
Published in IET Science, Measurement and Technology
Received on 31st May 2011
Revised on 3rd April 2012
doi: 10.1049/iet-smt.2011.0126

ISSN 1751-8822

Numerical simulation of electrical machines by means
of a hybrid parallelisation using MPI and OpenMP for
finite-element method
S. Boehmer1 T. Cramer2 M. Hafner1 E. Lange1 C. Bischof2 K. Hameyer1

1Institute of Electrical Machines, RWTH Aachen University, Aachen D-52056, Germany
2Center for Computing and Communication, RWTH Aachen University, Aachen D-52056, Germany
E-mail: stefan.boehmer@iem.rwth-aachen.de

Abstract: In this study, a hybrid parallelisation approach for the simulation of non-linear electromagnetic problems by means of
the message passing interface (MPI) and the OpenMP application program interface for the finite-element method (FEM) is
investigated. After an introduction, the metrics applied to evaluate the speedup and the efficiency are outlined.
By parallelising the institute’s in-house FEM-package ‘iMOOSE’ either by MPI or by OpenMP, an evaluation basis for the
hybrid approach is being founded. The hybrid parallelisation approach is being evaluated on the high-performance computing
cluster of university’s centre for computing and communication.

1 Introduction

Throughout the past decade, the increase of computational
power was partially a result of increasing the processing
frequency but mainly a consequence of massive
parallelisation within the central processing unit (CPU).
This multi-core architecture evolved rapidly within the past
years and along with their research programs, the road maps
of the large CPU manufacturers indicate a break through of
more than a hundred cores for a single CPU within the next
decade [1]. This massive parallelisation has already proven
its potential for general purpose graphic processing units
(GPGPU). The architecture classification of CPUs and
GPGPUs according to [2] distinguishes two categories:
multiple instructions multiple data (MIMD) for the CPU
and single instructions multiple data (SIMD) for the
GPGPU, respectively.

In theory, GPGPUs have an extensive performance benefit
in comparison with CPUs because of its SIMD concept and a
huge number of parallel processing units. However, in most
real-world applications this performance is restricted by the
memory bandwidth available to the GPGPU.

The motivation of this work is to evaluate the performance
of the industrial standardised parallelisation paradigms MPI,
OpenMP and their hybrid combination on high-performance
computing clusters based on MIMD architectures to lay the
foundation for a decision basis for future FEM-software
design for the numerical simulation of electrical machines.
The proposed parallelisation can be extended to SIMD
architectures, which is not included in this work, since one
of the underlying equation solvers will be supporting
GPGPUs in the near future [3].

2 Metrics

In order to compare different parallelisation approaches, the
following metrics are applied [4]. All measurements are
based on the execution time T (p) (Wall Clock Time) with p
being the number of parallel processes. The sequential
execution time T (1) accounts for the exclusively consumed
CPU-time as well as for peripheral access time caused by a
sequential process. The parallel overhead is described by

TO(p) = pT (p) − T (1) (1)

The speedup for a given number of p parallel processes or
threads is defined as

S(p) = T (1)

T (p)
(2)

The general definition of the efficiency with respect to the
computational resources is given by

E(p) = S(p)

p
= T (1)

pT (p)
= 1

1 + (TO(p)/T (1))
(3)

According to Amdahl’s law [5] the theoretical maximum
speedup for a given program in case of p � 1 is limited
by its sequential fraction a

S(p) ≤ S(1) ≤ 1

a
(4)

IET Sci. Meas. Technol., pp. 1–5 1
doi: 10.1049/iet-smt.2011.0126 & The Institution of Engineering and Technology 2012

www.ietdl.org



The theoretical maximum speedup of a program with a
sequential fraction of, for example, a ¼ 0.1 is S(1) ≤ 10.

3 Parallelisation paradigms

Processor manufacturers state that the single core speed is not
going to increase significantly in the next CPU generations.
This arises from physical limitations, which are not
expected to be overcome in the near future [6]. Owing to
the upcoming microprocessor architectures it is crucial to
exploit parallelisation to cut down computation time.
Essentially, two approaches can be used for parallelisation
on general purpose hardware: The OpenMP Application
Program Interface [7] and the MPI [8].

