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An Alternative Approach to Analytic Force Computation
in Permanent-Magnet Machines
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We present an alternative approach to analytic force computation in permanent-magnet machines, focusing on the tangential forces
that generate the armature and the cogging torque. We extend previously presented methods using conformal mapping to overcome
the limits imposed by the singularity of the magnetic flux density at the tooth tip that occurs during the transformation. Using our
approach, the cogging and armature torques developed in lightly loaded electric machines can be computed without these limits and
without introducing auxiliary parameters. We also revisit Maxwell’s stress theory to compute the force on the interface of two materials
with different permeabilities, in contrast to the common application to compute the force on a rigid body placed in an electromagnetic
field. Using this technique, we then calculate the forces at the slot sides so that the influence of the machine design parameters on the
result is directly available.

Index Terms—Brushless dc machine, conformal mapping, design methodology, optimization.
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NOMENCLATURE

Brushless dc machine.
Electromotive force.
Finite-element method.
Permanent magnet.

Transformation point in the conf. transf.
Z — W.

Area.

Transformation point in the conf. transf.
7z — W.

Magnetic flux density.

Slot depth.

Force density.

Volumetric force density
Armature force.

Cogging force.

Air gap width in the Z-plane.
Magnetic field strength.
Current density.
Coordinates in the K -plane.
Effective machine length.
Compressive stress tensor.

Radius (machine geometry).
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Indices

Stator inner surface radius.
Coordinates in the S-plane.
Maxwell stress tensor.
Coordinates in the T-plane.
Volume.

Coordinates in the W -plane.
Auxiliary parameter.

Coordinate transformation factor for K — S
(calculation of the PM field).

Coordinate transformation factor for 7" — S
(calculation of the armature winding field).

Permeability.

Permeability of vacuum, 11o=4710~7 Vs/(Am).
Permeability of iron.

Relative permeability.

Tensile stress tensor.

Auxiliary parameter.

Angle (machine geometry).

Parameter on slot side no. 1.
Parameter on slot side no. 2.

Parameter related to the armature winding
field.

Parameter related to the tensile stress.
Parameter related to the PM field.

Component perpendicular to the material
surface.

Parameter related to the compressive stress.

Component tangential to the material surface.
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1. INTRODUCTION

OTIVATED by the increasing complexity of electric

drive systems, the development of efficient design tech-
niques for electric machines has become of high importance.
These techniques are often application-specific so that the
desired degree of accuracy is achieved while costly, time-con-
suming computations are avoided where they are not required.
In this context, the separation of the design process into a coarse
and a fine optimization and the development of analytic models
(instead of the use of time-consuming numerical techniques
early on in the design process) has seen a renewed interest
in recent years (e.g., [1]-[12]). In this paper, we focus on the
analytic calculation of the tangential forces that generate the
armature and the cogging torque in permanent-magnet (PM)
machines. We extend previously presented methods using
conformal mapping and overcome the limits given by the sin-
gularity of the magnetic flux density at the tooth tip that occurs
during the transformation. Using our approach, the cogging and
armature torques developed in lightly loaded electric machines
can be computed without this limitation and the introduction of
auxiliary parameters. We also revisit Maxwell’s stress theory
to compute the force on the interface of two materials with
different permeabilities, in contrast to the common application
to compute the force on a rigid body placed in an electromag-
netic field. Using this technique, we then calculate the forces
at the slot sides so that the influence of the machine design
parameters on the result is directly available.

From the family of PM machines, we have chosen brush-
less dc machines (BLDCMs) as our application for two rea-
sons. 1) Because of the nonsinusoidal variation of the mag-
netic flux along the circumference, the armature torque of the
BLDCM is often calculated using the “original” abc-equations.
2) A wide range of motor- and controller-based design tech-
niques have been developed to minimize the generation of cog-
ging and ripple torques in BLDCM drives. These include the
use of active cancellation algorithms which depend on either
accurate tuning or adaptive control schemes [13], requiring a
detailed analysis of the instant torque generation in BLDCM.
A very comprehensive review of techniques for cogging-torque
minimization in radial flux machines is given in [14], where
these techniques are analyzed with respect to their application
to axial-flux machines. Using an analytic technique that is appli-
cable both for the armature and the cogging torque, the machine
parameters can be optimized fast and together with the con-
trol technique in one step. Thereby, time-consuming, computa-
tionally expensive techniques such as the finite-element method
(FEM) only need to be used very selectively and towards the
end of the design and optimization process. In addition, the sin-
gularities that occur in the electric and magnetic field solutions
at corner points provide are challenge to finite-element-based
methods (see, for example, [15]). Since the energies in the areas
of concern are finite, the energy-related quantities such as force
and torque are finite as well. However, the accuracy with which
they can be computed depends on the handling of the field singu-
larities by the method. This proposed analytic technique might
therefore provide advantages over a numerical solution.

