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Abstract – The consideration of uncertainties in the numerical computation of electromagnetic fields has
recently gained a lot of attention [11]. Most publications focus on the creation of models for the uncertainty
propagation, however neglect the inaccuracy respectively uncertainty of the applied finite element model
itself. Mesh quality is one of the parameters determining the numerical model’s accuracy. Hence, this paper
analyses the influence of mesh accuracy at the example of stochastic cogging torque variations, which are
caused by magnetization uncertainties in a permanent-magnet synchronous-machine. As a result, a method to
calculate improved probability predictions at minimum computational cost is presented and applied here.

Introduction

During the production process of electrical machines, parameters as intrinsic deviations of the soft-
and hard-magnetic materials due to the manufacturing process result in small variations of each
machine’s behavior. These variations are considered as uncertainties and need to be included into the
machine’s simulations. For this purpose, recent publications propose polynomial-chaos (PC)
decompositions spanned by random polynomials as in [1].

PC-decompositions aim at representing the uncertain data as polynomial functions in dependence of a
set of independent and orthogonal random variables with known probabilistic densities. Subsequently,
statistical analysis can be performed by post-processing the coefficients of the determined polynomial-
chaos meta-model. Two different approaches exist to identify the PC meta-model: On the one hand,
the applied finite element (FE) solver can be recoded to include the stochastic uncertainties as an
additional dimension, yielding a reformulated deterministic problem for the stochastic modes and
resulting in a so-called intrusive stochastic Galerkin projection [9]. On the other hand, one can solve a
series of deterministic problems, which sample the stochastic space. Afterwards this sample set is used
to calculate the PC-coefficients; this approach commonly is referred to as non-intrusive stochastic
collocation [10]. The authors of [2] offer a comparison of both approaches, concluding that the
implementation of intrusive methods is tedious and error-prone while they do not yield any significant
advantage in comparison to the non-intrusive, sampling based approaches.

Considering the non-intrusive, sampling based PC-approaches, most publications as for instance [5],
focus on the selection of the best set of base polynomials and input samples in order to receive the
most accurate polynomial description at the lowest computational cost. The fact, that all those meta-
models rely upon FE-samples and hence intrinsically contain discretization errors, which distort the
predictions of further calculations, often is neglected. One of the few publications to consider this
problem is [3]. The therein-proposed approach however relies on a dual potential formulation, which
may not always be at hand, and requires a complete PC decomposition. A different solution approach
towards discretization error estimation in combination with PC-expansion is given in [6], which
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quantifies the solution’s overall error, but does not allow separating the PC approximation influence
from the discretization influence in the calculated error measure.

In order to avoid the described mixture of different error sources, we focus on Monte-Carlo simulation
(MCS) instead of PC analysis. The aim is an analysis of the influence of discretization errors on
stochastic cogging torque simulations, since cogging torque has proven to be especially sensitive to the
FEM’s mesh density [4]. Simulations are executed for a permanent-magnet synchronous-machine
(PMSM) and employ magnet variations described in [7] as stochastic input source. As a result, a
variance-based correction of the cumulative density function (CDF) is proposed and applied, providing
a time effective estimation of more accurate CDFs at minimal costs.

Methodology

a) Conventional torque calculation:

Different force calculations for electrical machines are state of the art, all of them being derivations of
the principal of virtual work as shown in [4]:
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Tφ being the torque, Wco the co-energy, B and H symbolizing magnetic flux respectively field in the
domain Ω. Equation (2) illustrates, that the prediction quality of torque calculations directly depends
on the accuracy of the calculated air-gap’s magnetic field and flux. Improving the air gap’s
discretization by adding more element layers yields a convergent behavior of the calculated cogging
torques. Figures 1 and 2 picture this behavior for the chosen application:

Fig. 1 First quarter of one cogging torque
period simulated with an increasing number of

air gap layers along the indicated arrow.

Fig. 2 Error of the cogging torque at angle 2.6º
versus the system’s degrees of freedom,

employing the Maxwell stress tensor method.

Figure 1 shows the first quarter of one cogging torque period depicted over the rotor’s rotation angle.
It can be observed, that the cogging torque’s peak value decreases for an increasing number of air gap
layers. [8] offers a detailed analysis of the error’s convergence, also stating that the global calculation
error ε can be quantified as a function of the convergence constant C, the element size h and the shape
function’s order q:
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This relationship is confirmed in Figure 2, which pictures the calculation error of the cogging torque’s
peak value for a fixed rotation angle (2.6º) over the FE-matrix degrees of freedom (DoF), employing
the Maxwell stress tensor method. The results of the calculated torque quantities display in accordance
with equation (3) the expected, linear decay of the calculation error when depicted over a logarithmic
scale, proving the correctness of the presented simulations.

b) Stochastic torque calculation:

Adding the consideration of uncertainties introduces a further dimension to the described torque
calculations. In the following, a PMSM whose rotor is excited by six surface mounted magnets is
investigated. Each magnet’s remanence flux-density Brem shall be allowed to vary uniformly between
1.08 T and 1.18 T with a desired value of 1.13 T, previously applied for the simulations in Figure 1
and Figure 2. Owing to these circumstances, the cogging torque’s peak value for a given discretization
converts from a single value to a spread of values, where each value is connected to its probability of
occurrence. Figure 3 depicts the resulting torque distribution for a Monte-Carlo simulation featuring
2000 simulations, applying the coarsest mesh with 49·103 DoF from the previous simulations:

Fig. 3 Histogram and probability distribution of the cogging torque’s
peak value for six uniformly varying magnets, with simulations based

on a coarse mesh having 49·103 DoF.