3.1 OpenMP against MPI

OpenMP is designed to work on architectures having a shared
memory address space and can be deployed to parallelise
loops and computationally independent program fragments
with a minimum of additional code. Critical memory access
operations, for example, during the element-wise assembly
of the system matrix within a parallel loop must be guarded
by exclusive locking mechanisms, which guarantee that
only one process writes to a certain entry of the matrix at
the same time.

MPI relies on data distribution requiring an explicit
communication between the parallel processes, which
demands in case of FE analysis an a priori mesh
decomposition. This decomposition allows for a locking
free assembly of the system matrix but requires an explicit
data exchange for solving and incorporating boundary
constraints. The amount of additional code is considerably
larger compared with OpenMP. MPI parallelisation gains a
huge benefit, if the FE problem description exceeds the
main memory capability of a single computing node, since
such problems can be computed by using multiple
computing nodes by MPI.

Parallelisation with MPI is done by multiple processes,
whereas OpenMP uses multiple threads belonging to one
process. Threads are light-weight processes sharing the
same address space and therefore also global variables. This
makes context switching between different threads of a
process much faster than switching between different
processes.

3.2 Hybrid parallelisation

In case of hybrid parallelisation, both paradigms OpenMP and
MPI are combined to a joint parallelisation in order to exploit
the advantages of both approaches. Parallelisation on one
computing node is done by OpenMP, which theoretically
benefits from the shared memory address space. In addition,
MPI is used for the parallelisation between multiple
computing nodes for better scalability of the computation.

4 Implementation details

The proposed hybrid parallelisation consists of a combined
OpenMP and MPI parallelisation. Each paradigm is
described separately in the following sections.

4.1 Parallelisation based on OpenMP

OpenMP exploits a shared address space memory
parallelisation, such that every thread is capable of arbitrarily

accessing the whole memory. In contrast to the MPI
parallelisation, no data distribution is necessary. Anyhow, it
must be ensured that the parallelised regions are thread-safe,
particularly the access to the system matrix is a critical
operation. Here, data race conditions must be avoided, which
occur when multiple threads access the same location in the
matrix without an appropriate control mechanism. Different
approaches have been evaluated to guarantee such an
exclusive access to the system matrix. Finally, data
encapsulation in combination with OpenMP’s critical
sections wrapping the data access performed best during
evaluation.

The following computationally expensive regions have
been identified and parallelised:

† assembly of the system matrix;
† adding the Jacobian matrix;
† solving the system of equations;
† curl of the magnetic vectorpotential to compute the
magnetic fluxdensity.

Parallelisation is done on loop level by adding OpenMP
directives mainly in front of for-loops, for example, at the
loop iterating over all elements during assembly of the
system matrix.

4.2 Parallelisation based on MPI

The implemented MPI parallelisation employs domain
decomposition of the FE-mesh for the required explicit data
distribution. Therefore the FE-mesh is cut into multiple
sub-meshes, which are assigned to the participating MPI
processes, so that every involved process is exclusively
working on a particular sub-mesh.

The domain decomposition of the FE-mesh is done
element-wise so that each FE-element is assigned to exactly
one sub-mesh. Formally, the decomposition of the complete
mesh domain V into s sub-meshes Vi is given by

⋃s

i=0

Vi = V with Vi > Vj = ∅ for i = j (5)

The mesh decomposition is interpreted as a graph-based
problem and thus methods from graph theory can be
applied to perform the decomposition. In a first step, the
FE-mesh is transformed to a graph representation, that is,
the dual graph of the mesh. Every element of the mesh is
assigned to a single vertex in the dual graph. Two vertices
in the dual graph are connected by an edge if the
corresponding elements are adjacent. For 2D problems two
elements are adjacent if they share a common edge in the
mesh and in 3D if they share a common surface. Each
vertex of the dual graph is weighted according to the
number of degrees-of-freedom (DoFs) associated with its
corresponding element of the FE mesh. Afterwards, the
dual graph can be partitioned by several methods. In this
work PARMETIS [9] is applied, which employs multilevel
dual-graph partitioning methods. Finally, the mesh
decomposition is determined from the partitioned dual
graph by the unique mapping from vertices of the dual
graph to mesh elements.