We apply our technique to discuss the two macroscopical tan-
gential forces occurring in electric machines, namely 1) the in-
tended armature torque and 2) the parasitic cogging torque that

results from the interaction of the magnets and the stator teeth.
However, this should not obscure the fact that the presented
technique can be expanded to be used in other types of PM ma-
chines-including linear and axial flux machines-and for the cal-
culation of radial forces which can cause deformation of stator
and rotor iron, vibration and increased noise [16]. Also, similar
to papers such as [6] the aim of the paper is to present a novel
method to compute the above mentioned forces. The quantita-
tive results of the computed torques themselves (and parameters
of the example case machine) are not essential for the analysis,
except for the comparison between methods.

The paper is organized as follows. First, we briefly review
the methods to calculate tangential magnetic forces in electric
machines (Section II), including the application of Maxwell’s
stress theory to compute the forces at the interface of mate-
rials with different permeabilities. Then, this technique is ap-
plied to analytically calculate the magnetic forces in the slots
(Section II) for which the computation of the magnetic fields
in the slots is required Section IV). Using these results, the ar-
mature and cogging torques in an example machine are calcu-
lated, where first the limitations given by the singularity at the
tooth tips that occurs during transformation is clearly shown
(Section V), and then the newly developed approach is presented
and validated (Section VI).

II. REVIEW: CALCULATION OF MAGNETIC FORCES
IN ELECTRIC MACHINES

A. Overview of Commonly Used Methods

In the context of electric machines, four methods are com-
monly used to calculate the forces and torques [16]: the 1)
Maxwell stress tensor, ii) co-energy, iii) rate of change of field
energy, and iv) Lorentz force methods. The use of the Maxwell
stress tensor requires the vectors of the flux density over a
surface which is reduced to a specific line or contour in the
2-D case. The co-energy and rate of change of field energy
methods do not require computation of the accurate distribution
of the magnetic field itself, but at the expense that the force
distribution inside the machine is not directly available. The
Lorentz force developed in the air gap can be relatively easily
computed and is therefore frequently used in analytic models
used for machine design and analysis where the developed ar-
mature torque is of interest. Here, aiming to develop an analytic
and fast design technique that comprises a direct correlation
between the machine design and both the developed armature
and cogging torque, we apply Maxwell’s stress theory using an
alternative approach to the one to compute the force on a rigid
body placed in an electromagnetic field.

B. Maxwell Stress Theory Revisited

1) Introduction: In the context of electric machines, the
Maxwell stress theory is frequently used to calculate the de-
veloped torque(s) through computation of the force on a rigid
body placed in an electromagnetic field. This easily obscures
the fact that the Maxwell stress theory can also be used to
calculate the forces at the interface of materials with different
permeabilities. As a matter of fact, this approach has been
less discussed in the literature so far, notably in the context
of electric energy converters. Key references are given by
[17]-[19]. Similar to conformal mapping (see Section IV) that



988

originates from theorems first presented more than 100 years
ago and that has found renewed interest in the last decade (with
first and frequently cited papers going back to the early 1990s
[20]-[23]) the proposed method revisits and rediscovers find-
ings first presented three or four decades ago. With its inherent
advantages, it will contribute to the further development of
time-effective analytic methods. In contrast to the rigid body
method, this approach does not require the computation of the
vectorial components of the magnetic flux density but only of
the absolute value. Furthermore, the correlation between the
geometrical parameters of the machine and the produced torque
is directly available. These benefits come at the expense that the
path along which the magnetic flux density has to be computed
is given by the interface at which the force occurs. Hence, it
cannot be freely selected, which clearly is an advantage of the
rigid body method.

2) Force on the Interface Between Materials With Different
Permeabilities: Mathematical formulations for Faraday’s con-
cept of transmission of forces through a field were derived by
Helmbholtz and Carter based on the energy stored in the magnetic
material. Their derivations have the same concept, but differ in
the material assumptions [17]. In both cases, the resulting force
is directed from the area with higher to the one with lower per-
meability. Helmholtz’ material assumptions give surface forces
normal to the surface, but no volumetric forces. The surface
forces do not depend on the orientation of the flux but only on
its absolute magnitude. Carter’s material assumptions give both
surface and volumetric forces. The surface forces are tangential
to the surface and are zero when the magnetic field is tangential
or perpendicular to the surface. The volumetric forces inside the
material tend to force each element towards the parts with the
higher magnetic flux density. In the further analysis, Helmholtz’
material assumptions are used because the resulting analysis is
more concordant with the common techniques of machine anal-
ysis and the calculation of the field inside the iron of the machine
is more complex than the one at the material interfaces.

