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Abstract

Purpose – Depending on the load the flux-density distribution inside power transformers core shows
significant local variations due to stray fluxes which enter the transformer core. As saturation of the
core has to be avoided the flux-density distribution has to be determined early in the design stage of
the transformer. This paper seeks to address these issues.

Design/methodology/approach – To determine the load dependent flux-density distribution the
operating point of the transformer is calculated considering linear and non-linear material properties.
The operating point is determined using a linearised lumped parameter model of the transformer under
various load conditions. Considering non-linear material properties the inductance matrix depends on
the operating point and will be extracted by means of the FEM whenever the magnetic energy within the
transformer changes notably.

Findings – This paper presents a numerical stable approach to calculate the operating point of a
transformer by using the magnetic flux linkage as state variable for the coupled field problem.

Research limitations/implications – The proposed approach uses a fixed time-step to update the
lumped parameters by means of the FEM. This results in long simulation times. In further research it
is planned to implement an adaptive time-step method based on the change of the magnetic energy.

Originality/value – A numerical stable approach to calculate the operating point of a transformer
by using the magnetic flux linkage as state variable for the coupled field problem is proposed. The
methodology is applied to a 2D model of a three-phase transformer. However, it also can be applied to
3D FE models. Based on the calculated operating point, the flux-density distribution can be determined
and several post-processing methods can be executed (e.g. determination of core losses, . . .).

Keywords Field circuit coupling, Flux-density distribution, Load dependent stray fluxes,
Transformer core saturation, Phase shifting transformer, Transformers, Flux density, Fluxes

Paper type Research paper

1. Introduction
The deregulation of the energy market causes fundamental changes on the requirements
of the network configuration. The power flow in international interconnected systems,
as well as the increased supply of renewable energy sources leads to additional
stresses on individual network areas. To avoid congestions power flow controllers like
phase-shifting transformers (PST) are used to control the power flow inside the grid.
PSTs control the power flow over a transmission line by impressing a controllable
quadrature voltage between their connection points. Based on the rated power and the
requirements of the control, different principles of PSTs as given in Kramer and
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Ruff (1998) can be applied. An equivalent circuit diagram (ECD) of an indirect
symmetrical PST and its phasor diagram is shown in Figure 1. The quadrature voltage
is controlled by tap windings of the exciter transformer.

In PSTs of the two core design as shown in Figure 1 especially the stray flux of
the exciter transformer, caused by load currents, is predominantly in phase or in
phase opposition to the exciting flux of the core, similar to the conditions in regular
transformers under capacitive or inductive load. Due to the superposition of exciting
and stray flux significant local variations of the core fluxes may occur especially in the
yoke. Generally the yoke cross-section of a five limb transformer is approximately
60 per cent of the main limb cross-section. For economical reasons a decrease of the yoke
cross-section is desired. Since saturation of the core has to be avoided definitely
possible load-dependent local flux variations especially under capacitive load have to be
considered already in the design stage.

This paper describes an approach to investigate the flux distribution inside
the transformer core using a linearised lumped parameter model of the transformer
under various load conditions. The model is based on a lumped inductance matrix
representation, whose values are extracted by means of the finite element method (FEM)
whenever the magnetic energy within the transformer changes notably.

First the theoretical framework of the proposed approach is described. Then the
approach is applied to a three phase five limb exciter transformer of a PST considering
linear and non-linear material properties. Finally results of the flux-density computation
using linear and non-linear material properties for a 2D FE model of the transformer are
compared.

2. Theoretical framework
This section describes the theoretical framework of the electromagnetic calculations.
It is described how to determine the operating point of a transformer considering linear
and non-linear material properties and furthermore how the flux distribution inside the
transformer core is calculated. The transformer is represented by linearised lumped
parameter and therefore by the differential equations:

Figure 1.
ECD and phasor
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uðtÞ ¼ R · iðtÞ þ
d

dt
Cði; tÞ; ð1Þ

with the phase voltages u, the winding resistance matrix R, the phase currents i and
the flux linkage matrix C. The inductance matrix is extracted systematically using a
method which is already described in Lange et al. (2009) and Henrotte et al. (2007).
Based on the parameter extraction Subsection 2.2 describes a model for the linear and
non-linear calculation of the operating point. Subsection 2.3 describes the calculation of
the magnetic flux distribution inside the transformer core.

