

Aachener Kolloquium für Instandhaltung, Diagnose und Anlagenüberwachung

ASRE - AACHENER **S**CHRIFTEN ZUR **R**OHSTOFF- UND **E**NTSORGUNGSTECHNIK DES INSTITUTS FÜR MASCHINENTECHNIK DER ROHSTOFFINDUSTRIE

Herausgeber:

Prof. Dr.-Ing. Karl Nienhaus Prof. Dr.-Ing. Paul Burgwinkel

IMR - Institut für Maschinentechnik der Rohstoffindustrie der RWTH Aachen
Wüllnerstraße 2 • D-52056 Aachen
Tel.: +49 241 80 95680 • Fax: +49 241 80 92311
Internet: http://www.imr.rwth-aachen.de • E-Mail: mail@imr.rwth-aachen.de

1. Auflage Aachen:

Verlag R. Zillekens, 2012 Aachener Schriften zur Rohstoff- und Entsorgungstechnik, Band 81 ISBN: 978-3-941277-17-5 © 2012 Nienhaus/Burgwinkel

Verlag R. Zillekens Am Bachpütz 4; 52224 Stolberg Telefon 02408. 958216; Telefax 02408. 958217 E-Mail: verlag@druckservice-zillekens.de

Gesamtherstellung: Druckservice Zillekens Am Bachpütz 4; 52224 Stolberg Telefon 02408. 958216; Telefax 02408. 958217 www.druckservice-zillekens.de; E-Mail: info@druckservice-zillekens.de

Bibliografische Information der deutschen Bibliothek

Die deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie. Detaillierte bibliografische Daten sind im Internet unter <u>http://dnb.ddb.de</u> abrufbar.

1 Einleitung

Eine hohe Verfügbarkeit und Zuverlässigkeit von Maschinen und Anlagen ist von hoher wirtschaftlicher Bedeutung. Zur Vermeidung von Ausfällen ist eine rechtzeitige Erkennung von Schäden und Fehlern wichtig. Dies erfordert die Entwicklung eines zuverlässigen Diagnosesystems.

Im Rahmen des vom BMWi geförderten Projektes "Autonome Antriebstechnik durch Sensorfusion für die intelligente, simulationsbasierte Überwachung & Steuerung von Produktionsanlagen" (AutASS) soll ein "Gesundheits-Check" für elektrische Antriebssysteme entwickelt werden. Ziel ist es, ohne Verwendung zusätzlicher Sensoren Funktionen in die Antriebe zu integrieren, welche Fähigkeiten zur intelligenten Selbstdiagnose schaffen. Es sollen unterschiedliche Fehler und Schäden in den Komponenten des Antriebsstrangs diagnostiziert werden, die z. B. durch Verschleiß, fehlerhafte Montage oder Überlastung entstehen.

Der Fokus dieser Arbeit liegt auf der Diagnose von Lagerschäden, da diese Komponenten in elektrischen Maschinen mit großer Häufigkeit zu Ausfällen führen [1]. Ziel ist es, fehlerbehaftete Lager anhand der Statorstromsignatur zu erkennen. Die nötige Wissensbasis wird im Vorfeld durch Messungen und experimentelle Untersuchungen am Versuchssystem in Form eines Belastungsprüfstandes gewonnen, in welchem die relevanten Fehler nachgebildet werden. Anhand abgeleiteter Merkmale können aus den Signaländerungen vom untersuchten Diagnosesystem Fehler detektiert werden.

2 Stand der Technik

Bekannte Verfahren zur Schadensdiagnose an Anlagen sind beispielweise vibrationsbasierte Verfahren, Körperschallmessungen, Temperaturmessungen, Messung der Maschinenströme und Ölpartikelanalyse [2]. Insbesondere die drei erstgenannten Verfahren sind gängige Methoden, welche eingesetzt werden um z. B. Wälzlager zu überwachen. Die Diagnose von Fehler- und Schadensfällen durch Messung der Maschinenströme ist wenig verbreitet und das Thema aktueller Forschungsarbeiten [3]. Das Besondere an dem hier vorgestellten Verfahren ist, dass der Antriebsmotor als Sensor genutzt wird und somit keine weitere kostspielige Sensorik implementiert werden muss. Deshalb sollen auch im AutASS-Projekt die Merkmale zur Fehler- und Schadensdiagnose im Statorstrom erkannt werden.

