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Active reduction of audible noise exciting radial
force-density waves in induction motors

D. Franck, M. van der Giet, K. Hameyer

Abstract—This paper presents an approach to the active
reduction of radial force-density waves. Additional flux-density
waves are generated by the injection of additional and particular
low-power current harmonics. With these flux-density waves a
force-density countershaft to an acoustic annoying radial force
density wave is generated. In this contribution a mathematical
model to estimate the amplitude, frequency and phase shift of
the required current harmonic is presented. The prediction of the
phase-shift is strongly dependent on saturation effects and on the
interaction of the additionally imposed and existing flux-density
waves. Therefore, a finite element (FE) experiment set is proposed
to increase the accuracy of the analytically predicted phase angle.
The active injection of force-density countershafts is performed,
analyzed and evaluated. The assessment is performed based on
FE simulations. The authors found that the injection of force-
density countershafts is applicable for force-density waves with
any circumferential oscillation modes and frequency in general.
However, the consideration of oscillation modes is limited to
r = 0, ±2p, ±3p and ±4p in order to keep the additional
losses in the machine within an acceptable limit. The proposed
approach is robust concerning the accuracy of the phase shift of
the additionally imposed current harmonic.

Index Terms—Acoustic optimization, audible noise, noise and
vibration, induction machine

LIST OF SYMBOLS

I phase current
ξ ordinal number of stator current frequency
ω angular frequency
t time
x circumferencial coordinate, rad
k phase number
B flux-density
p number of pole pairs
m number of phases
q number of slots per pole and phase
µ0 permeability of free space
N number of turn of the stator coil
δ air-gap length
ν number of pole pairs of field harmonics
kw winding factor
Λ permeance function of stator and rotor
λ1 stator permeance function
λ2 rotor permeance function
ϕ phase angle
g, k, l integer
σ force-density
mi expansion of fundamental frequency
Θ magnetomotive-force
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A band-factor
f frequency
r force density mode order

SUBSCRIPTS

ξ frequency order
1 stator
2 rotor
k,l wave number
+ denotes additional
counter denotes countershaft
fund denotes fundamental
b+ additional flux-density wave
i+ additional current harmonic

I. INTRODUCTION

The acoustic radiation of electrical drives is attracting
particular attention. On the one hand PWM supply of variable
speed drives and on the other hand increasing torque-densities
yield higher harmonic content of the magnetic air-gap field and
ultimately this leads to higher audible noise excitations. There
are various approaches to realize a low audible noise design of
electrical machines. One can distinguish two major approaches
to reduce the electromagnetic sources of the audible noise.
The first one is the design of the machine, considering the
combination of stator- and rotor-slots for induction motors,
the winding-scheme, air-gap length, skew of the rotor-bars,
the teeth geometry, etc. This parameters have a significant
influence on the air-gap field harmonics. The fundamentals of
estimating and reducing the audible noise by means of these
parameters is strongly dependent on the application. The basic
approach for an estimation and reduction of audible noise in
this way are for example given in the literature [1], [2].

Addressing the power electronics supply of an electrical
machine is a second way to influence the acoustic radiation. In
the literature different approaches are presented. For example
[3]–[7] propose a variation of the PWM frequency, which leads
to a spreading of the tonal noise to atonal noise and a reduction
of the harmonic content in the supply voltage. [8] proposes an
alternative PWM strategy considering the A-weighted sound
power level that takes into account the influence of the
human ear on the prediction. The papers [9]–[11] propose
to inject current harmonics in order to generate force-density
countershafts. This approach is based on the rotating field
theory and a detailed knowledge of the machine and its air-
gap field harmonics is essential. However, the authors follow
an experimental approach to determine the amplitude and
the phase shift of the injected current harmonic. Only the
frequency of the additional current is calculated in advance.
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In this paper, an analytic description based on the rotating
field theory [1], [6], [12], [13] is proposed to completely
describe the effect of additionally imposed current harmonics
in frequency, amplitude and phase on the air-gap field and the
force density excitation. A similar approach has for example
been proposed in [14], [15] for harmonic torque suppression.
The approach is applied to a standard induction motor and
validated by means of a finite element (FE) simulation.