The mesh decomposition is the first fundamental
component of the MPI parallelisation, parallel assembly of
the system matrix is the second fundamental component.
Since MPI relies on data distribution for all processes,

2 IET Sci. Meas. Technol., pp. 1–5

& The Institution of Engineering and Technology 2012 doi: 10.1049/iet-smt.2011.0126

www.ietdl.org



similar to the partitioning of the FE-mesh the system matrix
and the right-hand side vector have to be split up and stored
on different processes as well. This is done row-wise so
that every process holds a specific range of rows.

During the assembly of the system matrix one has to
identify the DoFs located within the interior of a sub-mesh
and the DoFs associated to the boundaries of the
sub-meshes. As the latter ones interact with each other, the
following logic enumeration is applied:

1. All interior DoFs: Process with rank zero handles its
interior DoFs and maps them to the first rows of the matrix.
All other processes enumerate their interior DoFs with
increasing rank the same way.
2. All boundary DoFs: Enumeration by a common pattern.

By this mapping from DoFs to rows in the equation system
the matrix layout equals an arrow matrix. Let s be the number
of processes and n the total number of DoFs

A1 F1

A2 F2

. .
. ..

.

As Fs

FT
1 FT

2 · · · FT
s D

⎛
⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎠

x1

x2

..

.

xs

xn

⎛
⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎠

=

b1

b2

..

.

bs

bn

⎛
⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎠

rank 0
rank 1

..

.

rank s − 1
all ranks

submesh 1
submesh 2

..

.

submesh s
boundary DoFs

(6)

Matrix Ai contains the portion of all interior DoFs of the sub-
mesh i, which are associated with the process of rank i–1. The
portion of all boundary DoFs is contained in the matrices Fi

and D, which are assembled by all processes. Owing to this
enumeration every process can iterate independently over
the elements of its associated sub-mesh, generate the
element matrices and add them to the system matrix.

Hence, the MPI parallelisation is done on a higher level of
abstraction with respect to the source code structure in
comparison with the OpenMP parallelisation. By means of
the domain decomposition, the whole computation is done
in parallel whereas only several for-loops are parallelised by
the OpenMP approach.

5 Results

To evaluate the implemented parallelisation mainly problems
from electrical machine modelling have been taken into
account to consider the relative motion of stator and rotor
since this is a crucial task for parallelisation of
electromagnetic field problems. The topological change of
the FE-mesh has to be addressed by the domain
decomposition, which is described in detail by Boehmer
et al. [10]. The considered numerical problems are stated in
Table 1 and contain different numbers of DoFs. Note that
the speedup (2) is independent from the FE-formulation,
which can be quasi-static or transient. All measurements
have been done on the high-performance computing cluster
of the university’s centre for computing and communication
equipped with Intel Xeon X5570 ‘Nehalem EP’ computer
systems connected via InfiniBand.

5.1 Parallelisation based on OpenMP

The measured speedups of the studied problems with up to
eight threads are shown in Fig. 1. The maximum speedup
measured with eight threads varies from 1.9 to 2.5 and
increases with respect to the problem size. There are mainly
two reasons for these rather small speedup values. First,
according to Amdahl’s law (4) the sequential code fraction
limits the maximum speedup of the computation.
The sequential fraction of the problem PMSM2D is about
11% resulting in a theoretical maximum speedup of nine
with an infinite number of threads. Second, the iterative
solving process scales badly for the applied solver library,
which is not in the focus of this work.

5.2 Parallelisation based on MPI

The MPI parallelisation is evaluated with up to 64 processes,
which equals eight computing nodes equipped with eight
cores. Owing to the parallel execution of all processes, a
sequential code fraction limiting the speedup as occurred at
the OpenMP parallelisation cannot be observed (Fig. 2).

Table 1 Evaluated test cases

Test case # DoFs Description

PMSM2D 89.587 synchronous machine 2D

TEAM20 255.804 TEAM20 test problem 2D

PMSM3D 805.206 synchronous machine 3D

LARGE3D 9050.911 conductor in free space

Fig. 1 OpenMP speedup

Fig. 2 MPI speedup

IET Sci. Meas. Technol., pp. 1–5 3
doi: 10.1049/iet-smt.2011.0126 & The Institution of Engineering and Technology 2012

www.ietdl.org



Fig. 2 also shows the impact of the number of DoFs on the
maximum speedup. The smallest test case PMSM2D
reaches its maximum speedup already at 24 processes. If
the number of processes is further increased, the speedup
decreases, which implies that the communication overhead
between the involved processes outweights the benefit
gained by parallel execution. In contrast to the OpenMP
parallelisation the limiting factor is the explicit
communication during execution. If one process handles
less than a certain number of DoFs the parallelisation is not
efficient any more. The maximum measured speedup
increases with the number of DoFs and the overall
maximum speedup of 28 is measured for the test case
LARGE3D at 64 processes. This means that a simulation
requiring almost a full month in the sequential case can be
done in approximately 1 day using eight computing nodes
with eight cores on each node.