3 Belastungsprüfstand

Bei dem Prüfstand handelt es sich um einen modular aufgebauten Verspannungsprüfstand, welcher die nötigen Messwerte zur Merkmalsuntersuchung erzeugt. Die Grundkomponenten (siehe Abbildung 1) sind der zu prüfende Antriebsmotor (permanentmagneterregter Synchronmotor), eine Drehmomentmesswelle, die Prüfmodule und ein Lastmotor (Synchron-Servomotor). In den flexibel einbaubaren Prüfmodulen können verschiedene Fehler sowohl einzeln, als auch in Kombination untersucht werden. Der modulare Aufbau sichert eine flexible Anwendung zur Untersuchung weiterer Fehler bzw. Schäden. Wellenschiefstellungen und Achsneigungen oder Achsschränkungen von Verzahnungen werden auf konstruktive Weise in den Prüfstand integriert. Bauteilschäden an Wälzlagern und Zahnrädern, welche z. B. durch Verschleiß entstehen, werden in Form von künstlich beschädigten Maschinenkomponenten im Prüfstand verwendet.

Abbildung 1: Mechanischer Aufbau des Prüfstandes mit Prüfmotor, Messwelle, Lagermodul, Schwungscheibe, Lastmotor (von links)

Im Lagermodul wird ein Prüflager durch eine Kraft radial belastet. Diese Kraft ist einstellbar und wird über eine Kraftmessdose elektronisch protokolliert. Es werden Versuche bei verschiedenen Lagerlasten, Drehmomentbelastungen und Drehzahlen durchgeführt.

Das Lagermodul besteht aus folgenden wesentlichen Komponenten (Abbildung 2):

- Prüflager (1), dessen Außenring in einem Gelenklager (2) verbaut ist. Das Gelenklager lässt eine Neigung des Prüflagers quer zur Wellenachse zu. Diese Neigung wird durch die Druckscheiben (3) mit unterschiedlichen Anstellwinkeln über Druckringe (4) aufgeprägt.
- Welle in Fest-Los-Lagerung, welche das Drehmoment des Antriebstrangs überträgt und die Radialkraft durch Pendelkugellager (5) im Gehäuse abstützt. Durch die hohe Schiefstellungstoleranz wird die Wellendurchbiegung ausgeglichen.
- Komponente zur radialen Belastung des Pr
 üflagers in Form einer Schraube, welche die Kraft (FR)
 über ein Gewinde in das innere Geh
 äuse (6) in die Baugruppe eingeleitet und mit eine Kraftmessdose protokolliert wird. Zwischen Schraubenkopf und Kraftmessdose wird ein zus
 ätzliches Gelenklager verwendet, um Torsionsmomente zu verringern.

511

Abbildung 2: Prüflager mit Welle und Innengehäuse (ohne Umgebungskonstruktion)

- Ölschmierung mit separater Abdichtung für das Prüflager (Radialwellendichtring (7) und Ölbohrung (8)).
- Seitliche Führungen im Modulgehäuse (ohne Abbildung), welche die Wellendurchbiegung aufgrund der Radialkraft zulassen, jedoch ein Kippen des inneren Gehäuses (6) verhindern. Diese Führung stellt sicher, dass der im Inneren auf das Prüflager aufgeprägte Anstellwinkel nicht ausgeglichen wird.

Im Lagermodul können Kugel- oder Zylinderrollenlager vom Typ 6203, N203 oder NU203 eingesetzt werden. Durch die Verwendung von Zylinderrollenlagern können Schäden sowohl am demontierbaren Innen- als auch am Außenring einfach eingebracht werden.

