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Application and Verification of a Dynamic Vector-Hysteresis Model
Simon Steentjes, Daniel Eggers, and Kay Hameyer
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This paper presents the application and verification of a dynamic vector-hysteresis model for nonoriented ferromagnetic materials.
The hysteresis model is based on the fundamental principles of thermodynamics. Since the model is completely consistent with a genuine
energy interpretation it can be considered from this point of view as a mechanical analog. To validate the model, the response of the
model is compared to measured material characteristics of an isotropic electrical steel grade.

Index Terms—Energy conservation, magnetic hysteresis, magnetic material modeling, vector-hysteresis model.

I. INTRODUCTION

T HE detailed understanding of soft magnetic materials is
essential for the development of soft magnetic steels, the

most appropriate material choice and for the optimization of
electrical machine designs. For particular applications the most
accurate prediction of iron losses is essential. Therefore, accu-
rate modeling of the dynamic hysteresis loops is of importance
for design engineers and material manufacturer. If the aim is
the highest possible accuracy, the numerical integration of the
iron losses in the field solution by a magneto-dynamic hys-
teresis model is required, i.e. a simultaneous solving of the mag-
netic field equations with consideration of magnetic hysteresis
and eddy current effects. This enables the characterization of
the magnetization behavior of magnetic materials under sinu-
soidal or distorted, unidirectional or rotating field conditions.
Phenomenological hysteresis models such as the Preisach [1] or
Jiles-Atherton model [2] are essentially interpolated measure-
ments, which are adapted to the numerical field problem. The
choice of their particular family of interpolation basis functions
presides little physical consideration. Both models lack a true
physical background and suffer in general from poor accuracy
in the interesting ranges of flux density and frequency for elec-
trical machine design, i.e., outside the measurement ranges used
for the parameter identification. Many of the currently used hys-
teresis models are fundamentally scalar models and are solely
vectorized to 2-D or 3-D quite artificially [3], [4]. An alternative
approach treats the problem directly at the microscopic level
and uses multi-scale techniques [5] to trace the microscopic in-
formation over to the macroscopic level. The microscopic scale
is that of Weiss domains and Bloch walls. These techniques are
definitely relevant to improve the understanding of the micro-
scopic phenomena involved. However, considering their very
high computational cost, they are impracticable in modeling en-
gineering applications. The purpose of this paper is to introduce
an energy-based modeling of magnetic materials [3], [4], [6] in
order to characterize the nonlinear behavior of magnetic ma-
terials as well as the associated energy losses for any instant
of time. This enables to go beyond the limitations of currently
used models. For this purpose, the energy-based and intrinsical
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Fig. 1. Magnetic flux density as a function of applied magnetic field
. Enlarged are the Barkhausen jumps during the irreversible magnetiza-

tion process.

vector capable hysteresis model [3], [4] is further developed and
implemented in Python [7] to work in the IEM in-house finite
element software package iMOOSE.

II. LOSS MECHANISMS IN FERROMAGNETIC MATERIALS

The typical hysteresis behavior of soft magnetic materials is
the macroscopic result of the magnetization process at the mi-
croscopic level. Each ferromagnetic material has a magnetic do-
main structure, which is closely associated with the magnetiza-
tion process. Domains evolve since the system aims at a min-
imum free energy state following the principles of thermody-
namics. Under the influence of an externally applied magnetic
field the equilibrium of the free energy is disturbed and the do-
main structure rearranges itself. It is important to distinguish
between three mechanisms resulting in magnetization changes:
1) reversible domain wall motion;
2) irreversible domain wall motion;
3) coherent rotation.
Irreversible domain wall motion is an abrupt movement from

one energy minimum to another [1]. This leads to heat dis-
sipation due to localized eddy currents. Those abrupt move-
ments result in discontinuous changes of magnetization (Fig. 1)
[1]. These jumps in magnetization are known as Barkhausen
jumps. During reversible domain wall motion the micromag-
netic system remains in a local energy minimum, but the posi-
tion of this minimum varies with the applied magnetic field [1].
This leads to continuous changes in the magnetization. In satu-
ration changes in magnetization are mainly reversible in nature,
since the system is located in the global energy minimum.
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Metallic soft magnetic materials exhibit significant time-de-
pendent effects under dynamic operating conditions. These lead
to the complex nonlinear behavior of the magnetic hysteresis
depending on the magnetization frequency and the peak value
of the induction. Bulging of hysteresis loops arises through the
movement of domain walls dampening microscopic eddy cur-
rents originating from abrupt change in energy [1]. Additionally
the variation of the externally applied magnetic field induces
macroscopic eddy currents.