The parallelisation is further analysed by splitting up the
logical parts of solving and the remaining part of the
computation. To do so, the time consumed during solving
is measured independently from the total runtime. The
results for test case PMSM3D are shown exemplarily in
Fig. 3. The speedup of the solving is quite low compared to
the remaining computation for all considered number of
cores. The latter is nearly linear, in the range from two to
eight cores it is almost ideal. The low speedup of the
solving can be explained by the applied iterative algorithm
for solving the system of equations. In this work,
the conjugate-gradient algorithm is applied in combination
with symmetric successive overrelaxation as block
preconditioner. This results in the problem that the required
number of iterations of the solving algorithm increases with
p depending on the problem investigated owing to the
behaviour of the preconditioner, which is known from
various works. The relative growth of the required number
of iterations as a function of the number of processes for all
test cases related to the sequential case is shown in Fig. 4.
The number of iterations for test case PMSM3D increases
by a factor of almost 1.5 from one to four processes. Thus,
also if one iteration of the solving algorithm scales linearly,
the speedup of the complete solving decreases by this factor
in contrast to the linear speedup.

5.3 Hybrid parallelisation

The hybrid parallelisation decomposes the discretisation of
the problem to a given number of p sub-meshes. Within
each process the matrix assembly is performed by the

OpenMP parallelisation. The applied equation solver is LIS
[11] which is based on a hybrid parallelisation of OpenMP
and MPI. For the hybrid parallelisation up to 80 cores
distributed over ten computing nodes are used. The speedup
is analysed by assigning one core to every thread and
running three different hybrid configurations (HC):

† HC1: MPI only with one thread for each process.
† HC2: Hybrid with two threads for each process.
† HC3: Hybrid with four threads for each process.

The speedup of the smallest test case PMSM2D is shown in
Fig. 5. As seen before in Fig. 2 the MPI only parallelisation,
that is, HC1 variant, reaches the maximum speedup at 32
cores. The HC2 variant delivers a near identical speedup,
which increases further up to 48 cores. The hybrid approach
allows to increase the scalability for higher number of cores
whereas the speedup of the MPI only parallelisation is
already declining. The HC3 variant does not gain a better
speedup at the considered up to 64 cores.

The results of the test case TEAM20 are shown in Fig. 6.
The HC1 variant reaches its maximum speedup at 48 cores
and declines with further growing number of cores. The
speedup of both hybrid variants HC2 and HC3 stays below
the speedup of HC1 from 2 to 64 cores. If the number of
cores is increased up to 80 both outperform the speedup of
the MPI parallelisation, which is declining. However, they
do not reach the maximum speedup of the MPI
parallelisation. So the hybrid parallelisation does not make
sense for this specific test case and the considered up to 80

Fig. 3 MPI speedup PMSM3D

Fig. 4 Increased number of CG-iterations

Fig. 5 Hybrid PMSM2D

4 IET Sci. Meas. Technol., pp. 1–5

& The Institution of Engineering and Technology 2012 doi: 10.1049/iet-smt.2011.0126

www.ietdl.org



cores, but possibly is advantageous at a higher number of
cores.

The measurement of the test case PMSM3D in Fig. 7
shows that the hybrid parallelisation HC2 delivers a benefit
in speedup above 64 cores in comparison to the HC1
variant. This benefit is a consequence of the declining
performance of the MPI parallelisation because of the
increasing communication overhead between the MPI
processes.

Fig. 8 shows the speedup of the largest test case
LARGE3D. In contrast to all other test cases there is no

stagnation or declining of the HC1 variant for a higher
number of cores. Thus the hybrid parallelisation cannot gain
any benefit and the speedup remains below the MPI only
one. Predicting both hybrid curves on basis of the results of
the other test cases, an advantage for the hybrid variant will
occur at a high number of cores. This is already signified at
80 cores where the speedup of the hybrid variant HC2
approaches to the MPI variant HC1.