II. ROTATING FIELD THEORY

The objective of the presented research is the reduction of
particular force-density waves by means of injecting counter-
shaft, i.e. a force-density wave, which has the same amplitude,
frequency and circumferential mode compared to the annoying
force-density wave, but is 180 degree phase shifted. The idea
is based on the classical rotating field theory. A current in the
stator winding of a poly-phase electrical machine generates
flux-density waves, leading to radial force-density waves.
These force-density waves can result in unacceptable acoustic
noise radiation. A summary of the required equations for the
squirrel cage induction motor are for example given in [12]. A
short outline of the rotating field is given based on this paper
here. Basis for the field generation of polyphase electrical
machines is the phase current. The presented approach to
calculate the air-gap field is based upon the assumption of ideal
soft-magnetic material properties. This results in a linear-time-
invariant equation system, which allows for the separation of
the different field effects, such as the permeance variation due
to slotting, winding distribution space harmonics and current
time harmonics. Each effect is modeled individually and a
linear superposition is applied to calculate the resulting air-
gap field. For this purpose, the phase current is defined as

I =
∑
ξ

Îξ · cos

(
ξ

(
ω · t− k − 1

3
· 2π

))
(1)

whereby ξ denotes the ordinal number of the stator current
frequency, ω the fundamental angular frequency of the stator
current and k the phase number (i.e. 1, 2, 3). The air-gap field
can then be calculated according to [12]

B(x, t) =
∑
ξ

∑
ν

2p ·m · q · µ0N

2πδν
· kω · Λ · I·

cos (ξ(ωt− νx− ϕ)) ; (2)
ν = p (6g + ξ) ; g ∈ Z; ξ ∈ N

The permeance function of stator λ1 and rotor λ2 can be
calculated individually by means of conformal mapping [16]
and the resulting permeance function can be approximated by
Λ = λ1 · λ2. The formalism is for example presented in [17]
or [12]. The current in the rotorbars can be calculated from
the sator field [12]. This paper utilizes the fundamental field
harmonic of the stator for the generation of the countershaft.
Therefore, the rotor field is not described in more detail. All
parasitic effects introduced by the additional current harmonics
are evaluated based on FEM simulations. The radial force-
density distribution can be calculated by means of the Maxwell
stress tensor. The force-density can be calculated by a convo-
lution [18] of two flux-density waves Bl and Bk in frequency

Magnetomotive-force

θ(x,t)

σ(x,t )=-Bn
2  (x,t)/2/µ₀

Bn(x,t )=Λ(x,t) θ(x,t)

Permeance-wave

Λ(x,t)

Flux-density

Bn(x,t )

Force-density

σ(x,t )

Figure 1. Generation of force-density waves.

domain. The Maxwell stress tensor can be evaluated locally
since ideal material properties are assumed. The radial force-
density writes

σ(x, t) = −
∑
k

∑
l

1

2µ0
B̂kB̂l

cos[(νl ± νk)x− (ωl ± ωk)t− (ϕl ± ϕk)] (3)

A single radial force-density wave is, hence, created by a com-
bination of two flux-density waves. The circumferential mode
order, the frequency and the phase shift of the force-density
wave can be calculated by the summation and subtraction of
the ordinal numbers of the exciting flux-density waves. The
presented theory is based on a Fourier-series-expansion of
the air-gap field. The formalism to calculate the force-density
waves is presented in Fig. 1.

The fundamental frequency for the series-expansion is the
fundamental frequency of the stator current. Objective of the
presented research is the systematic reduction of particular
force-density waves by means of countershafts. In order to
keep parasitic effects as small as possible, the countershaft is
to be generated by the fundamental flux-density wave of the
stator and an extra injected flux-density wave due to current
harmonic. Since the excited force-density waves generated in
induction machines have a frequency, which is not an integer
multiple of the fundamental current frequency in general, a
representation of the air-gap flux-density for sub harmonics is
required.

