dual formulation, electrical machines, finite element methods, sliding interfaces.

I. INTRODUCTION

N OWADAYS several approaches for handling relative mo-
tion of stator and rotor in FE analysis of electrical ma-

chines are available [1], [2]. Static, transient and particularly
field coupling simulations of electrical machines require the
flexible displacement of the rotor by an arbitrary angle in ro-
tating machines or a distance in translational electric machines.
In 2D FE modeling the Moving-Band method can be employed
where an annulus-shaped band in the airgap between rotor and
stator is remeshed in every time step [3]. In 3D FEmodeling this
approach is not feasible because it would require a full mesh
generator whereas remeshing is done by a simple mapping in
2D. Thus, the Lockstep method [1] is usually applied in 3D
which is based on a regular discretization of the rotor and the
stator surfaces. The major disadvantage of this method is the
lack of arbitrary displacement because step size is fixed by the
discretization. As a consequence, a smooth movement leads to a
significant increase in the number of elements resulting in an in-
crease of computing time which is highly undesirable. Lagrange
multiplier approaches seek to overcome the disadvantages being
applicable to 2D as well as 3D problems [4], [5].

II. MOTION BY LAGRANGE MULTIPLIER

The Lagrange multiplier method ensures the continuity of
the fields across the non-conforming interface between the
stationary and moving FE discretizations of the stator and
rotor of the electrical machine. As a consequence an arbitrary
displacement without restrictions in time or space discretization
is possible. In general, the application of Lagrange multiplier
methods yields a saddle point problem, which cannot be
solved by standard Krylov-subspace algorithms. In order to
preserve the numerical properties of a conforming approach,
the FE-space of the discrete Lagrange multiplier is spanned by
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basis functions fulfilling the biorthogonality condition as de-
scribed in [4] and applied to electromagnetic field computation
in [2] and [6]. Thereby, the resulting symmetric positive definite
system can be solved by Krylov-subspace algorithms. Previous
studies have indicated that it is not feasible to construct such
biorthogonal basis function in 3D for the magnetic vector po-
tential formulation in a canonical way but for magnetic scalar
potential formulation [2].
In the presented paper the authors hence utilize the magnetic

scalar potential formulation shown in [7] and simplify the algo-
rithm to compute the source fields on basis of spanning trees.
Furthermore, this algorithm is extended to overcome possible
termination issues. The resulting method is combined with the
Lagrange multiplier approach presented by the authors in [2]
and is applied to an exemplary electrical machine.

III. TOPOLOGICAL STRUCTURE

In the classical formulation the field is computed in the
conducting region only whereas is computed in the whole do-
main ([8], [9]). This approach requires the definition of cuts in
the non-conducting domain for multiple connected regions be-
cause otherwise may become multi-valued. In order to avoid
these cuts the approach in this paper consists in decomposing
the magnetic field appropriately. The theoretical background
has been presented in [7] and is recapitulated as far as necessary.
Let be a connected mesh, the non-conducting

domain, the domain of all conductors and its
boundary as shown in Fig. 1. Furthermore, let be the set
of differential forms of degree which are defined on the do-
main . In the non-conducting domain one has to solve

and with and :

(1)

While can be satisfied by introduction of the magnetic
vector potential with , the situation is more com-
plicated for . The Poincaré lemma states that can
be represented by a continuous gradient field in
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Fig. 1. Volumes and surfaces in the 3D domain [7].

a contractible domain like a ball or a tetrahedron. If the domain
contains holes and thus is not contractible, the topological struc-
ture of the functional space has to be considered. Let

be the set of all gradients and the set of all
curl-free fields on . Following De Rham’s theorem the quo-
tient vector space is of finite
dimension and equals the number of holes in , respectively
the number of independent loops formed by the conduc-
tors, also called Betti number . The first cohomology group

represents the set of curl-free 1-forms which cannot
be expressed as a gradient of a 0-form.
The magnetic field in can then be expressed by

(2)

where is the current in conductor loop which is imposed
in an independent section of the conductor as seen in Fig. 1
and is a continuous scalar potential without cuts
defined on

(3)

The loop fields form a basis of the first coho-
mology group and are computed for every single
by imposing a unity current in and zero current in all other

. Instead of a direct computation of , which
is in general a task of high complexity, we utilize the duality be-
tween cohomology and homology groups. The first homology
group is defined as the set of
all closed curves in which are not the boundary of any sur-
face in . By De Rham’s theorem the first homology group is
isomorph to the first cohomology group .
The construction of the loop fields can hence be achieved by

three single steps:
1) Generate a basis for the first homology group
which is done by the definition of the surfaces .