Mit dem Lagermodul lassen sich folgende unterschiedliche Fehlersituationen experimentell darstellen:

- Verwendung von beschädigten Wälzlagern. In den folgenden Untersuchungen wird ein Zylinderrollenllager des Typs N203 (Außendurchmesser D=40 mm, Innendurchmesser d=17 mm) mit einem künstlich beschädigten Außenring verwendet. Hierzu wurde ein Schlitz (Breite ca. 0,25 mm) quer zur Rollrichtung in Lauffläche des Außenrings eingebracht (Abbildung 3).
- Neigung der Wälzlager um 0,1%0,2%0,3%0,5° jewei Is um die Querachse oder um die Hochachse des Wälzlagers durch Druckscheiben (Abbildung 3).
- Verwendung von unterschiedlichen hohen radialen Lasten, Drehzahlen und Lastmomenten im Antriebstrang.

Abbildung 3: Fehlerfälle – Künstlicher Lagerschaden: geschlitzter Außenring des Wälzlagers N203 (links) und Prinzipdarstellung der Achsneigung im Lagermodul (rechts).

4 Messtechnik

Der Fokus bei den experimentellen Untersuchungen liegt auf der Messung des Statorstroms am Prüfmotor, welche mittels Strommesszangen durchgeführt wird. Die Messzangen haben einen Messbereich von 5 A und eine Genauigkeit von 1e-3A. Zur Auswertung wird eine Abtastfrequenz von 100 kHz verwendet. Weiterhin wird die Spannung am Prüfmotor aufgenommen. Die Messungen der radialen Kraft und des Drehmomentes dienen der Überprüfung der eingestellten Belastung bei unterschiedlichen Drehzahlen. Zur Absicherung der Messungen werden zusätzlich die Oberflächenbeschleunigung am Lagermodul und die Temperaturen am Gehäuse sowie im Öl aufgenommen. Dies dient einerseits dazu, konstante Randbedingungen einzuhalten, um eine Vergleichbarkeit der Versuche zu gewährleisten. Andererseits besteht hierdurch die Möglichkeit, die Diagnose durch die zusätzlichen Signale zu stützen.

5 Ansteuerung des Prüfmotors

In der realen Anwendung wird der Prüfmotor über einen Umrichter angesteuert. Der Prüfmotor hat einen Bemessungsstrom von 2,3 A, eine Bemessungsleistung von 425 W, einen Bemessungsmoment von 1,35 Nm und eine Bemessungsdrehzahl von 3000 U/min. Die hochfrequenten Anteile in den Stromsignalen des Motors, die aufgrund der Taktung der Pulsweitenmodulation (PWM) entstehen, erschweren die Auswertung des Messsignals. Im Belastungsprüfstand wird neben der Speisung über einen Umrichter mit einer Taktfrequenz von 16 kHz alternativ ein Leistungsverstärker verwendet. Dadurch kann die Maschine mit idealen Sinussignalen gespeist werden. Dies ermöglicht eine einfachere Auswertung und sichere Merkmalextraktion des Stromsignals hinsichtlich des Einflusses der eingebauten Schäden.

6 Auswertung

Für die folgende Auswertung wurden zwei Zylinderrollenlager eingebaut: das Lager mit geschlitztem Außenring und ein fehlerfreies Lager. Die Untersuchung erfolgt jeweils bei verschiedenen Lasten, welche in Tabelle 1 aufgeführt sind. Die Lastbedingungen sind im Folgenden durch einen dreistellige Zahlenkombination beschriftet: die erste Ziffer gibt die radiale Lastkraft an, die zweite Ziffer das Lastmoment und die dritte Ziffer die Drehzahl, welche in den behandelten Versuchen nicht geändert wird.

Kombination	Lastkraft	Drehmoment	Drehzahl
001	400N (0)	0,1Nm (0)	
011		0,7Nm (1)	1500U/min
101	2kN (1)	0,1Nm (0)	(1)
111		0,7Nm (1)	

Tabelle 1: Verwendete Belastungen bei den Messkombinationen

Der gemessene Strom wird mittels Zeit-Frequenzanalyse-Verfahren untersucht. Lokale Schäden am Lageraußenring verursachen charakteristische Frequenzen fo (1), die von der Anzahl der Kugeln N, dem Teilkreisdurchmesser Dc, dem Kugeldurchmesser Db, der mechanischen Rotorfrequenz fr und dem Druckwinkel β abhängen. Für Zylinderrollenlager gilt: cos β = 1 [6], [7].