Taking the operational slip s of an induction motor into
account, the frequency of the additional current does not meet
the frequency condition f = 2πf0ξ; ξ ∈ N , which is
required for the Fourier-series-expansion in classic rotating
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Figure 2. Amplitude of the band-factor for the third rotor harmonic versus
the slip (f0 = 50Hz).

field theory [1], [12]. The current can be defined as

I =
∑
ξ
mi

Î ξ
mi

· cos

(
ξ

mi

(
ω · t− k − 1

3
· 2π

))
. (4)

The fundamental frequency of the Fourier-series-expansion fF
is hence chosen to be the greatest common divisor of the stator
fundamental f0 and the slip frequency fs = s ·f0. In this case,
the air-gap flux-density field can be expressed by:

B(x, t) =
∑
ξ

∑
ν

2p ·m · q · µ0N

2πδ
· kω · Λ ·A(ν, ξ) · I·

cos

(
ξ

mi
· (ωt− νx− ϕ)

)
; (5)

ν = p · g; g ∈ Z; ξ ∈ N

whereby 2p denotes the number of poles, m the number of
phases, q the number of slots per pole per phase, N the
number of windings per stator coil, δ the air-gap length,
kω the winding-factor, Λ the permeance-waves, ξ the ordinal
number of the injected additional current harmonic. A(ν, ξ) is
a so called band-factor denotes the relationship between the
amplitude of a specific current-harmonic and the excited air-
gap flux density wave of pole-pair number ν. It is given by:

A(ν, ξ) =
kω
ν
·

sin
[
π
(
ν
p −

ξ
mi

)]
sin
[
π
(
ν
mp −

ξ
mmi

)] ·
(

1 + cos

[
π

(
ν

p
− ξ

mi

)])
(6)

The term ξ
mi

describes the ordinal number of the current
frequency. In contrast to (5) the generated pole pair numbers
of the air-gap field are ν = p ·g. If the fundamental frequency
of the Fourier-series-expansion approaches to the fundamental
frequency of the stator phase current, (6) converges to p for
ν = p (6g + ξ). Fig. 3 shows the amplitude of the band-factor
A versus the frequency order and the pole pair number ν. The
higher the absolute value of the band-factor A, the lower is
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Figure 3. Amplitude of the band-factor A versus the frequency order and
the number of poles (mi = 6).
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Figure 4. Excitation table of the investigated induction motor, whereby ν1
is the pole-number of the stator field, ν2 the pole-number of the rotor field, r
the mode of the force-density wave and A the amplitude of the band-factor.

the required additional current harmonic for the injection of
an additional flux-density wave. In Fig. 3 is shown that flux-
density waves with the pole pair numbers p, 2p and 3p can
be generated with discrete frequency orders. They depend on
the operational slip s.

III. DETERMINATION OF REDUCIBLE FORCE-DENSITY
WAVES

It is possible to generate an additional force-density wave
by injection of only one flux-density wave with sufficient
amplitude according to equation (3). In order to keep parasitic
effects, due to air-gap flux-density harmonics of the additional
current, as small as possible, the fundamental flux-density
wave of the motor is chosen to be one of the convolutions.
Oppose to claimed in [9], force-density countershafts with
circumferential modes r = 0, ±2p, ±3p and ±4p can
be generated with reasonably low amplitudes of the current
harmonics, which can be seen from the computation of the
band factor in Fig. 3. However, the reducibility of a force-
density wave is constrained by the operational slip. Fig. 2
shows the intense sensitivity of the band-factor, in this case for
the third rotor harmonic, versus the slip. The amplitudes of the
band-factor for different force-density waves for an exemplary
operation point is given in Fig. 4.

The frequency, pole pair number and phase angle of the ad-
ditional required flux-density wave can be calculated according
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to equation-set (3) from the properties of the countershaft:

f+ =fcounter ∓ ffund

ν+ =νcounter ∓ νfund (7)
ϕ+ =ϕcounter ∓ ϕfund

whereby the index + describes the additional flux-density
wave injected by a current harmonic, the index fund describes
the fundamental flux-density wave and the index counter the
countershaft. The phase of the countershaft complies to the
phase of the found force-density wave, but is shifted by π.

