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 Abstract - This paper presents a dynamic thermal model of a 
PMSM to estimate the temperature at specific points of the 
machine during operation. The model is implemented using 
thermal network theory, whose parameters are determined by 
means of analytical approaches. Usually thermal models are 
initialised and referenced to the room temperature. However, this 
can lead to incorrect results, if the simulations are performed 
when the electrical machine operates under "warm" conditions. 
An approach is developed and discussed in this paper, which 
captures the model in critical states. The model gives feedback by 
online measured quantities to estimate the initial temperature. 

 
I. THERMAL NETWORK MODEL 

 
Thermal monitoring of electrical machines is required to highly 
utilize the electrical machine in every point of operation. A 
suitable thermal model allow a fully use of the thermal capacity 
of the machine. The temperature of the permanent-magnet 
excited synchronous motors (PMSM) with buried rotor 
permanent-magnets and equipped with a concentric winding 
in star-connected is modeled using a seven node thermal 
network (Fig. 1) [1]. The network consists of heat sources 
(P), thermal resistances (Rthi) and capacitances (Cthi). Each 
element of the electrical machine, which is a heat source, is 
represented as a temperature node. The temperature nodes 
are: the housing (θ1), the stator yoke (θ2), the stator tooth (θ3), 
the slot windings (θ4), the end windings (θ5), the permanent-
magnets (θ6) and the bearings (θ7). 
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Fig.1. Thermal network model. 

 
The rotor is modeled by a parameter (magnet), which 
corresponds to the average rotor surface temperature. The 
thermal resistance between the ambient temperature and the 
housing Rth1, the housing and the stator tooth Rth2, the stator 
tooth and the stator yoke Rth3, the stator yoke and the slot 

windings Rth4, the slot windings and the end windings Rth5, the 
stator yoke and the magnet Rth9, the magnet and the bearings 
Rth10, the bearing and the housing Rth11, depends on the 
thermal conductivity of the materials λ and the thickness of 
the layer t between the two solids. There is a heat transfer by 
convection from the internal air to the housing, the end-
windings and the magnets. The thermal resistance of the 
internal air is enclosed to the thermal resistance Rth6, Rth7, Rth8. 
These resistances depend on the convective heat transfer 
coefficient, which is calculated using the expressions given 
by [1]. The analytical approach used to determine the 
resistances is given by [1], [2] and [3]. The thermal 
resistances Rth1 and Rth4 have a great influence on the 
estimated temperature. These values may not exactly be 
determined using the analytical approach because of probable 
manufacturing tolerances and an unusual stator shape of the 
motor. For this purpose, the resistances are determined by 
measurements at stand still of the machine and blocked rotor. 
The machine's winding is supplied by the nominal direct 
current and heated up to the thermal steady-state.  
The thermal network in Figure 1 shows the thermal 
capacitance, which is required to simulate the transient-state 
temperature distribution in the motor. Its value depends on the 
mass mi and the specific heat capacity cpi of the parts of the 
machine. It is calculated by (1), where i represents a node: 
 

piithi cmC ⋅=                                (1) 
 

II. DYNAMIC THERMAL MODEL 
 

In order to estimate the temperature of each part of the 
machine, the machine losses have to be determined. Here, the 
losses consist of the ohmic losses, the iron losses and the 
friction losses. The ohmic losses due to the stator currents in 
the slots Psw and in the end windings Pew are determined 
according to the variation of temperature of the slot θ4 and 
end-winding θ4.  
 

2
5,4ew,sw I)(R3P ⋅⋅= θ                              (2) 

 
The iron losses consist of the hysteresis losses Ph, the eddy-
current losses Pec and the excess losses Pex. These are 
computed using a transient 2D-FE approach and a post 
processing formula defined in [4]. According to which the 
eddy-current losses and the excess losses are computed from 
the contribution of each harmonic of the flux density over one 
electrical period in time. The hysteresis losses are computed 
as a function of the peak value of the magnetic flux density 
over the same period. These losses are calculated for some 
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value of the current and the frequency and added to evaluate 
the total iron loss for the corresponding working point of the 
machine.  
 

ecexhfe PPPP ++=                               (3) 
 

The eddy-current density of the magnets is integrated over the 
magnet volume and multiplied by its specific conductivity to 
determine the eddy-current losses inside the magnets. The 
eddy-current density is calculated by means of a transient 3D-
FE approach. Figure 2 shows the iron loss of the stator and 
the eddy current loss of the permanent magnet related to the 
current and the speed of the machine. 
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Fig.2. Iron loss of the stator and magnet loss. 

 
After the computation of the losses, the thermal resistances, 
and capacitances, the temperature of each node is computed 
by solving the differential equation given as: 
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dC +−⋅=⋅ θθθ                      (4) 

 
The indexes i and j represent two different nodes. The 
differential equations of all nodes constitute a system of 
equations. The system is presented in the state space form and 
is implemented in Matlab/Simulink to estimate the node's 
temperatures. 
 

 
Fig.3. The dynamic thermal model. 

 
The model shown in Figure 3 consists of a subsystem for the 
losses estimation, in which the iron losses and the magnet 
losses are integrated in the form of a look-up-table. The 
ohmic losses are calculated from a closed-loop using the 
winding temperature. The model's input parameters are the 
actual current, the speed and the ambient air temperature (ot). 

 
III. MODEL EVALUATION 
 

The test motor is a permanent magnet synchronous motor 
with star-connected concentric winding. The star connector is 
not available. To evaluate the model, five temperature sensors 
are placed at the end-windings (drive-side and shaft-end), in 

the slots windings (top and bottom) and at the housing of the 
tests motors. The motor with a locked rotor is fed by the 
nominal direct current and heated up to thermal steady-state. 
This measurement is used to determine the thermal resistance 
Rth1 and Rth4. The simulated temperature rise in comparison to 
the measured one is plotted in Figure 4. The mean value of 
the end-windings temperature and the slot windings 
temperature is compared to the simulated data. The Table I 
shows the temperaure at the steady state . 
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Fig.4. Temperature rise by locked rotor operation. 

 
 TABLE I 

COMPARISON OF THE RESULT AT THE STEADY-STATE 
 

Temperature nodes Measured  Simulated 

Housing θ1 

Slot winding θ4 

End windings θ5 

72.82°C 
102.93°C 
101.77°C 

71.06°C 
104.16°C 
101.92°C 

 
This model shows a maximum deviation of 3% in comparison 
to the measured data. The second focus is to implement a 
method to generate the initial temperature of the machines 
parts at critical states for example, after a new start of the 
system, when the motor is heated up. 
 

 IV. CONCLUSIONS 
 
This contribution presents a thermal network model for a 
permanent magnet synchronous motor. The main part of the 
paper discusses the computation of the thermal resistances, 
capacitances and heat losses. A dynamic thermal model and 
its first results are presented. The next step is to evaluate the 
model at different working points and to implement the 
method to capture critical state. This will be discussed in the 
full paper. 
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