The tensile and compressive forces o and p, derived from
Helmholtz’ material assumptions, are [17]

1
o=p=;BH. (1)

Then, the total normal force component f,, that is the sum of the
two normal force density components of the two sides 1 and 2
of the interface is

AR o 2>
w==——— (B +=B%). 2
n=3 </t1 /Az)( oy @)

The two tangential force density components of the two sides
cancel out and hence the tangential force density f; that is the
sum of these two is zero.

III. APPLICATION TO ELECTRIC MACHINE DESIGN:

CALCULATION OF THE MAGNETIC FORCES

A. Implications and Approximations

For electric machines, Helmholtz’ material assumptions
imply that the torque can only be generated at the tooth sides.
The field component at the tooth head causes radial forces and
does not have a tangential component. Therefore, the approach
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cannot be used for machines where such interfaces are not
present, i.e., machines with air gap winding. In addition, the
method is based on the understanding that these interfaces pro-
vide the major contribution towards the developed tangential
force and that there is no, or only a negligible contribution from
the forces within the core material.

The permeability in the slot is much smaller than the one
in the iron. Without loss of generality of the methodology pre-
sented, we approximate y = p1 = jio throughout the slot. With
the permeability of the core p12 = p,.110 and therefore 11 = o,
(2) becomes

1 1 1
et (A
Ho Hor 40

) (B}, + nBY,) - 3)

Assuming furthermore p,. — 00, what can be justified for
lightly loaded machines, it is B; — 0, and the force density at
the interface is finally

“

As long as these assumptions hold true (within the desired de-
gree of accuracy), only the absolute value of the flux distribution
along the slot sides is required for the calculation of the cogging
and armature force, which is a huge advantage over the force on
a rigid body/contour in the air gap method.

B. Cogging Force

Considering Fig. 1(a), the magnetic flux from the magnet to
sides 1 and 4 and to sides 2 and 3 and hence the forces at the
material interfaces are equal

|ﬁcl| = |ﬁc4| and |F02| = |ﬁc3| (5)

thus cancel each other, and no force acts upon the rotor. A dis-
placement of the stator with respect to the rotor causes a change
of the flux entering the four slot sides and thus of the four forces
ﬁcl to ﬁc4. In Fig. 1(b), ﬁcg and ﬁc4 have increased and ﬁcl and
F., decreased. As long as the flux density entering sides 1 and 3
is higher than the one entering sides 2 and 4, the forces F.q and
F';g pull the stator back to the previous position. When the flux
density entering sides 1 and 3 becomes smaller, the direction of
the overall force changes. Since the flux and therefore the forces
on the two tooth sides of a slot completely covered by a magnet
are equal, cogging torque can only be produced in those slots
that are partially covered by magnets.

Using the force density as given by (4), the total force acting
on one slot side is

Ro+d,

1
F=— 1,
210

B2 dR (6)
where [; is the effective length of the machine, R the radius
of the stator inner surface, and d the slot depth. In contrast to
the calculation of the cogging torque using the force on a rigid
body/contour in the air gap method, only the absolute value of
the flux distribution along the slot sides is required here.
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Fig. 1. Magnet positions and generation of cogging torque. (a) Position in
which the PM covers 1/2 of the left and 1/2 of the right slot, respectively. (b)
Position in which the PM covers 1/4 of the left and 3/4 of the right slot, respec-
tively. In this position, F.; becomes negligibly small.
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Fig. 2. Magnetic flux generated by armature winding current and PMs. (a) Ar-
mature winding flux and (b) PM flux.

C. Armature Force

Here, unlike in the case of the cogging torque, the difference
of the forces acting on the two slot sides is caused by the ar-
mature winding field, since a part of the magnetic flux created
by the winding leaves the slot on one side and enters on the
other side again [Fig. 2(a)]. Overlapping the armature and the
PM [Fig. 2(b)] fields illustrates that the latter is weakened on
side 1 and increased on side 2.