The originating cogging torque peak values in Figure 3 spread in a good agreement to a Gauss
distribution, which can be ascribed to the central limit theorem. The distribution’s mean value is in
accordance with the previous, undisturbed simulation, the occurring high probability values are due to
the probability density function’s (PDF) standardization to one. In contrast to the seemingly good
results, a comparison of the resulting PDF to the known convergence behavior displayed in Figure 2
reveals a severe problem:

 The stochastic calculations are employed in order to improve the prediction quality of the
applied FEM simulation. A comparison of the calculated torque’s variance to its calculation
accuracy however reveals a calculation error which is considerably larger than the calculated
variance. Hence, the calculated stochastic prediction is in vain.

 Two conflicting needs have to balanced: On the one hand, introducing a coarser mesh enables
a higher number of stochastic variations yielding a more accurate MCS. On the other hand,
finer meshes are needed for more accurate torque values.
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Results

The presented problem can be overcome by exploiting the knowledge about the torque’s error
convergence. If one considers the histogram in Figure 3, it is likely that the magnet permutation, which
causes the lowest cogging torque, will create one of the lowest cogging torques in a finer discretized
simulation as well. Furthermore it is expected, that the relation between the cogging torques of all
permutation will stay approximately the same. Accordingly, the probability distribution over all
calculated torque values is likely to move between the boundaries of Tmin and Tmax. Since the integral
over the probability distribution is normalized to one, a shift of the PDF’s mean value along with a
change of its variance can be predicted. Figure 4 pictures the prediction of the torque’s behavior.

Fig. 4 Prediction of the torque distribution’s behavior for an
increasingly finer mesh discretization.

The expected behavior has been verified in simulations. Moreover, if the boundary values +Tmin and
+Tmax for a finer air-gap discretization are known, the coarse torques T(i) may be recast by a mean and
variance-based torque approximation to more accurate values *T:
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Figure 5 and displays a comparison of the cogging torque’s peak values’ cumulative distribution
function for a mesh with a coarse (3088 nodes in air-gap, 49·103 in total) and a fine (15073 nodes in
air-gap, 82·103 in total) discretization. Both depicted curves differ completely, showing the
disallowable stochastic prediction error made when applying the coarse mesh for stochastic
predictions. Figure 6 displays the same curves, subsequent to the application of equation (4). Both
cumulative distribution functions now overlap so smooth that only for high zoom levels a difference is
apparent. In order to allow an improved analysis of the result’s quality, Figure 7 presents a QQ-plot,
which depicts the cumulative density function for fine-meshed and coarse-corrected meshed torque
calculations. The nearly ideal, linear line confirms the very good agreement of the presented
approximation in terms of its probability prediction accuracy.

The presented analysis enables two new approaches: On the one hand, it is possible to use a coarser
mesh featuring more stochastic sampling points with subsequent torque correction using (4). This
approach yields more accurate stochastic predictions. On the other hand, it is possible to execute an
adaptive meshing process, using the boundary values’ difference Δ of two consecutive steps as rating
criterion with for sufficient good mesh creation in stochastic

applications.
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Fig. 5 Cumulative distribution functions (CDF) of cogging torque
peak values applying a coarse mesh with 49·103 DoF (solid)

compared to simulations with a fine mesh featuring 82·103 DoF
(dashed).

Fig. 6 Cumulative distribution functions (CDF) of cogging torque
peak values applying a coarse mesh (solid) with 49·103 DoF and

corrected using equation (4) in comparison to finer simulations with
82·103 DoF (dashed).

Fig. 7 Quantile-Quantile plot for simulations based on a fine-meshed
and coarse, corrected torque calculation. The resulting straight,
diagonal line proves the accuracy of the presented correction.
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Conclusions

Modeling inaccuracies due to mesh discretization errors introduce additional uncertainties into
stochastic simulations, however have been neglected in most recent publications until now. Especially
cogging torque is sensitive to these variations. Due to the exponential growth in stochastic simulation
costs, complete Monte-Carlo simulations with the needed fine meshes are not always desired.
Advanced methods as meta-model based PC analysis do not allow the desired, pure discretization error
analysis. Hence, a variance-based evaluation of the cumulative density function’s boundaries for
different mesh accuracies has been presented. Evaluating the resulting mean and variance values in
comparison to the torque’s convergence behavior enables to determine the needed mesh quality. If
necessary, the proposed correction, which effectively rescales the calculated cumulative density
function, can be applied. It offers an improved estimation of the CDF at the cost of only two additional
fine simulations. The presented method has been applied to the example of stochastic cogging torque
calculations for a six pole PMSM. The results verify the suitability of the proposed approach. Finally,
the proposed method also can be employed for correcting PC-sampling points. The resulting
implications on the spectral stochastic properties will be researched in future.
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