2) Build a spanning tree on corresponding to .
3) For each construct a basis of the first cohomology group

which forms the according loop field.

IV. CONSTRAINED SPANNING TREE

The presented approach of using spanning trees is a modified
and extended version of [7] which is based on [10]. An (edge)
spanning tree of a mesh is a subset of edges which does not
contain any cycle and visits every node of the mesh.
To construct a constrained spanning tree, it is necessary to

build a spanning tree on which is also a spanning tree on
all constrained volumes and surfaces. Therefore, the following
constraints have to be considered:

• curl on
• curl on
• on S
• on
•

The algorithm to construct the spanning tree, which is de-
scribed later in this section, works by iteratively appending
edges to the tree which do not close a cycle and hence pre-
serve the spanning tree property. To ensure that the spanning
tree is also valid on the constrained volumes and surfaces,
edges corresponding to these sets have to be put into the tree
before other ones. This is ensured by assigning a priority to
every edge in the mesh. Let us denote the set of volumes by

and the set of the constrained surfaces
by .
The set of edges corresponding to the volume , or the surface
are denoted by and respectively and the priority

of edge is denoted by . In contrast to the algorithm
presented in [7] a simpler algorithm to compute the priority for
all edges is proposed:

1) For each edge in (all edges):
•

2) For each volume :
• For each edge in :

3) For each surface :
• For each edge in :

This algorithm ensures that a higher priority is assigned to an
edge which is contained in more volumes and surfaces than
an edge which is contained in fewer entities.
Afterwards, the constrained spanning tree can be constructed

by the following straightforward algorithm which appends iter-
atively edges to the set representing the spanning tree. The
set contains all the nodes visited by the spanning tree:

1)
2) Pick one arbitrary initial node and append it to
3) Append all edges associated with to
4) While :
• Pick and remove one edge with highest
priority from

• If end node not in :
— Append to
—Append to
— Insert all edges associated with into

The termination of the algorithm is guaranteed by removing one
edge from in every iteration of the while loop. As soon
as contains all nodes of the mesh we have a valid span-
ning tree in and no further edges are appended to
which results in successful termination of the algorithm. The
constructed spanning tree is not unique and is mainly influenced
by the choice of the edge in step four. Exploiting a first in first
out (FIFO) stack for corresponds to breadth first search
(BFS) for the spanning tree and results in a balanced spanning
tree. Balanced spanning trees are favorable with respect to the
later loop field construction in comparison to random trees or
trees constructed by depth first search (DFS) ([7], [11]). Fig. 2(a)
shows a spanning tree on top of the surface of a threedimen-
sional conducting torus which has been constructed by
BFS. In comparison to the spanning tree in Fig. 2(b) which has
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Fig. 2. Spanning tree on the top surface of a torus. (a) breadth first search,
(b) depth first search.

Fig. 3. Spanning tree on the surface of a torus with .

been constructed by DFS, one can observe that BFS results in
much more nodes with branching edges.

V. LOOP FIELDS

After the construction of the spanning tree on the loop
fields can be build which have to fulfill the condition curl
on the non-conducting domain using edge-basedWhitney
elements. This is done iteratively for every by imposing a
unity current in and zero current in all other .
By construction of the spanning tree there is exactly one edge
for every set which is not contained in the tree. This
is illustrated in Fig. 3 where is highlighted by exposing its
nodes by spheres and all the tree edges in being drawn
by bold edges. It can be seen, that the top left edge of
is the only edge which is not contained in the spanning tree.
Therefore, it is possible to impose unity current by assigning a
unity value to the edge with . To
compute the desired loop fields , it is necessary to satisfy the
curl condition for all faces in the non-conducting region :

(4)

where denotes all faces of elements in . Equation
(4) can be transformed to a linear system of equations with un-
known for every edge and one equation for every face

. This system of equation does not have full rank, there
is an infinite number of possible loop fields , but the kernel
of the system of equations can be eliminated by fixing all edge
values corresponding to spanning tree edges [12].
This results in a unique solution of the system of equations and
thus to a unique loop field .
Instead of utilizing an equation solver, the algorithm to com-

pute the loop field for works by backsubstitution as fol-
lows (cf. [7]):
1) Set all values of tree edges to zero:
2) For each in :
• Set for

Fig. 4. Application of the presented approach to an example PMSM. (a) non-
conforming discretization in the airgap, (b) computed magnetic flux density.