Considering that §m||§a at 61 and 0> (sides 1 and 2) and
whether the two fields are oriented into the same or into the
opposite direction, the resulting force in the slot is derived using
(6)

Rs+d,

(’ém(zz, )~ Bu(R. )]

s

_ ‘B’m(R, 01) + B.(R, 91)‘2> dR. (7)

With |B(R, 61)| = |B(R,65)| = |B(R)|, both for B,, and B,,
we obtain

Rs+ds

2
F,=——I /
Ho

Rs

i

BB R ®)

Again, only the absolute values of the fluxes generated by
the PMs and by the armature winding, but not their normal and
tangential components, need to be determined.

Stator
T

Magnet

Fig. 3. Slotless PM machine.

IV. ANALYTIC CALCULATION OF THE MAGNETIC FIELD
IN THE SLOTS

A. Introduction

The magnetic field at the slot sides is required to compute
the cogging and armature torque from (1) and (8). The conven-
tional approach to take the slot openings into account via the
Carter factor (e.g., [25]) is not applicable as it precludes not
only the information on the radial and tangential components
but also the required accurate calculation of the magnetic flux
on the slot sides. We therefore use conformal mapping and first
calculate the magnetic field in a slotless machine (Fig. 3) that
is then transformed into the field in the slotted machine via a
complex permeance, as presented in [20] and [22].

Because of the different distributions of the PMs and of the ar-
mature winding, two different conformal mappings are required
to calculate the flux generated from these two sources respec-
tively. In [20], the air gap flux density generated by the PMs in a
slotless machine is calculated by solving the Poisson equation.
In [22], the effect of slotting is implemented using conformal
mapping, and in [21] the approach is adapted to calculate the
armature winding field. Assuming the two fields can be calcu-
lated independently from each other, the overall air gap field is
then obtained through superposition in [23].

In this work, we use the conformal transformation presented
in [26] for the calculation of the magnetic field generated by the
armature winding and the one presented in [2] (which extends
[20], [22], and [26]) for the computation of the field generated
by the PMs, respectively. The following simplifications need to
be made. i) pf. — 00, ii) no change of the field distribution
in axial direction, iii) rectangular, and iv) infinitely deep slots,
where the last two simplifications are required for the conformal
mapping. As evidenced in Section V, iv) does not have any sig-
nificant influence on the force calculation.

B. Magnetic Field Distribution in a Slotless PM Machine

The PMs are i) assumed to have a linear second-quadrant de-
magnetization characteristic, ii) are modeled by surface currents
at the magnet flanks, neglecting any volume currents inside the
PMs, and iii) are radially magnetized (see also simplification ii)
in Section IV-A). In our context, only the magnetic flux density
in the area covered by air is of interest. For the derivation as
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well as the explicit equation this magnetic flux density, we refer
to [20].

C. Summary of the Conformal Transformation Used

For the magnetic field generated by the PMs, four conformal
transformations are required, transforming the geometry be-
tween the planes S (slotted machine), 7, W, T, and K (slotless
machine) [2]. (For illustration, an overview of these planes is
shown in Fig. A-1 in the Appendix.) If a slot is fully covered
by a magnet, the magnetic field in the K-plane is constant.
Otherwise, if a slot is not fully covered by a magnet, a transition
area between zero field and maximum field exists. The width
of the transition area depends on the geometrical parameters
of the machine and notably on the dimensions of the magnet.
An analytic expression for the magnetic field in the slotless
machine generated by the PMs, By,,, has been derived in [20],
which is also used the work presented here.

For the armature field, only three conformal transformations
are required: S — Z,Z — W,and W — T [26]. Since the
line of symmetry in the middle of the slot can be exploited only
half of the slot needs to be analyzed. Note that in both cases, an
analytical transformation Z — W is not possible and numerical
methods have to be applied.

Using these conformal transformations, the fields generated
by the PMs and by the armature winding in the slotted machine,
Bs,, and Bg,, can be obtained from those computed for the
slotless machines, By, and Bi,, by

Ok \ ™
Bsm =B em |\ 5
k <03m> ©)
ota \"
Bsw =Bia | — 10
o (5) (10)
from which
Bsm = )‘Zs7mBkm (11)
Bsa = )‘;ksﬂBta (12)
with the complex permeances
km m — 1
Mo, == b = (13)
’ Sm AV Wm — G/ Wm — by
LV Z e 1y (14)