III. ENERGY-BASED DYNAMIC VECTOR-HYSTERESIS MODEL

The first law of thermodynamics (1) states that every system
has an internal energy that can only be changed by the transport
of work and/or heat beyond the boundaries of the system

(1)

A change in internal energy density corresponds to the
work done on the system plus the emitted or absorbed heat
. The used dynamic vector-hysteresis model [3], [4] builds

on the thermodynamic representation of hysteresis. Thermal ef-
fects are neglected since entropy is assumed to be constant.
The internal energy corresponds to a reversible magnetic field

strength and the dissipated work within the system to an ir-
reversible magnetic field strength . Therewith the energy
densities are described by

(2)

(3)

Deriving the energy dissipation functional (3) with respect

to makes it possible to represent the energy balance as a
function of the magnetic field strength

(4)

In order to separately treat pure hysteresis losses and dynamic
losses, the irreversible magnetic field strength is separated into
two parts and . At the macroscopic level the microscopic
distribution of the pinning points, hindering the domain wall
motion, cannot bemodeled explicitly. Letting the number of rip-
ples in the energy density functions tend to infinity, the pinning
force can be modeled as an analog by a dry friction force as
in the Jiles-Atherton model [2], [6]. This force counteracts any
change in magnetization and the corresponding energy density
is converted into heat. Hence the pure hysteresis losses are rep-
resented by a dry friction force of constant amplitude [3], [4]

(5)

Since the energy dissipation functional is not differentiable,
it models the memory effect. But (5) is a convex function and
thus there exists a subgradient G [3], [4].
Considering the dynamics of the magnetization process, the

attenuation by microscopic eddy currents can be represented as
an mechanical analog by a movement with viscous friction with
the friction constant

(6)

This makes it possible to specify the macroscopic magnetiza-
tion with consideration of hysteresis

(7)

The magnetization is described by a parametric sat-
uration curve, whose parameters are identified from measure-
ments. A well-known, physical based description for nonori-
ented steels is the Langevin function [3], [4]. Two Langevin
functions are chosen to describe the anhysteretic magnetiza-
tion curve (8). The anhysteretic curve describes the thermody-
namic equilibrium and therewith the reversible magnetization.
The first one represents the region of the anhysteretic curve,
where the motion of Bloch walls is dominating, the second one
the rotation of the magnetic moments relative to the preferred
axis (coherent rotation)

(8)

Equation (8) gives two degrees of freedom for the ferromag-
netic characteristics and two degrees of freedom for
the saturation curve . Other functions to describe
the anhysteretic curve are presented in [4]. It is important to
point out that . Finally the hysteresis model can be mod-
eled as an analog in terms of a mechanical system [3], [4].
Under real conditions in polycrystallinematerials, the domain

structure is complex and statistical distributed pinning points are
present. Correlation fields between adjacent domain walls deter-
mine the magnetization process and lead to large magnetization
groups represented by the correlated motion of a large number
of domain wall segments in a finite region in the material [1].
In order to represent the statistical distribution of the pinning
point strength (local coercive forces) it is reasonable to assume
that the magnetization is a multi-scale function, depending on
the global value , which is composed of local values as
follows:

(9)

with the weighting
(10)

This can be accounted for in the model by combining several
elementary parts, called cells, and defining for each part a time-
independent pinning force .
Therewith the global scale can be treated independently from

the local scale. This independence enables a simple algorithm at
the local scale. Each cell can be initiated independently and as-
signed to a local coercive force (i.e. local friction force ). The
viscous friction force acts on all cells similarly. This is modeled
by a material dependent global friction constant . These ’s
are the internal variables and they are all subjected to the same
applied magnetic field . The equilibrium (4) can be written as
a sum of independent cell-based magnetic fields

(11)
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Fig. 2. Comparison of measured and extrapolated anhysteretic magnetization
curve (measured) forM270-35A electric steel measured at the single sheet tester
with the fitted double Langevin function .

TABLE I
LANGEVIN PARAMETERS FOR M270-35A

IV. IDENTIFICATION OF THE FREE PARAMETERS

The free parameters of the vector-hysteresis model are iden-
tified using measured material characteristics on a standard Ep-
stein frame (or single sheet tester).

A. Automatic Curve Fitting of the Anhysteretic Curve

Central material characteristic is the anhysteretic curve.
Fig. 2 shows a comparison of the fitted double Langevin
function with the measured and extrapolated anhysteretic curve
for a nonoriented ferromagnetic steel sample (M270-35A).
The double Langevin characteristic and the shift between the
anhysteretic and initial magnetization curve due to irreversible
effects in the range of small to medium magnetic polarizations
is recognized. To identify the parameters of (8) the analytic
double Langevin function is least-square fitted to the extrap-
olated measured anhysteretic magnetization curve (Table I).
Separately shown in Fig. 2 are the first summand of the sum in
(8) and the second summand .