2.1 Determination of the inductance matrix
The lumped parameters that represent a transformer are the winding resistances and
inductances. Any capacitive effects are neglected. Considering a simplified model for a
transformer winding as hollow cylinder the winding resistances can be determined
analytically by:

Rwind ¼
p · dm

s ·A · kco
; ð2Þ

with the mean winding diameter dm, the specific electrical conductivity s, the coil
cross-section area A and the copper fill-factor kco.

The inductances are extracted systematically from a FE model of the transformer as
described already in Lange et al. (2009). The presented approach can be applied to 2D and
3D FE models. It consists in exploiting the FE Jacobian matrix of the magnetic system,
which represents the first order linearisation of the non-linear field equations around the
operating point at time t. A mapping between the field state variable (the magnetic
vector potential a) and the circuit state variables (the phase fluxes wr) is obtained on
basis of energy considerations.

The energy balance of a magneto-dynamic system expressed in field quantities
stating a power balance yields:

_EM 2 _Wm ¼

Z
V

j ·Lva; ð3Þ

and, respectively, in terms of circuit quantities:

_EM 2 _Wm ¼
r

X
ir _wr: ð4Þ

_EM is the time derivative of the magnetic energy. _Wm is the power delivered
by magnetic forces, which is zero neglecting magnetostriction, and Lva is the material
derivative of a. Absence of motion or deformation of the domain V yields Lv ¼ ðd=dtÞ·
_wr is time derivative of the flux through the coil winding of phase r. The current

density j in stranded conductors can be written as:

j ¼
r

X
irwr; ð5Þ

where wr are the shape functions of the phase currents ir . Using equations (3) and (4)
and substituting (5) yields:

COMPEL
32,4

1232



_wr ¼

Z
V

wr ·LvadV: ð6Þ

In the absence of eddy currents the current shape functions wr are independent of time.
Thus, the mapping between a and wr is:

wr ¼

Z
V

wr · adV: ð7Þ

In a mesh, this mapping between a and wr can be expressed by the vector:

Wri ¼

Z
V

wr ·aidV wr ¼ Wriai ð8Þ

where ai are the shape functions of the a field, and ai the corresponding coefficients.
The non-linear FE magneto-static equation system describing the transformer

under applied load currents is:

MijðaÞaj ¼ bi ð9Þ

with:

bi ¼

Z
V

j ·aidV ¼ I r

Z
V

wr ·aidV ¼ I rWir: ð10Þ

Let I*r be the currents at time t, and b*i ¼ I*r Wir the corresponding right-hand sides.
Solving equation (9) with bi ; b*i gives a*j and a first order linearisation around this
particular solution writes:

Mij a*j þ daj

� �
¼ Mija

*
j þ J ijdaj ¼ b*i þ dbi ð11Þ

with the Jacobian Matrix J ij ; ð›ajMikÞa
*
k . Since Mija

*
j ¼ b*i , one has:

J ijdaj ¼ dbi: ð12Þ

One can now repeatedly solve equation (12) with the right-hand sides dbi ¼ dI rWir

obtained by perturbating one after the other m phase currents I r and obtain m solution
vectors for daj. Since equation (12) is linear, the magnitude of the perturbations dIr is
arbitrary. One can so define by inspection the partial inductance matrix L›

rs of the
transformer seen from the terminals as:

dwr ¼ Wrjdaj

¼ Wrj J
21
ji W isdI s

; L›
rsdI s

ð13Þ

with:

L›
rs ¼ WrjJ

21
ji W is: ð14Þ

Similarly one can identify the secant inductance matrix Lrs and by solving equation (9)
repeatedly with linearly independent phase currents Ir to obtain:
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wr ¼ Wrjdaj