Moo =j— Yoo — ),
N P

can be obtained. Here, “x” denotes the complex conjugate, g’
the width of the air gap in the Z-plane, k, w, and s are the co-
ordinates in the K-, W-, and S-plane, respectively, and a,, =
1/b,, and a, are transformation points for the transformation
Z — W. For the derivations of the magnetic field distribu-
tions in a slotless PM machine, By, and B;,, as well as of the
complex permeances \,, and \,, we refer to the above cited
literature. The full expressions of Agsm = (9km/0sy) and
Ats,a = (0tq/0s,), i.e., the individual partial derivatives con-
tributing to these terms, are required to understand the detailed
derivations of the new expressions to compute the forces that
cause the cogging and armature torque in BLDCMs. They are
therefore given in the Appendix.
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TABLE 1
PARAMETERS OF THE FICTIVE MACHINE
Magnet remanence flux density 13T Pole pairs 2
Relative recoil permeability 1.045 Slot depth d, 10 mm

o

Magnet pitch ratio 2/3 Slot parameter 6, Aech

Radius rotor surface S55mm | Slot parameter 6 Omech
Radius magnet surface 57 mm Slot parameter 6 10%5ech
Radius inner stator surface (R,) | 57.5 mm

It is important to note that (13) does not have a solution for
Wy = Gy, = by, which correspond to the tooth tips of the
slotted, “real” machine in the S-plane.

V. FORCE AND TORQUE CALCULATION IN TWO STEPS:
SIGNIFICANTLY LIMITED

Following the conventional approach, the magnetic forces F,
and F, are calculated in two consecutive steps, where first B,,
and B, are determined through conformal mapping and the re-
sults are then used to calculate F. and F,. Because of the singu-
larity occurring at the tooth tip during the conformal mapping
[for wy, = am, = by, in (13)], the application of this approach
is very limited: Since the flux density at the tooth tips cannot be
determined, the integration boundaries are adjusted introducing
an auxiliary parameter € and the magnetic flux is only deter-
mined starting from at the distance ¢ from the tooth tip. It will
become clear in the following that the outcomes of the compu-
tations are very sensitive to the value of the parameter . The
computations carried out in the following are based on a fictive
machine (Table I).

The finite depth of the slots (as opposed to the infinite depth
assumed for the conformal mapping) the magnetic field is only
determined (and then later considered in the integral) by a length
¢ into the slot. The assumption of the infinite slot depth can be
used without any restrictions because the force acts only at a
fractional part of the slot side as evidenced by the results shown
in Fig. 4: although the slot depth is 10 mm, the flux density at the
slot side is nearly zero after 3 mm. Similar results hold true for
the field on the slot sides created by the armature winding, where
the decay is not as strong as in the case of the PM generated field,
but the simplification made for the conformal mapping still per-
missible. It should also be noted that the field generated by the
armature winding always occurs in a multiplicative term with
the PM generated field and hence its value is of minor impor-
tance where the PM generated field approaches zero.

In contrast to (, the auxiliary parameter ¢ has a crucial in-
fluence on the computed force, as singularity is approached.
For illustration the cogging torque of developed in the example
case machine is calculated analytically for e = 0.01 mm and
¢ = 0.007 mm, and numerically. For the analytic torque calcu-
lation, only the forces acting on the slot side up to 3 mm into
the slot are considered. The radius at which the resultant force
is active is set to 1.5 mm into the slot, from which a maximum
error of the computed torque of 3% is introduced. The results
(Fig. 5) show that the small difference of 0.003 mm for ¢ leads
to a significant difference of the computed values, where the
torque increases with decreasing value of ¢ as expected. Note
that in other work this issue is solved by adjusting € from ad-
ditional finite-element calculations (e.g., [12]). Because of the
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Fig. 4. Permanent-magnet magnetic flux density at the slot side (slot fully cov-
ered by magnet), computed 0.01 mm from the tooth tip 4 mm into the slot (cor-
responding to the auxiliary parameters ¢ = 0.01 mm and ( = 4 mm).
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Fig. 5. Cogging torque calculated analytically for ( = 4 mm and
€ = 0.01 mm as well as ¢ = 0.007 mm and numerically (FEM).

extreme sensitivity of the computed values on the choice of ¢
overcoming this restriction of the two-step approach is seen as
a very important step towards further development of analytic
methods for machine design and analysis.

Note that similar observations have recently been reported in
[12], where the optimum value of ¢ is chosen ‘“‘so that the flux
density in the vicinity of the tooth tip is close to the value cal-
culated by the FE method.” Using this method, a good agree-
ment between analytically and numerically computed values of
the cogging torque. In our paper, we present an alternative way
to solve the limitation given by the singularity and the auxil-
iary parameter € by fully eliminating the need for . Because of
the extreme sensitivity of the computed values on the choice of
€, overcoming this restriction of the two-step approach is seen
as an important step towards further development of analytic
methods for machine design and analysis.