$$f_o = \frac{N}{2} f_r (1 - \frac{D_b}{D_c} \cos\beta)$$
⁽¹⁾

Für das gewählte Zylinderrollenlager gilt für fo als Funktion der Rotorfrequenz:

$$f_o = 4,25 \cdot f_r \tag{2}$$

Die aus dem beschädigten Lager resultierenden mechanischen Schwingungen beeinflussen das Drehmoment. Dies führt zur Entstehung von zusätzlichen Frequenzen fbf im Statorstrom, welche Vielfache der elektrischen Frequenz fel sind [5].

$$f_{bf} = |f_{el} \pm k \cdot f_o|, \ k = 1, 2, \dots$$
 (3)

Im Folgenden werden die zeitlichen Stromverläufe bei einer Messung jeweils mit Zylinderrollenlager im fehlerfreien Zustand (RS0) und mit einem lokalen Schaden (RS1 \rightarrow geschlitzter Außenring) vorgestellt. Für die Auswertung wird die Drehzahl von 1500 U/min ausgewählt, da für kleine Drehzahlen die Auswirkung im Stromsignal nicht sehr gut erfassbar ist. Die charakteristische Fehlerfrequenz für diesen Fehlerfall und bei der gegebenen Drehzahl beträgt: fo =106,25 Hz.

Abbildung 4: Stromverlauf bei Speisung mit dem Leistungsverstärker (links), mit dem Umrichter (rechts). Messung mit folgender Belastung: Lastkraft F=2kN, Lastmoment M= 0,1Nm und Drehzahl n=1500U/min (101)

Abbildung 4 zeigt den Stromverlauf bei einer Speisung sowohl mit dem Umrichter als auch mit dem Leistungsverstärker. Hierbei liegt am Prüfstand eine Belastung mit einer Lastkraft von 2 kN und einem Lastmoment von 0,1 Nm vor. Dies ist die Messkombination 101. Bei der Speisung mit dem Umrichter sind Welligkeiten aufgrund des PWM-Taktes vorhanden. Im Vergleich zum fehlerfreien Lager ist bei dem fehlerbehafteten Lager der Scheitelwert des Stroms 6 % höher. Zudem ändert sich die Stromform, welche zusätzliche harmonische Frequenzen erzeugt.

Das Messsignal wird mittels Short-Time Fourier Transformation (STFT) analysiert. Daraus ergibt sich eine zeitliche Frequenzverteilung mit spektraler Leistungsdichte. Abbildung 5 zeigt im Vergleich die zeitliche Frequenzverteilung des Stroms bei der Belastung 101. Im fehlerbehafteten Fall sind einige der zusätzlich vorkommenden Frequenzen gekennzeichnet. Die spektrale Leistungsdichte ist in Graustufen [dB] dargestellt.

Abbildung 5: Stromspektrum bei der Speisung mit dem Umrichter mit der Messkombination 101. Fehlerfrei (links) , Fehlerbehaftet (rechts)

Zum Abgleich dieser Auswertung wird die Schwingbeschleunigung mittels Beschleunigungs-sensoren gemessen. Die Beschleunigungssensoren sind am Lagermodul so platziert, dass die Schwingbeschleunigung in Richtung der Achse gemessen wird.

Im Folgenden wird die gemessene Schwingbeschleunigung bei der Messkombination 101 (Motorspeisung mit dem Umrichter) analysiert. Im Schwinggeschwindigkeitsspektrum (Abbildung 6) sind die zusätzlich auftretenden Frequenzen bei dem Fehlerfall deutlich zu erkennen.

Abbildung 6: Schwingbeschleunigung (links) und Schwinggeschwindigkeitsspektrum (rechts) bei Speisung mit dem Umrichter bei Belastung: 101 und RS1

Die Fehlerfrequenzen z. B. 1,05 kHz; 1,26 kHz; 1,36 kHz; 1,7 kHz kommen mit einer Abweichung von ±3 Hz sowohl im Strom- als auch im Schwinggeschwindigkeitsspektrum vor (siehe Abbildung 5 und Abbildung 6).