6 Discussion and conclusions

This paper gives an evaluation of the numerical simulation of
electrical machines by means of a hybrid parallelisation of
the FEM-package iMOOSE using the standardised
paradigms OpenMP and MPI. A comparison between
OpenMP and the MPI parallelisation shows a benefit for the
MPI parallelisation. This can be explained by the sequential
code fraction of the OpenMP implementation, which does
not exist for the MPI variant. Depending on the number of
cores, the hybrid parallelisation gains a benefit. Especially, in
case of the MPI speedup stagnation, the hybrid approach
performs advantageously. This stagnation of the MPI
speedup arises, when the communication overhead between
the processes outweights the benefit of the parallelisation.
This break-even point is particularly dependent on the
problem size, respectively, the number of DoFs. As long as
this point is not reached, the MPI parallelisation should be
prefered. The advantage of the hybrid approach will
especially become of interest throughout the forthcoming
years with CPUs unifying hundreds of cores being available.
The evaluation shows that the solving process of the system
of equations limits the possible speedup owing to increasing
number of required iterations with increasing number of used
cores. To obtain a higher speedup of the parallelisation it is
therefore required to improve the solving process and
especially the preconditioning phase, for example, by using
multigrid methods [12]. Another possibility in the future is to
include GPGPUs for solving the systems of equations.

7 References

1 Various: ‘Intel technology journal volume 13, issue 4: addressing the
challenges of tera-scale computing’ (Intel Press, 2009)

2 Flynn, M.J.: ‘Some computer organizations and their effectiveness’,
IEEE Trans. Comput., 1972, 21, (9), pp. 948–960

3 Balay, S., Buschelman, K., Gropp, W.D., et al.: ‘PETSc Web page’,
http://www.mcs.anl.gov/petsc

4 Grama, A., Karypis, G., Kumar, V., Gupta, A.: ‘Introduction to parallel
computing’ (Addison Wesley, 2003, 2nd edn.)

5 Amdahl, G.M.: ‘Validity of the single processor approach to achieving
large scale computing capabilities’. Proc. Spring Joint Computer Conf.
on AFIPS’67, Atlantic City, New Jersey, 18–20 April 1967, p. 483

6 Flynn, M.J., Hung, P.: ‘Microprocessor design issues: Thoughts on the
road ahead’, IEEE Micro, 2005, 25, pp. 16–31

7 OpenMP Architecture Review Board. OpenMP Application Program
Interface, 3.0 edition, Mai 2008, http://www.openmp.org/mp-
documents/spec30.pdf

8 Message Passing Interface Forum. MPI-2 Extensions to the Message
Passing Interface, 2.0 edition, 1997, http://www.mpi-forum.org

9 Karypis, G., Kumar, V.: ‘Parallel multilevel graph partitioning’. Tenth
Int. Parallel Processing Symp. Proc. IPPS’96, 1996, pp. 314–319

10 Boehmer, S., Lange, E., Hafner, M., Cramer, T., Bischof, C.,
Hameyer, K.: ‘Mesh decomposition for efficient parallel computing
of electrical machines by means of fem accounting for motion’, IEEE
Trans. Magn., 2012, 48, (2), pp. 891–894

11 Nishida, A.: ‘Experience in developing an open source scalable software
infrastructure in Japan’. Computational Science and its Applications –
ICCSA 2010 (LNCS, 6017), 2010, pp. 448–462

12 Hiptmair, R.: ‘Multigrid method for maxwell’s equations’, SIAM
J. Numer. Anal., 1999, 36, (1), pp. 204–225

Fig. 7 Hybrid PMSM3D

Fig. 8 Hybrid LARGE3D

Fig. 6 Hybrid TEAM20

IET Sci. Meas. Technol., pp. 1–5 5
doi: 10.1049/iet-smt.2011.0126 & The Institution of Engineering and Technology 2012

www.ietdl.org

http://www.mcs.anl.gov/petsc
http://www.openmp.org/mp-documents/spec30.pdf
http://www.openmp.org/mp-documents/spec30.pdf
http://www.mpi-forum.org

	1 Introduction
	2 Metrics
	3 Parallelisation paradigms
	4 Implementation details
	5 Results
	6 Discussion and conclusions
	7 References