3) Set
4) Put all faces of into the list
5) While :
• Pick and remove one face from which has
two edges fixed

• Fix the value of the third edge according to (4)
If the algorithm terminates, it returns a valid loop field . How-
ever, the algorithm exposes termination issues in 3D at step five
in the while loop: If the list of faces is not empty and there
is no face which has only one unfixed edge left, the algorithm is
stuck in an infinite loop. The frequency of occurence in which
the algorithm fails can be reduced by applying BFS to construct
the spanning tree, e.g., if the spanning tree in Fig. 3 is build
by DFS instead of BFS. However, also if BFS is applied, there
are simple counter examples for which the algorithm does not
terminate [13]. To overcome this issue, the algorithm has to be
extended to handle this case.
Let us assume there is no face with only one unfixed edge left

in the set of faces. Then take one arbitrary face containing
the three edges and with only one fixed edge . By
setting all values corresponding to edges of the spanning tree to
zero it is ensured that there exist a unique solution for the loop
field . Thus, we can replace one of the two unfixed edges by
a linearcombination of the other one to satisfy (4):

(5)

The edge value is declared free and all edges which are
fixed consecutively are described as a linearcombination of free
edges. This results in a linear system of equations which con-
tains all free edges as variables and has to be solved. A sim-
ilar approach is presented in [11] where the authors exploit ob-
ject-oriented features to implement a symbolic representation
of the reals. This approach leads to higher computational cost
for the arithmetic operations corresponding with higher execu-
tion times. In [11] it is proposed to apply the standard algorithm
and only switch to the symbolic representation of the reals and
restart the algorithm if the standard one fails. This switch is not
necessary using the approach presented above.

VI. APPLICATION

The combination of the scalar potential formulation with the
proposed construction of the loop fields and the non-conforming
sliding interfaces allows for an efficient 3D FE analysis of elec-
trical machines. To handle the relative motion between stator
and rotor, the mesh of the complete domain contains two con-
nected components, the stator mesh and the rotor mesh
enclosing a non-conforming interface in the airgap. The support
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Fig. 5. 3D geometry of the example PMSM.

Fig. 6. Comparison of the resulting torques in 2D and 3D.

of the loop field for each conductor or eddy current region has
to be limited to one of these components. This is possible be-
cause the support can be limited to a topological trivial region
containing conductors with its holes only. The non-conforming
interface is contained completely in the airgap of the machine,
which is obviously a non-conducting region. For all loop fields
the edge values adjacent to the non-conforming interface

between and are set to zero.
The presented algorithms have been implemented in the

institute’s in-house FE-package [www.iem.rwth-
aachen.de] and have been applied to an exemplary permanent
magnet excited synchronous machine (PMSM) shown in Fig. 5.
The 3D geometry has been generated by extrusion of a 2D
geometry in order to use the 2D model as reference simulation.
Fig. 4(a) shows the non-conforming discretization in the airgap
between the meshes and . The magnetic flux density
for an arbitrary position is depicted in Fig. 4(b). The resulting
torque of the machine is evaluated by the eggshell method [14]
with respect to the rotorposition. The comparison of torque vs.
angle of the 2D and 3D model is shown in Fig. 6 and verifies
the chosen approach.

VII. CONCLUSION

The presented approach allows the 3D simulation of electrical
machines including motion by a magnetic scalar potential for-
mulation without the tedious process of defining cuts. The mo-
tion is based on a non-conforming Lagrange multiplier method
with biorthogonal scalar shape functions allowing for an arbi-
trary angle of the rotorposition. The computation of the source

fields for the formulation is based on homology theory
to avoid the explicit definition of cuts. All required algorithms
to compute the loop fields are presented and applied to the ex-
ample of a 3D electrical machine field problem. The algorithms
have been implemented in the FE-package .
The future research will focus on extending the presented al-

gorithms to take into account the eddy current effects within
electrical machines.
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