Note that the magnitude of the numerically computed torque
is in-between the two analytically computed values. Further-
more, the numerical and analytic results are not in phase,
indicating that the calculated flux densities do not reach their
maxima at the same rotor displacements.

VI. THE NEW FORCE AND TORQUE CALCULATION METHOD

A. Introduction

In the new approach, we avoid the need to explicitly calculate
the magnetic flux at the tooth tips by substituting the values of
the magnetic flux density in the slotted machine By, = B,
and B;, = B, in the expressions for F.. and F, by the mag-
netic fields in the slotless machine By,, and B;, and the cor-
responding transformation parameters A, and \,. Thereby, the
forces F. and F), are calculated in one step and no singularities
occur any more in the expression, as will become clear in the
following.

B. Cogging Force

In order to account for the different planes considered in the
approach, the general expression for the force resulting from
the field generated by the PMs (6) is rewritten, considering that
the magnetic field generated by the PMs, B,,, is the field in the
slotted machine in the S-plane

Rs+ds

1
B2 ds.

F.=—1I

15
o 15)

s

Then, the integration limits are adjusted to account for the infi-
nite slot depth required for the conformal mapping

1 oo
F.= —1I; /B;ds. (16)
2po .
R,
The influence of this adjustment on the accuracy of the results is
negligible, because of the strong decrease of the magnetic flux
density with the slot depth. Next, the magnetic flux density is
replaced using (11)

(oo}

1
F, = %li/ |\ Brm ()| ds.

The force calculation with (17) is not directly possible
because By, (s) is not available. From [20] the magnetic flux
density in a slotless machine By, (k) is given. Therefore, the
integration parameters and limits have to be adjusted. For this
purpose we do not replace the complex permeance A directly
by its expression (13) but by the corresponding derivation
Ok [0S, see (9)

a7

ok, |°
Do ds

m

. oo ,
Fc:—li Bm m
its [ B
R;

2

Ok, Oty OWyn Oz ds. (18)

Oty OWyy, 02, OSm

1 T 2
o | Bl ($m)]
R

Since the two slot sides are transformed to different points in
the K-plane, they also have different new integration limits. In
the following, we develop the new expression for the force at
one slot side, 1, at length. The one for the second slot side,
F,,, follows accordingly.
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In the first step, we transform the integral from the S- into the
Z-plane by canceling the terms 1/0s,, and ds and adjusting the
integration limits (logarithmic transformation)

1 oco+3561
Fo=—1I Biem (zm)|?
"=, ' | B (2m )|
log Rs+j61
Okpy Oty Owm |* |02 p
Zm
Oty OWy, 0Zm 08m
oo+j01
=—1; Brm(2m 2
2u | Brm (2m) |
log Rs+761
Ok, Ot,, Ow,|*| 1
8t 8wm 0Zm e?m Fm
1 1 oco+3761
=5 LT Brm(zm 2
s [ Bunten)
log Rs+3j61
Ok Ot 0w |”
dzm. (19
‘atm D, Dz | o (19

In the next step, the integral is transformed from the Z-
into the W-plane in analogy to the previous transformation,
(canceling 1/9z,, and dz,, and adjusting the integration limits;
Schwarz-Christoffel transformation)

Ok Ot |?
ot ow

ow,

—azm dwo,

1
11 )
F(‘ :—li_ Bm m
gt el

1
11 )
= l1_ Bm m

T (W — 1) Wi,
X ——
g \/wm —Qm \/wm - b’m

5= B (w
2MOR7T/|k

g1/
T W

‘dw

(g Inw,, + 9% ) ?

Wi — 1
dw
‘wm\/wm_am\/wm_bm‘
1
1 g 2
=—ILRs=— B (Wi,
Wy — 1
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Because of the conformal transformation the value of w,,, is
limited to 0 < a,,, < w,, < 1. We can therefore eliminate the
absolute value bars and obtain the final expression for the force
acting on the first side of the slot
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I 2
Re - B cm, m
2 [ B ()
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1—w,
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The force acting on the second side of the slot is derived
accordingly

b

1 !
I,R,Im /|Bkm(wm)|2
™

Fop=—
c2 2’”0 J

1—wm

W \/wm — Qm \/bm

The total contribution of one slot towards the force generating
the cogging torque is

dw,. 22)

— W,

Fc,slot = Fcl + F02~ (23)

Note that only slots which are not fully covered by a PM magnet
have F. so+ # 0. The total cogging force can be computed from
(23) considering all slots of the machine which are not fully
covered by a PM.