Im Weiteren werden die Einflüsse der Belastung auf die Fehlererkennung bei Speisung mit dem Umrichter und mit dem Leistungsverstärker untersucht. Für eine bessere Fehlererkennung wird aus der zeitlichen spektralen Leistungsdichte die Wölbung (4), auch Kurtosis genannt, für jede Fehlerfrequenz fbf berechnet [8].

$$w(f_{bf}) = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_i(f_{bf}) - \mu)^4}{\sigma^4}$$
(4)

Dabei ist σ die Standardabweichung, μ der arithmetische Mittelwert und xi(fbf) die zeitliche spektrale Leistungsdichte jeder Fehlerfrequenz. Die Kurtosis stellt ein Maß für die Abweichung des Amplitudenhistogramms von der Normalverteilung dar. Die Kurtosis eines Signals mit Normalverteilung ist drei. Oberhalb von drei hat das Amplitudenhistogramm des Signals eine Häufigkeitsverteilung, die steiler als die Normalverteilung ist. Bei der Fehlererkennung wird ein Grenzwert von vier definiert. Alle Fehlerfrequenzen, die mit einer Kurtosis größer oder gleich vier vorkommen, weisen auf einen Lagerschaden hin. Die Abbildung 7 stellt die Kurtosis vom Strom bei einer Messung mit einem neuwertigen Zylinderrollenlager dar. Die Messung erfolgt ohne Lastmoment bei einer Drehzahl von 1500 U/min und einer radialen Lastkraft von 2 kN.

Abbildung 7: Kurtosis für jede Fehlerfrequenz bei einem ungebrauchten Zylinderrollenlager

Für die Untersuchung wird die Kurtosis jeder Fehlerfrequenz fbf für alle Lastvarianten (001 - 101 - 011 - 111) berechnet. In Abbildung 8 sind die Ergebnisse bei Speisung mit dem Umrichter und mit dem Leistungsverstärker bei einer Belastung von 001 dargestellt. Die zeitabhängigen Fehlerfrequenzen kommen mit unterschiedlicher Kurtosis vor. Die Kurtosis der Fehlerfrequenzen soll im Fehlerfall höher als vier sein. Im fehlerfreien Fall weist die Kurtosis einiger Fehlerfrequenzen höhere Werte auf. Dies tritt bei der Speisung mit dem Umrichter häufiger auf, als bei der Speisung mit dem Leistungsverstärker.

Die gleiche Untersuchung wird bei der Messkombination 101 durchgeführt und in Abbildung 9 dargestellt. Genau wie bei der Messkombination 001 hat die Untersuchung bei der Speisung mit dem Umrichter mehr "Ausreißer". Dies kann zur Fehlentscheidungen bei der Klassifikation führen. Mit "Ausreißern" sind Fehlerfrequenzen gemeint, die im fehlerfreien Zustand eine Kurtosis höher vier aufweisen, welche zudem größer ist, als die Kurtosis der gleichen Fehlerfrequenz im Fehlerfall.

Die Messkombinationen 001 und 101 bedeuten eine unterschiedliche radiale Lastkraft, gleiche Drehzahl und gleiches Lastmoment. Im Vergleich zeigt sich, dass bei der höheren radialen Lastkraft mehr Fehlerfrequenzen erkennbar sind.

Abbildung 8: Kurtosis für jede Fehlerfrequenz bei Speisung mit dem Umrichter (links) und Speisung mit dem Leistungsverstärker (rechts) bei Messkombination: 001

Abbildung 9: Kurtosis für jede Fehlerfrequenz bei Speisung mit dem Umrichter (links) und Speisung mit dem Leistungsverstärker (rechts) bei Messkombination: 101

Im Folgenden wird das Lastmoment erhöht und die Untersuchung bei gleicher Drehzahl und unterschiedlichen radialen Lastkräften durchgeführt. Die Abbildung 10 zeigt die Kurtosis bei Speisung mit dem Umrichter bei der Messkombination 011 und 111.

Abbildung 10: Kurtosis für jede Fehlerfrequenz bei der Speisung mit dem Umrichter. Messkombinationen: 011 (links) und 111 (rechts)

Wie bei der Messkombination 001 sind die Fehlerfrequenzen auch bei der Messkombination 011 sichtbar. Dazu treten hier viel weniger Ausreißer auf. Wenn die Lastkraft und das Lastmoment gleichzeitig erhöht werden (111), sind im Vergleich zu 101 (Abbildung 9) weniger Frequenzen sichtbar.