B. Interpolation of the Coercive Curve

The identification of the local pinning forces and their
weightings is done by interpolating the coercive curve by
a staircase function [4], which describes the abrupt, discontin-
uousmagnetization process. The coercivity explicitly represents
the lag of the reversible magnetic field behind the externally
applied field . Two interpolation methods are used: 1. Spline
interpolation 2. Optimal interpolation with a modified Heavi-
side function.
The value , the trigger point of the associated frac-

tion, corresponds to the value of the respective friction coeffi-
cient [4]. The weighting of the cells, generally representing
the probability of occurrence of the associated pinning force is
obtained by the normalized rate of change

(12)

TABLE II
MODEL PARAMETERS FOR M270-35A

Fig. 3. Variation of the magnetic field (left) and resulting hysteresis loop
(right).

To describe the domain wall bowing a cell with is
used. The global energy minimum is taken into account by a
cell with . In the future, a microstructural
analysis of the distribution function of the pinning points will
serve for the determination and identification of the weighting
of individual cells. The identified parameters for M270-35A are
listed in Table II.

C. Identification of the Viscous Friction Constant
The global viscous friction constant describing dynamicmag-

netization effects is currently identified by a try&error fitting
with measured hysteresis loops and losses.

V. ANALYSIS AND VERIFICATION OF THE HYSTERESIS MODEL

A. Internal and Minor Loops, Stability Analysis

The model is able to reproduce stable internal loops. If the
externally applied magnetic field is successively increased the
ferromagnetic material is continuously magnetized. During this
magnetization process internal loops are traversed. These in-
ternal loops are correctly modeled by the dynamic vector-hys-
teresis model. Furthermore stable minor loops can be modeled.
To study the stability of the hysteresis model the applied

magnetic field oscillates at first between the main hysteresis
loop and then around an internal loop (Fig. 3). The vector-hys-
teresis model provides a stable loop within the main loop and
the turning point rule is adhered. Additionally a stable minor
loop is obtained if the applied magnetic field alternates between
two positive values as long as the turning point values stay
unchanged.

B. Vector Fields

The magnetic field strength vector is described in the
2-D case by

(13)

(14)

with the angular velocity . Although the parameters of the
vector-hysteresis model are identified using standard uniaxial
measurements the model is able to reproduce the material be-
havior of isotropic materials under generally rotating or ellip-
tical fields (Fig. 4).
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Fig. 4. Variation of the magnetic field (left) and resulting hysteresis loop
(right).

Fig. 5. Comparison of modeled (left) and measured (right) hysteresis loops for
M270-35A at 3 Hz.

Fig. 6. Comparison of modeled (left) and measured (right) hysteresis loops for
M270-35A at 200 Hz.

C. Verification Using Quasi-Static and Higher Frequency
Measurements

To validate the identified parameters, the response of the
hysteresis model is compared with measured material char-
acteristics. A comparison of the measured losses as well as
the magnetic hysteresis loops is conducted. An independent
analysis of the parameters and w from the dynamic parameter
is presented. Therefore quasi-static measurements and higher

frequency measurements are analyzed. The magnetic field
used on the Epstein frame or single sheet tester serves

as the model input. The model response ob-
tained from (7) is compared to the measurement
(Fig. 5). Deviations mainly occur in the medium polarization
region and a significant shearing of the modeled hysteresis loop
is apparent. Both effects are closely related to the modeling of
the first Langevin function (8) as the central material character-
istics of the model. The model reacts sensitive to the description
of the reversible magnetization. The hysteresis model describes
the bulging of the hysteresis loops using a single global constant
parameter . The agreement is qualitatively higher than for
the quasi-static measurements. Comparing higher-frequency
hysteresis loops with each other, a good agreement between
measured and modeled curves is obtained (Figs. 6 and 7).

Fig. 7. Comparison of modeled (left) and measured (right) hysteresis loops for
M270-35A at 400 Hz.

Fig. 8. Direct comparison of modeled and measured hysteresis loops for
M270-35A at 50 Hz and 0.9 T (left) and 200 Hz and 1.1 T (right).

Direct comparisons of modeled and measured hysteresis loops
are exemplarily shown for 50 Hz and 200 Hz for mid-level flux
densities in Fig. 8.

VI. CONCLUSION

The vector-hysteresis model describes the metrological char-
acteristics of nonoriented electrical steel accurately. A separate
analysis of the different model parameters is presented. Fur-
ther work is required regarding the physical justification of the
parameter identification and the modeling of the anhysteretic
curve to enable a more accurate modeling of hysteresis curves
at various frequencies and magnetic flux density levels. This
work is in progress. Anisotropy, i.e. oriented steel grades, can be
considered by adding a weighting function of the angle of each
individual magnetic moment with respect to the field. The pro-
posed model in combination with a 1-D eddy current model of
the half sheet thickness is a strongly coupled transient problem
that enables nearly the exact calculation of the magnetic fields
and losses. This will be realized in the next steps of this research
work.
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