The relation between the phase angle of a flux-density
wave and its generating current depends on the frequency.
Since there are two currents with different frequencies, the
fundamental and the additional one, two FE simulations are
applied in order to approximate the phase angle of the addi-
tional current harmonic. One simulation is performed without
current injection and one simulation only taking into account
the extra current. The phase angle of the additional current is
subsequently approximated according to equation (8) in case
of addition and (9) in case of subtraction in convolution (3),

ϕi+ = ϕcounter − ϕfund − ϕb+ + 2 · ϕifund (8)

ϕi+ = ϕcounter + ϕfund − ϕb+ (9)

whereby ϕi+ denotes the phase angle of the additional current
and ϕb+ the phase angle of the additional flux-density wave
to its generating current. In case of summation ϕifund has to
be considered, which is the phase angle of the fundamental
current.

Fig. 5 illustrates the phase angle relations for the case of
summation. The phase angle ϕifund is selected to be zero.

In order to evaluate the proposed approach FE simulations
of a standard industrial induction motor with N1 = 36 stator
slots, N2 = 28 rotor slots, 6 poles are performed. For this
example a fundamental frequency of 50Hz and a slip of 10%
is selected. The rated power of the investigated machine is
P = 800W. The band-factor A has the maximum for pole
pair number p, in this case p = 3, Fig. 3. A force-density
wave with the circumferential order r = pcounter − pfund =
3−3 = 0 and frequency order 108 is selected. The spectrum of
the force-density waves with circumferential mode 0 without
countershaft is presented in Fig. 6. The amplitude of the band-
factor, see (6), for this operating point and force-density wave
results in A = 0.682, which will fulfill the requirement of
a small additional current. The pole number, frequency and
phase shift of the injected flux-density wave are calculated
according to equations (7) and (9). The amplitude of the extra
current is calculated by:

Î+ =
σ̂counter2µ0

2p ·m · q · µ0N
2πδ · kω · Λ ·A · B̂fund

· kω (10)

It is found, that the phase angle of the injected force-
density wave is strongly dependent on the non-linear magnetic
material properties and the interaction of the injected flux-
density waves with the existent air-gap harmonics, thus the
force-density wave is only slightly reduced if the analytically
determined current I+ and phase is used from (9) and (10),
receptively. . Therefore, an FE simulation set is used for the
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Figure 5. Phase angle relations in case of additional flux-density waves,
(φifund = 0).
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Figure 6. Force-density waves with r = 0, with sinusoidal current.

determination of an optimal phase angle. Starting with the
pre-calculated phase angle based on equation (9) a parameter
variation is performed. It is found, that the parameter phase
angle of the additionally imposed current is robust, i.e. small
errors in the pre-calculated phase angle do not lead to higher
radial force-density waves. Based on the presented approach
the amplitude Î+, the frequency f+ and the phase angle ϕ+

is calculated. These calculated properties are shown in Tab.
I. Therewith, an FE simulation of the radial force-density
waves is performed to verify the results. The spectrum of
the force-density waves with circumferential mode 0 with
this countershaft is presented in Fig. 7. With the optimised
values, the studied force-density wave is reduced from 818 N

m2
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Figure 7. Force-density waves with p = 0, with optimized additional current
harmonic.

Table I
FUNDAMENTAL CURRENT, OPTIMIZED ADDITIONAL CURRENT AND

IMPACT ON THE FORCE-DENSITY WAVE.

I0 ϕ0 I+ ϕ+ σbefore σred
2A 0◦ 0.044A −213◦ 878 N

m2 118 N
m2

to 118 N
m2 .