Abbildung 11: Kurtosis für jede Fehlerfrequenz bei der Speisung mit dem Leistungsverstärker. Messkombination: 011 (links) und 111 (rechts)

Das gleiche Verhalten wird bei der Speisung mit dem Leistungsverstärker beobachtet (Abbildung 11). Wie bei den Lastvarianten 001 und 101 treten hier weniger Ausreißer als bei der Speisung mit dem Umrichter auf. Insgesamt zeigt sich, dass die Lastvarianten 011 und 101 für eine zuverlässige Fehlererkennung am besten geeignet sind.

7 Zusammenfassung

Diese Arbeit beschreibt die Möglichkeiten der Statorstromanalyse zur Detektion von lokalen Wälzlagerschäden im Belastungsprüfstand. Durch den modularen Aufbau können im Prüfstand verschiedene Fehler und Kombinationen von Fehlern experimentell untersucht werden. Es werden verschiedene Fehlerarten vorgestellt und die Auswirkung eines lokalen Linienschaden im Wälzlager auf den Strom mittels der STFT untersucht. Für die Fehlerunterscheidung wird die Kurtosis der Fehlerfrequenz verwendet. Eine Kurtosis mit einem Wert höher als vier weist auf einen Schaden hin. Weiterhin wird der Einfluss der Speisung mit und ohne PWM untersucht. Es zeigt sich, dass die Motorspeisung mittels PWM die Fehlererkennung aufgrund von Ausreißern erschwert. Die Untersuchung der verschiedenen Lastvarianten zeigt, dass bei den Kombinationen 101 und 011 eine gute Fehlererkennung möglich ist. Für eine zuverlässige Fehlererkennung ist es von Vorteil, Messungen bei hoher Drehzahl, niedriger Lastkraft und hohem Lastmoment oder bei hoher Drehzahl, hoher Lastkraft sollten nicht gleichzeitig niedrig oder hoch sein.

8 Literatur

[1] A. Bonnett, C. Yung: "Increased efficiency versus increased reliability", Industry Applications Magazine, IEEE, vol. 14, no. 1, pp. 29–36, 2008

[2] S. Villwock: "Identifikationsmethoden für die automatisierte Inbetriebnahme und Zustandsüberwachung elektrischer Antriebe", Dissertation, Universität Siegen, 2007.

[3] K. Hempel, T. Gorgs: "Zustandsdiagnostik mittels Stromsignalanalyse – der Antrieb als Fenster zur mechanischen Anlage", Tagungsband zum 8. Aachener Kolloquium für Instandhaltung, Diagnose und Anlagenüberwachung, pp. 345-354, 2010.

[4] M. Blödt, P. Granjon, B. Raison, G. Rotating: "Models for Bearing Damage Detection in Induction Motors Using Stator Current Monitoring", IEEE Transactions on Industrial Electronics, vol. 55, no. 4, pp. 1813 – 1822, 2008.

[5] R. R. Schoen, T. G. Habetler, F. Kamran and Robert G. Bartheld: "Motor bearing damage detection using stator current monitoring", IEEE Transactions on Industrial Applications, vol. 31, pp. 1274 - 1279, 1995.

[6] P. Tavner, L. Ran, J. Penman and H. Sedding: "Condition monitoring of rotating electrical machines", IET Power and Energy Series, 56, 2008.

[7] U. Klein: Schwingungsdiagnostische Beurteilung von Maschinen und Anlagen", Verein für Betriebsfestigkeitsforschung (VBFEh), 3. Auflage, 2003.

[8] J.D. Jobson, "Applied Multivariate Data Analysis: Regression and Experimental Design", Springer-Verlag, New York, 1991.

9 Danksagung

Die Autoren bedanken sich beim BMWi für die Förderung des Projektes: "Autonome Antriebstechnik durch Sensorfusion für die intelligente, simulationsbasierte Überwachung & Steuerung von Produktionsanlagen" (AutASS) und bei den im Konsortium beteiligten Firmen und Forschungseinrichtungen für die Zusammenarbeit.

aufgrund eines Beschlusses des Deutschen Bundestages