C. Armature Force

The new expression to calculate the armature force is devel-
oped in analogy to the one to compute the cogging torque dis-
cussed in the previous paragraph: first, in order to account for
the different planes considered in the approach, the general ex-
pression for the force resulting from the field generated by the
PMs (8) is rewritten, considering that the magnetic fields gen-
erated by the PMs and by the armature winding B,,, and B, are
those of the slotted machine in the S-plane, and adjusting the
integration boundaries to account for the infinite slot depth re-
quired for the conformal mapping

oo

2
F, = ——li/
Ho

Next, the magnetic flux densities are replaced using (11) and
12)

(24)

Bon ()|

ESG(R)‘ dR.

= ——l /|)\kqukm| | \fe.aBtal ds. (25)

The armature winding field in the 7-plane does not depend on
the radius. Assuming that the slot is completely covered by the
magnet and that the flux in the K-plane is therefore constant,
(25) becomes

Fa = —_l |Bkm||Bta|/|)‘Zs m| |/\ts a| ds. (26)

Again, as in the case of the cogging torque, we do not replace
the complex permeances A ., and Aj , directly by their
expressions (13) and (14) but by the correspondmg derivations
Ok /08y and Ot,/0s, (expanded), in order to adjust the
integration parameters and limits, see (9) and (10), and the
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It is obvious that the coordinates in the S-plane for the com-
putation of the magnetic fields generated by the PMs and by
the armature winding are the same, s, = s,, = s, since the
same machine model is used for both cases. As in the previous
case, we transform the integral from the .S- into the 7 -plane by
canceling the terms 1/0s,,, and ds and adjusting the integration
limits (logarithmic transformation)

2
Fa:__li|Bkm||Bta|
Ho

ok ot dw || 0t dw, 1
m m wm wa
dz, (28
X ‘(%m OWyn OZm || Owe 024 eza Zm (28)
log Rs+3761
2 1
—— = 1B ||Bya| —
1 B 1Bl 3
ok ot dw, || 0t
m m wm a wa
Ial e (2
X ‘(%m D, Do || 00 920 | T @
log Rs+37601

with |0z,/0s.| = [1/e**| = (1/Rs) (neglecting the slot depth
when compared to the stator radius).

By changing the integration variables from the Z- to the
W -plane coordinates and selecting the PM variable w,, as the
new integration variable it is now necessary to determine the
armature winding W -plane variable w,, as a function of the PM
W -plane variable w,, . Because of the multiple transformations
between different planes used in the conformal mapping, this
step requires the determination of w, as a function of z,. Note
that transformation Z — W cannot be solved analytically and
has to be solved numerically. To this aim, the solution of the
transformation points Z — W is obtained numerically and the
given points are interpolated, e.g. using the MATHEMATICA
function Interpolate [27]. This numerical determination is more
complex than the one used to calculate the flux density only.
However, this new approach bypasses the singularity problem
at the tooth tip, so that the force can be calculated without any
restrictions.

In the last step, the integral is transformed from the
Z- into the W-plane. With ¢, = g, = ¢', as well as
|ed((@'/m)mwt(6./2))| = 1 for all ¢/, w, and 6, the final
expression of the armature force is obtained

1
2 1 q 1
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o™
; 1
y / | VWa(Wm) —dal (30)
W, wa(wp) + 1
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Fig. 6. Cogging torque calculated analytically according to (21)—(23), using the
air gap field in the slotless machine computed analytically as well as numerically
(FEM), compared to the numerically computed cogging torque.

D. Results

1) Cogging Torque: We calculate the cogging torque based
on the field in the slotless machine, By, (w), using (21)—(23),
both with the magnetic field By, (w) calculated analytically
(Section IV-B) and numerically (FEM) and compare the results
to the cogging torque calculated using FEM only (Fig. 6). The
results confirm that the new approach to compute the cogging
torque based on the magnetic field in the slotless machine and
using a single expression is justified. However, since the purely
analytic solution is displaced when compared to the other two
solutions, we conclude that the analytic calculation of the mag-
netic flux density in the slotless machine (Section IV-B) leads
to reasonable results for the torque magnitude but not for the
position the maximum of the torque occurs at. Hence, further
work to develop improved methods to calculate this field analyt-
ically would be preferable. However, considering the sensitivity
of numerical results for the cogging torque towards the simula-
tion parameters and the related and required high computational
effort, the results of the analytic calculation can be considered
as acceptable.

