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Abstract

Purpose – The purpose of this paper is to describe how a minimisation of cogging torque is
performed with respect to the non-ideal manufacturing process, aiming at a robust design of the
studied machine, focusing on magnetisation faults and the use of different qualities of the permanent
magnet material.

Design/methodology/approach – The applied methodology is a combination of design of
experiments and finite element analysis to minimise the cogging torque of the estimated machine.
Different qualities of the permanent magnet material are investigated by a stochastic analysis.

Findings – A robust design of the machine is achieved, which is verified by a stochastic analysis.
Furthermore, this analysis shows the strong influence of the magnet quality on the cogging torque.

Practical implications – This paper provides a method for a machine design which is robust
against non-ideal manufacturing and an approach to prove the use of a bad quality for a possible
reduction of the fabrication costs.

Originality/value – This paper gives a close insight on how to investigate non-ideal manufacturing
and in particular its influence on the cogging torque.
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Paper type Research paper

1. Introduction
In permanent magnet excited machines, cogging torque is caused by the interaction
between the rotor magnets and the stator slots. It results in undesired effects such as
vibration and deformation. Therefore, a minimisation of such effects is desired.

There are many approaches to achieve a reduction of cogging torque (Islam et al.,
2003). All such attempts are usually done for the ideal machine, meaning without
considering geometric or material tolerances occurring, e.g. during the fabrication
process of the machine or its components. However, it can be shown that such tolerances
have a strong influence on the cogging torque (Gasparin et al., 2009) in particular.
Ignoring this influence while minimising, results in a machine design which is
susceptible to manufacturing faults and tolerances.

This study presents the minimisation of cogging torque for a PMSM considering
non-ideal manufacturing process, aiming at a robust design of the machine. Hereby, it is
focused on magnetisation faults and the use of different qualities of the permanent magnet
material. This study is performed employing a stochastic analysis. An approach to prove
the use of a bad quality for a possible reduction of the fabrication costs is provided.
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2. Cogging torque minimisation
2.1 Applied methodology
In this study, the approach to minimize the cogging torque is to optimise the machine’s
geometry. The applied method is a combination of design of experiments (DoE)
(Montgomery, 1974) and finite element analysis (FEA).

DoE is used to identify the significance of the influence of various design
parameters concerning the cogging torque for the studied machine. For each numerical
experiment, an FE calculation is performed, where the machine is simulated under
no-load condition and the cogging torque is computed by the Maxwell stress tensor
(Bastos and Sadowski, 2003):

T ¼
lz

m0

Z
G

r ·Br ·Bt · dG: ð1Þ

Here, the radial and tangential component of the magnetic flux density Br and Bt are
integrated along a closed contour G around the rotor at radius r. At this, lz is the length
of the machine and m0 is the vacuum permeability.

In the first instance, a series of factorial design is performed, whereby the width of
the magnet bM and the width of the slot opening bS appear to be significant parameters
with respect to the cogging torque of the estimated machine. The further optimisation
is applied while considering manufacturing tolerances, described in the following.

2.2 Non-ideal manufacturing process
The two considered tolerances of non-ideal manufacturing, which influence the
cogging torque and which are known as crucial, are magnetisation faults and a static
eccentricity of the rotor (Herranz Gracia, 2008).

In case of tolerances in the magnetisation of the permanent magnets, an asymmetrical
distribution of the air gap flux density arises. This results in additional cogging torque.
Within this study, it is considered that the magnet’s remanence flux density BR is
varying. The amount of additional cogging torque is depending on which and how many
magnets are representing a failure. For the studied machine with its eight magnets, 18
configurations can be evaluated as being relevant (Schlensok et al., 2006). Their
distribution of cogging torque, in relation to the reference value, is shown in Figure 1,
whereby BR is varying by 25 per cent.

Static eccentricity means that the centre of the rotor is displaced to a fixed eccentric
position (le Roux et al., 2003). This is crucial because it results in an asymmetrical
distribution of the flux density at the air gap and thereby causes additional cogging
torque. In Figure 2, the cogging torque distribution for the 18 configurations with static
eccentricity is presented in comparison to the distribution without eccentricity from
Figure 1. The two distributions are similar, whereby the one with eccentricity is at
higher cogging torque values.

2.3 Results
With the objective of a robust machine design, the optimisation is conducted while
considering the above manufacturing tolerances. For each of the 18 configurations,
a 22-factorial design is applied with bM and bS as factors which are varied in two levels.
The output value is the peak-to-peak cogging torque DT. Table I shows the
corresponding matrix of this design. From the resulting coefficients ci a polynomial can
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be determined, which is analysed with the method of gradient descent to finally
calculate a minimum for the two design factors.