IV. PARASITIC EFFECTS BY THE ADDITIONAL CURRENT
HARMONICS

Two kinds of parasitic effects are studied in the presented
research. The first one is the increase of radial force-density
waves, which have not been regarded in the reduction proce-
dure. The second one is the influence on torque pulsation. In
case of the radial force-density waves the strongest interaction
is expected with the sum of the fundamental and additional
flux-density wave in the convolution of equation (3), i.e.
circumferential mode r = −2p = −6 and ordinal frequency
number 168. In the reviewed example the previously existent
force-density wave of the circumferential mode r = −2p =
−6 and ordinal frequency number 168 is reduced as well
from 614 N

m2 to 52 N
m2 . In case of the studied induction motor

the highest amplitudes of force-density waves are expected
with mode numbers |r| = 0 and |r| = 6. The parasitic
effect on these waves is studied in more detail. In order
to evaluate the influence on force-density waves with these
two mode numbers the difference of the amplitudes of the
force-density waves σ̂r,i (whereby r is the mode and i is the
frequency order of the force-density wave) with and without
optimized current shape is analyzed. In Fig. 8 and Fig. 9 the
difference of the force-density waves ∆ = σ̂fund,r,i− σ̂counter,r,i
of the fundamental simulation without countershaft and the
simulation with countershaft for the mode numbers r = 0
and r = −6 respectively is shown. It is verified that only the
intended force-density waves are reduced, and the influence
on the other frequencies is low as well. The influence of the
additional current harmonic on force-density waves with other
circumferential modes is observed to be low. The evaluation of

0 100 200 300 400 500 600 700 800 900 1000
−100

0

100

200

300

400

500

600

700

800

D
if

fe
re

n
ce

 o
f 

fo
rc

e-
d

en
si

ty
 w

a
ve

s
N m__

2

Ordinal number of frequency

Figure 8. Difference of force-density waves with r = 0, without and with
optimised additional current harmonic.
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Figure 9. Difference of force-density waves with r = −6, without and with
optimised additional current harmonic.

the parasitic effects on the torque is performed by means of a
Fourier-analysis of the torque for one revolution of the rotor.
Two FE simulations are compared, the one with sinusoidal
current and the one with the optimized current shape. Fig.
10 and Fig. 11 show the spectrum of the torque for both
simulations. As shown, the influence of the extra current on
the torque is low. The constant component of the torque is
T0 = 4.26 Nm. No change in this component is determined.
The first relevant harmonic of the torque is increased from
T1 = 0.62 Nm to T1 = 0.64 Nm. This increase is can be
considered negligible to be negligible. Therefore, the method
is evaluated to be interesting for further research. The influence
of the additional current on the efficiency of the motor is
expected to be low, since the amplitude of the fundamental
current is Î0 = 2 A and the amplitude of the extra current
is Î+ = 0.044 A (i.e. 2.2% of the rated stator current). An
increase of the stator and rotor copper and iron losses is
expected.
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Figure 11. Fourier transform of the torque, with optimised additional current
harmonic.

V. CONCLUSIONS

This paper presents an approach to reduce radial force-
density waves with harmonic current injection of low-power.
In contrast to [9], [10], [14] analytic formulas for the pre-
calculation of the amplitude, frequency and phase angle of
the additional current are presented. It is found that the force-
density waves with the circumferential mode r = 0, ±2p,
±3p and ±4p can be reduced with reasonably low current
amplitude. Oppose to [9], it is found that the frequency of
the reducible force-density wave depends on the slip. The
proposed approach is evaluated and verified by means of FE
simulations. The results of the numeric simulation are in good
agreement with the analytical pre-calculated properties of the
additional current harmonic for the reduction of a particular
force-density wave. However, a further reduction of the aimed
force-density wave after applying an FE simulation set is
accomplished. The study reveals that the exact knowledge of
the phase angle is not required; the presented approach shows
robustness concerning the accuracy of the pre-calculated phase
angle. Parasitic effects of the additional current harmonic
towards other radial force-density waves and torque pulsation

is studied. It is found that the influence on parasitic force-
density waves is low for the studied case. Since the amplitude
of the additional current harmonic is only 2.2% of the funda-
mental current, no significant effect on the torque spectrum is
determined.

This approach seems promising to the authors, therefore
further research is planned. A test bench for the experimental
validation is scheduled. In the first step a variable non-
switching source will be applied. Further steps are voltage
driven simulations, the investigation of manufacturing toler-
ances, the influence of standard PWM inverters and adaptive
determination of the additional current harmonic properties
(amplitude and phase) by means of measurements.
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