¼ WrjM
21
ji W isI s

; LrsI s

ð15Þ

with:

Lrs ¼ WrjM
21
ji W is: ð16Þ

2.2 Calculation of the operating point
2.2.1 Linear material properties. An arbitrary operating point of the transformer can be
determined solving equation (1). As described in Section 1 the inductance matrix L is
extracted by means of the FEM. Considering linear material properties the secant
inductance matrix L is constant, the time derivative of the flux linkage matrix is
given by:

d

dt
Cði; tÞ ¼ L ·

d

dt
iðtÞ: ð17Þ

For the inductance matrix it is assumed Li;j ¼ Lj;i . To avoid numerical inaccuracies the
extracted inductance matrix is balanced by:

L ¼
LFE þ LT

FE

2
: ð18Þ

This symmetrisation does not include any geometrical symmetries and does not affect
the results.

Considering a steady state operation the time derivative can be expressed by a time
harmonic-approach:

d

dt
¼ jv: ð19Þ

The primary winding of the transformer is excited by a voltage. The secondary
winding is loaded with an arbitrary impedance, as shown in Figure 2.

The voltage u1 represents a vector including the primary phase-shifted phase
voltages of the three phase system. Consequently, the inductanceL11 andL22 are matrices
including all self and mutual inductances of the primary, respectively, the secondary
three phase winding system. The coupling elementsL12 andL21 are matrices that include
all mutual inductances of the primary to the secondary winding system and vice
versa. The resistances R1;2 and the load impedance ZLoad are diagonal matrices.

Figure 2.
Electrical ECD
of the transformer
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Applying equations (17), (19) and u2 ¼ iLoad ·ZLoad ¼ 2i2 ·ZLoad to equation (1) the
unknown phase currents can be calculated by:

i1

i2

 !
¼

R1 0

0 R2

 !
þ jv

L11 L12

L21 L22

 !
þ

0 0

0 ZLoad

 !" #21

·
u1

0

 !
: ð20Þ

Once the inductance matrix is determined each arbitrary operating point can be
calculated with negligible computational cost.

2.2.2 Nonlinear material properties. Considering non-linear material properties
the inductance matrix depends on the operating point, i.e. the load, and thus on the
saturation state of the transformer core. This yields a coupled simulation problem.
The differential equation system of the electric circuit equation (1) can be solved by using a
lumped parameter model representing the field problem. The field problem is solved by a
computationally expensive FE calculation. The extracted lumped parameters from the
FEM are updated with an arbitrary update rate of DTFE which is lower than the circuit
problem time step. Figure 3 shows a flowchart of the weak coupled simulation. Initially,
the tangent inductance matrix (L›k

rk ) is extracted by a static FE analysis. The circuit
problem is solved for a time interval up to the update rate of the field problem. At the
update point the excitation currents which are calculated by the circuit equations are set
and an updated tangent inductance matrix is extracted and the circuit problem is solved
for the next time interval. The coupled simulation ends if a defined end time tend is reached.

Taking the phase current as state variable for the coupled problem, the circuit
equation system (1) for the no load case yields:

d

dt
i ¼ L›21½u2 Ri�: ð21Þ

For this model there is no feedback between flux linkages calculated by the circuit
problem (C ¼ L ›i) and the field problem (C ¼

R
V
wr · a, with the current shape

function wr , the coildomain V and the magnetic vector potential a). The linearisation
of the tangent inductance matrix leads to an error which propagates in time. Due to the
missing feedback the simulation will diverge as it is shown in Figure 4. The figure

Figure 3.
Flowchart of the
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depicts the induced voltage in one phase of a three phase transformer at starting
operation. To decrease the transient phenomenon the magnitude of the exciting voltage
is increased with an exponential function with the time constant t. At t < 0:3t
the simulation diverges. The flux linkage and consequentially the induced voltage
calculated by the FE model exceeds the induced voltage calculated by the circuit
problem, because of erroneously impressed currents.