To obtain an overall optimum for the machine, a statistical evaluation is performed.
For each configuration, the probability of occurrence is calculated, assuming the worst
case where half of the magnets are representing a failure. Thereby, a weighted average
value for the chosen design parameters can be computed, which finally represents the
design optimum. For the studied machine, the average of the cogging torque was reduced
by 7 per cent when the optimised geometry was applied.

Figure 2.
Cogging torque
distribution for the 18
configurations with static
eccentricity compared to
distribution without static
eccentricity
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Figure 1.
Cogging torque
distribution for the
18 configurations
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0 1 2 3

Experiments Independent variables
bM bS 0 1 2 12 Output

1 2 2 þ 2 2 þ DT1

2 þ 2 þ þ 2 2 DT2

3 2 þ þ 2 þ 2 DT3

4 þ þ þ þ þ þ DT4

Coefficients c0 c1 c2 c12

Table I.
22-Factorial design
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3. Stochastic analysis
3.1 Verification of the optimum
To verify the found design optimum, a stochastic analysis is performed. The remanence flux
density BR is assumed to be normally distributed (Kim et al., 2003). The density function:

f ðxÞ ¼
1

s
ffiffiffiffiffiffi
2p

p · exp 2
1

2

x2 m

s

� �2
� �

ð2Þ

of the normal distribution is shown in Figure 3.
In this study, the variable x is the remanence flux-density BR with the expected

value m which is set as the reference value of BR. A tolerance width Dx of 4 per cent is
considered, which is equal to the triple standard deviation s ¼ Dx=3. By use of the
Box-Muller method (Box and Muller, 1958), 50 random configurations are created with
a random value of BR for each magnet. The cogging torque is computed for each
configuration, with reference as well as with optimised geometry.

The results are divided into 16 intervals, where interval I is the one with the lowest
and XVI the one with the highest values of cogging torque. Figure 4 shows the
resulting frequency distribution for both geometries. The distribution for the optimised
geometry is shifted to lower intervals compared to the reference one, which shows the
achieved reduction of cogging torque. On average, the cogging torque is 9 per cent
lower when compared to the model with reference geometry.

3.2 Consideration of magnet quality
The quality of the permanent magnets depends on the manufacturing process. A bad
quality means that either the tolerance width of BR or the failure probability is higher.
Both cases are studied in the following.

The same procedure as described in Section 3.1 is performed for a tolerance
width Dx of 6 per cent. Figure 5 shows the corresponding frequency distribution.
The intervals are identical to those in Figure 4. Applying the optimised design for

Figure 3.
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this case, leads on average to 10 per cent less cogging torque. Compared to the results of
the distribution from Section 3.1, the variance of distribution and the average values of
cogging torque are higher.

When assuming a uniform distribution for the magnetisation, all failures appear
with the same probability. This is inferior to the normal distribution where the density
function is a bell-shaped curve. The density function of a uniform distribution is
described by:

Figure 4.
Frequency distribution –
normally distributed
tolerances with 4 per cent
tolerance width
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f ðxÞ ¼

0 x , a

1

b2 a
a # x # b

0 x . b

:

8>>><
>>>:

ð3Þ

Here, the expected value m is equal to the reference value of the remanence flux density
BRref. A tolerance width of 4 per cent is assumed, meaning that the parameter a is at a
variance of 24 per cent and b is at a variance of þ4 per cent of BRref. The same

Figure 5.
Frequency distribution –

normally distributed
tolerances with 6 per cent

tolerance width
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procedure as described for the normal distributed tolerances is performed. Figure 6
shows the resulting frequency distribution for reference and optimised geometry of the
model. The average reduction of cogging torque, by applying the optimised geometry,
is 9 per cent. Compared to the results of both normal distributions, the variance of
distribution and the average values of cogging torque are higher.

3.3 Results
Finally, the results of this stochastic analysis prove that the optimised geometry is
robust against manufacturing faults. The influence of varying qualities of the magnets

Figure 6.
Frequency distribution –
uniformly distributed
tolerances with 4 per cent
tolerance width
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is shown by modelling the tolerances using different probability distributions.
The three considered tolerance distributions show the same percental amount of
reduction in the average cogging torque. Whereas, the values of cogging torque
and their distribution is strongly influenced by the assumed probability distribution.
From the three considered cases, the uniform distribution presents the worst case.

In general, it can be stated that a better quality of the magnets requires a higher precision
during manufacturing, which may result in higher material costs. This study provides an
approach to prove the use of a bad quality for a possible reduction of the fabrication costs.

4. Conclusion
This study shows the minimisation of cogging torque of a PMSM with respect
to manufacturing tolerances and failures. A robust design of the machine is achieved
by using numerical simulations combined with statistical methods such as DoE.
A stochastic FEA is performed to validate this design and to investigate the influence
of different qualities of the permanent magnets. It has been shown that the magnet
quality has a strong influence on the cogging torque of the estimated machine. Within
this scope, an approach for a possible reduction of the fabrication costs is provided.
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