2) Armature Torque: Using (30), we calculate the armature
torque developed in the fictive machine and compare it with nu-
merical results. In this machine, for simplicity, every pole has only
onecoil withoneturn, carrying 10 A, andis completely covered by
the magnet. The rotor is placed in such a position that the magnet
edges are not located at any slot opening to avoid cogging forces.
The difference between the analytic and the numerical solutions
is smaller than 1%, which is an excellent result. Both the arma-
ture force calculation assumptions and the implementation of the
conformal mapping into the calculation of the force can generally
be used for the calculation of the armature force.

VII. CONCLUSION

In this work, the Maxwell stress theory has been applied to
calculate the forces at the interface of two materials with dif-
ferent permeabilities (as opposed to the forces on a rigid body
placed in an electromagnetic field), using Helmholtz’ material
assumptions. The method was used to compute the armature and
cogging torque in lightly loaded BLDCM:s. In order to compute
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these torques, the magnetic flux density at the slot sides is re-
quired. This was computed using available techniques to cal-
culate the flux in slotted machines based on conformal trans-
formations. Because of a singularity occurring at the tooth tip,
and the crucial influence on the flux density in this area on the
calculated torque, calculation of the torque based on flux den-
sities determined via this method is very limited. To avoid the
need to explicitly calculate the magnetic flux at the tooth tips,
an alternative approach was taken, whereby the value of the flux
density in the slotted machine was replaced by the value in the
slotless machine and the corresponding transformation param-
eters. This method allows to calculate the tangential forces and
hence the armature and the cogging torque without the restric-
tion of not being able to properly consider the contribution of
the tooth tip. The analytic results correlate very well with those
obtained numerically. The limitations of the method are mainly
given by the implications of Helmholtz’ material assumptions:
For electric machines, these imply that the torque can only be
generated at the tooth sides, the approach cannot be used for
machines where such interfaces are not present, i.e., machines
with air gap winding. In addition, the method is based on the
understanding that these interfaces provide the major contribu-
tion towards the developed tangential force and that there is no,
or only a negligible contribution from the forces within the core
material. The study of the contribution of these parts and the
development of similar methods for machines which different
structures that do not provide the interfaces between tooth sides
and air gives material for further research.

APPENDIX
CONFORMAL TRANSFORMATIONS

A. Conformal Transformation of the PM Field

Fig. A-1 shows the S, Z, W, and T planes of the conformal
transformations that are required for the determination [2]. In
the first transformation, the circular machine shape given in the
S-plane is transformed into a linear model in the Z-plane using
a logarithmic conformal transformation (S — 7). Then, the
polygonboundaries of the Z -plane are transformed into the upper
half of the W -plane with the Schwarz-Christoffel transformation
(Z — W). Note that, per its definition, the Schwarz-Christoffel
transformation realizes only the inverse transformation W — Z.
Ananalytic transformation Z — W isnotpossible and numerical
methods havetobe applied. Nevertheless, for simplicity, we adopt
this name here. Note also that this transformation includes the de-
termination of several integration parameters and constants. Next,
the polygonin the W -plane is transformed into another polygonal
form in the 7T'-plane, again, using a Schwarz-Christoffel trans-
formation (W — T). In the last step, the original polygonal
shape of the original S-plane is transformed into a circular slot-
less machine shape in the K -plane (Fig. 3) (T' — K) where the
distribution of the magnetic field is known, using an exponential
transformation.

B. Field Generated by the PMs (Based on [2])

The partial derivative 0k, /0s,, is not directly given but
can be derived, considering the four transformations involved,

IEEE TRANSACTIONS ON MAGNETICS, VOL. 46, NO. 4, APRIL 2010

W=

YRS
&3
L}
|
<
- | —>

K
X

w=0
IR, InR; > Re
(b)
Im
a b'
— | | I | o
= 9 g 0 B Re
(©)
Im
A W= —0 w=00
0.3'
& w=-1 w=1
2
w=0
InR, In R, > Re

(d)

Fig. A-1. Conformal transformations for PM field. (a) S-Plane: real configu-
ration. (b) Z-Plane. (c) W -Plane: plane in which the torque integral appears to
be nonsingular. (d) T'-Plane.
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with the partial derivatives defined by the differential equation
of the conformal transformations between the respective planes.
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These are
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C. Field Generated by the Armature Winding (Based on [26])

As in the case of the field generated by the PMs, the partial
derivative 0t, /Js, is not directly given but can be derived, con-
sidering the three transformations involved, S — 7 — W — T

Ot, B Ot, Ow, 0z,
ds  Ow, 0z, Os
with the partial derivatives defined by the differential equation

of the conformal transformations between the respective planes.
These are

(36)
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