A stable behaviour for the coupled problem can be achieved by taking the flux
linkage as state variable. At each extraction step the tangent inductance matrix and
the flux, respectively, the flux linkage Cjtk

FE
is extracted from the magneto static FE

analysis at the time step tkFE . The circuit equation yields:

Z t

21

ðu2 RiÞdt ¼ C t k
FE
þ

›C

›i

����
����
t k
FE

i2 ijt k
FE

� �
; ð22Þ

and consequently:

iðtÞ ¼
›C

›i

� �21

t k
FE

Z t

21

ðu2 RiÞdt 2Cjt k
FE

� �
þ i

����
����
t k
FE

: ð23Þ

The change in the current is calculated on basis of the flux linkages of the circuit
equation and of the FE model. At each FE extraction point tkFE the deviation of the flux
linkage from the circuit problem and the FE problem is reset. Thus, discontinuities in
the current characteristic are possible. Figure 5 shows the flux linkage and the current
in one phase of the transformer. The discontinuities at the FE extraction points can be
used as an error indicator to control the step width of the FE extraction points.

According to the calculation of the operating point considering linear material
properties the load in equation (23) is considered by its differential equation,
e.g. u ¼ ð1=CLoadÞ

R
idt for the capacitive, respectively, u ¼ LLoaddti for the inductive

load.

Figure 4.
Comparison induced
voltage of one phase
taking the phase current
as state variable
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2.3 Determination of the flux-density distribution
The flux is determined by the circulation of the magnetic vector potential over a closed
contour C:

w ¼

I
C

adC: ð24Þ

For 2D FEA equation (24) simplifies to:

wi ¼ ðaðPi;1Þ2 aðPi;2ÞÞ · d ð25Þ

with the depth of the 2D model d and the vector potential solution at two arbitrary
points aðPi;1Þ and aðPi;2Þ referring to Figure 6. In 3D the determination of the flux gets
more complex as a closed contour on the transformer core has to be identified. The flux
is calculated at n points in different locations (side yoke, middle yoke, etc.) of the
transformer core. Figure 6 shows exemplarily the n calculation points at the side yoke
of a five limb transformer.

For linear material properties the vector potential solution is available only for the
unit excitation per coil m of the winding configuration. Therefore, the flux inside the
core is determined by:

wjloc;i ¼
Xm
r¼1

wrjloc;i ir with wrjloc;i ¼

I
C

ardC: ð26Þ

Figure 5.
Flux linkage and
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flux as state variable
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The currents ir of the operating point are calculated by equation (20).
For a non-linear calculation as described in Section 2.2.2 the vector potential

solution is available for each extraction point. Thus, equation (24) can directly be
applied to the field solution of the operating point.

Towards the calculation of the flux distribution the mean flux-density distribution
is calculated by:

�Bjloc;i ¼
wjloc;i

Acs;i
; ð27Þ

where Acs;i is the flux penetrating cross-section area of the transformer core.

3. Calculation of the flux-density distribution
The proposed calculation method of the flux-density distribution is exemplarily applied
to a five limb three phase transformer. In this paper a 2D FE model is used. However, as
the proposed method is also valid for 3D FE-models it is possible to take into account the
transformers tank, clamping plates, etc. The considered transformer has a double
concentric winding configuration as it is used, e.g. in exciter transformers of PSTs in a
power range of 100 MVA up to 2,000 MVA. The inner winding is connected in series with
the outermost winding and is specified as primary winding. The middle winding is
specified as secondary winding.

Figure 7 shows a schematic view of the five limb transformer. The flux-density
distribution is calculated inside the yoke, the outer main limb and the side limb.

The operating point of the transformer is calculated under no-load condition and
inductive, respectively, capacitive load conditions. For the non-linear calculation the B-H
characteristic of grain-oriented electrical steel sheets with grade M-0H as shown in
Figure 8 is considered. The linear calculations are performed assuming a relative
permeability mr ¼ 20,000. The transformer is designed for a magnetic flux density
inside the main limb of Bnom ¼ 1:52T.

