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Abstract

In this paper, an hybrid parallelisation approach for
the simulation of nonlinear electromagnetic problems by
means of the Message Passing Interface (MPI) and the
OpenMP Application Program Interface for the Finite Ele-
ment Method (FEM) is investigated. After an introduc-
tion, the metrics applied to evaluate the speedup and
the efficiency are outlined. By parallelising the institute’s
in–house FEM–package “iMOOSE” either by MPI or by
OpenMP, an evaluation basis for the hybrid approach is
being founded. The hybrid parallelisation approach is be-
ing evaluated on the high performance computing cluster
of university’s centre for computing and communication.

1 Introduction

Throughout the past decade, the increase of compu-
tational power was partially a result of increasing pro-
cessing frequency but mainly a consequence of massive
parallelisation within the central processing unit (CPU).
This multi–core architecture evolved rapidly within the
past years and along with their research programs, the
road maps of the large CPU manufacturers indicate a
break through of more than a hundred cores for a sin-
gle CPU within the next decade [7]. This massive paral-
lelisation has already proven its potential for general pur-
pose graphic processing units (GPGPU). The architec-
ture classification of CPUs and GPGPUs according to [3]
distinguishes two categories: MIMD (Multiple Instructions
Multiple Data) for the CPU and SIMD (Single Instructions
Multiple Data) for the GPGPU respectively.
To account for the nonlinear material properties of electri-
cal machines, iterative methods, e.g. Newton–Raphson,
are required to solve the FE–system. The iterative
schemes modify the corresponding FE–system matrix
between two iterative steps, which significantly limits the
potential of the GPGPUs due to an increased data trans-
fer between the GPGPU memory and the main memory.
The motivation of this work is to evaluate the per-
formance of the industrial standardised parallelisation
paradigms MPI, OpenMP and their hybrid combination on
high performance computing clusters based on MIMD–
architectures to lay the foundation for a decision basis for
future FEM–software design for the numerical simulation
of electrical machines. Additionally, the evaluation can be
extended to SIMD–architectures as one of the underlying
equation solvers will be supporting GPGPUs in the near
future [2].

2 Metrics

In order to compare different parallelisation approaches
the following metrics are applied [4]. All measurements
are based on the execution time T (p) (Wall Clock Time)
with p being the number of parallel processes. The se-
quential execution time T (1) accounts for the exclusively
consumed CPU–time as well as for peripheral access
time caused by a sequential process. The parallel over-
head is described by:

TO(p) = pT (p)− T (1). (1)

The speedup for a given number of p parallel processes
is defined as:

S(p) =
T (1)

T (p)
. (2)

The general definition of the efficiency with respect to the
computational resources is given by:

E(p) =
S(p)

p
=

T (1)

pT (p)
=

1

1 + TO(p)
T (1)

. (3)

According to Amdahl’s law [1] the theoretical maximum
speedup for a given program in case of p → ∞ is limited
by its sequential fraction α:

S(p) ≤ S(∞) ≤ 1

α
. (4)

The theoretical maximum speedup of a program with a
sequential fraction of e.g. α = 0, 1 is S(∞) ≤ 10.
The upcoming evaluations are based on the numerical
problems stated in table 1. Note that the speedup is not
related to any time dependency of the problem.

testcase # DoFs description
PMSM2D 89.587 synchronous machine 2D
TEAM20 255.804 TEAM20 test problem 2D
PMSM3D 805.206 synchronous machine 3D
LARGE3D 9.050.911 conductor in free space

Table 1: Evaluated test cases
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Figure 1: OpenMP speedup
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Figure 2: MPI speedup
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Figure 3: Hybrid PMSM2D
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Figure 4: Hybrid LARGE3D
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Figure 5: Hybrid efficiency
LARGE3D
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Figure 6: Increased number
of CG–iterations with MPI

3 Parallelisation paradigm: OpenMP vs. MPI

OpenMP is designed to work on architectures having a
common memory addressing space and can be used to
parallelise loops and computationally independent pro-
gram fragments with a minimum of additional code. Crit-
ical memory access, e.g. during the assembly of the
system matrix element by element within a parallel loop,
must be guarded by locking mechanisms.
MPI relies on an explicit communication between the par-
allel processes requiring an a–priori mesh decomposition
due to data decomposition. The decomposition allows for
a locking free assembly of the system matrix but requires
an explicit data exchange for solving and incorporating
boundary constraints. The amount of additional code is
considerably larger compared to OpenMP.

3.1 Parallelisation based on OpenMP

According to Amdahl’s law (4) the estimated theoretical
maximum is 2, 4 ≤ S(∞) ≤ 3, 6, which is in accordance to
the measured speedups of the studied problems shown
in Fig. 1.

3.2 Parallelisation based on MPI

The required mesh decomposition of the MPI parallelisa-
tion is performed by PARMETIS [5]. Due to the paral-
lel execution of all processes, a sequential code fraction
limiting the speedup as seen for the OpenMP paralleli-
sation cannot be observed (Fig. 2). The limiting factor
is the explicit communication during solving, which can
be observed for the relatively small 2D problems and
p > 24. Furthermore, the number of iterations of the
Krylov–Subspace method increases with p depending on
the problem investigated (Fig. 6) – a well known fact.

3.3 Hybrid Parallelisation

The hybrid parallelisation decomposes the discretisation
of the problem to a given number of p sub–meshes.
Within each process the matrix assembly is performed
by OpenMP parallelisation. The applied equation solver
is LIS [6] which is based on a hybrid parallelisation as
well. It can be seen, that the hybrid approach allows for
increasing the scalability for higher numbers of p whereas
the speedup of the MPI only parallelisation is already de-
clining (Fig. 3). This drop cannot be observed for the
large problem (Fig. 4) and thus, MPI only parallelisation
performs best until the speedup stagnates (Fig. 5).

4 Discussion and Conclusions

This paper gives an evaluation of the numerical simula-
tion of electrical machines by means of a hybrid paral-
lelisation of the FEM–package iMOOSE using the stan-
dardised paradigms OpenMP and MPI. Especially when
the speedup of the MPI only parallelisation stagnates,
the hybrid approach is advantageous compared to either
OpenMP or MPI. This will become of interest through-
out the forthcoming years with CPUs unifying hundreds
of cores being available. A detailed performance evalua-
tion and a thorough discussion of the results will be given
in the full paper.
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