Figure 6.
Calculation points
of the flux

100%

Side
yoke

0%

i = n i = 1

a (Pi, 1)

a (Pi, 2)

COMPEL
32,4

1238



First the no-load operation is calculated considering linear and non-linear material
properties of the transformer core. The primary winding is connected to nominal voltage.
The secondary winding is opened. The resulting no-load currents considering non-linear
material properties are shown in Figure 9. Due to incipient saturation especially in the
middle yoke the third and fifth harmonic occur with a magnitude of 9 per cent,
respectively, 5 per cent.

The fundamental component of the flux-density distribution for the no-load case is
shown in Figure 10. The mean flux-density distribution is calculated as described in
Section 3 by means of equations (26) and (27). Inside the main limb the flux-density
calculated considering linear and non-linear material is at the nominal flux-density. Due
to the superposition of the fluxes of the three phases the flux-density increases at the
middle yoke. Due to incipient saturation the flux-density of the linear calculation is
higher compared to the non-linear calculation. Consequential the magnetic flux-density
at the side yoke and side limb reduces for the linear case compared to the non-linear case.

Figure 8.
Non-linear B-H
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Figure 9.
No-load currents of
the transformer
considering nonlinear
material properties
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Applying a capacitive load to the secondary winding of the transformer leads to
deviations of the flux-density distribution, due to stray fluxes which enters the core. The
maximum flux-density appear at the side yoke. Figure 11 shows the flux-density
distribution of the capacitive load case at nominal power referred to the no-load
flux-density. The flux-density is increased about 2.1 per cent at the side yoke considering
non-linear materials compared to the no-load operation.

Defining a reference stray flux Fstray;ref ¼ uk ·Fmain with the percent impedance
uk ¼ 2.58 per cent, it can be stated that 81 per cent of the full stray flux enters the core at
the side yoke. The percent impedance uk is determined by a short-circuit test using the
linear equation system given in equation (20) with ZLoad ¼ 0 and a nominal current flow
in the primary winding. Inside the yoke the linear calculation offers a slightly higher
fraction of stray flux entering the core compared to the non-linear results. Thus, the
linear calculation can be used as a worst case approximation to evaluate the
load-dependent stray fluxes entering the core for a certain geometry.

Applying an inductive load to the secondary winding of the transformer at nominal
power leads to the flux-density distribution shown in Figure 12. For the inductive load
operation the flux-density at the yoke is reduced, except the region between of two
neighbouring phase windings at the middle yoke. There the flux-density is increased

Figure 11.
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about 0.6 per cent. At the main limb and the side limb the flux-density is slightly
increased in opposition to the capacitive load case.

Comparing the flux-density distribution of the capacitive and the inductive load
case, it can be stated that the capacitive load case is the more critical case for the design
of the top yoke, if the primary winding is excited by a voltage.

4. Conclusions
This paper presents an approach for the calculation of the flux, respectively, flux-density
distribution of power transformers considering non-linear material properties. The
calculation is based on a linearised lumped parameter representation of the transformer.
The resistances of the phase windings are calculated by a simplified analytical model as
their influence on the results is insignificant. The inductance matrix is extracted by
means of a FE model of the transformer. The proposed approach allows for the use of
linear as well as non-linear material properties.

Considering linear material the inductance matrix do not depend on the operating
point. Once the inductance matrix is extracted each operating point can be calculated
with negligible computational cost.

Figure 12.
Magnetic flux density
distribution: inductive
load conditions
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For non-linear material properties the inductance matrix is extracted depending on
the operating point of the transformer. It is shown that using the phase current as a state
variable for the coupled field problem, the simulation will diverge, due to a linearisation
error which propagates in time. By using the magnetic flux linkage as a state variable a
numerical stable behaviour is obtained to accurately determine the transformers
operating point.

The presented approach is applied to a five limb three phase power transformer. The
flux-density distribution is calculated for the no-load as well as the inductive and
capacitive load operation. Load dependent stray fluxes which enter the core are analysed
for the different load cases. Considering the flux-density inside the yoke the capacitive
load case is the more critical as the flux-density will increase about 2.1 per cent compared
to the no-load case.
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