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Abstract
In the development and design process of electrical machines acoustic noise due to the electromag-
netic excitation plays an important role. Therefore, designers rely on fast and descriptive scalar pa-
rameters to estimate the radiated noise of the machine depending on system parameters, including
electromagnetic and structural aspects. Based on a modular approach separating electromagnetic
force excitation and transmission by structural dynamics the mean-squared surface velocity over fre-
quency is calculated to assess the acoustic behavior in a simple way. The computational cost can be
significantly reduced by using modal superposition of the force excitation and transmission. In order
to correlate this simple parameter with the radiated sound power, the latter is calculated based on
the complex surface velocity distribution. This is done numerically by boundary element simulations
and analytically by decomposition in a set of cylindrical base functions. The analytic calculation is
expected to obtain very accurate results for arbitrary receiving points in the acoustic free-field in
reduced calculation time making time-consuming BEM simulations unnecessary. Additionally, the
time history of the sound pressure at any point can be directly auralized.

Keywords: audible noise of electrical machines, analytical and numerical computation, auralization,
modal decomposition.

1 Introduction

Radiated acoustic noise of electrical machines is known and troublesome since many years [1]. The
machine designer mainly focuses on the primary functionality of the electrical machine, operating
along a specific torque/speed characteristic. Parasitic effects, such as torque ripple, power loss and
audible noise are often considered in a second design step. This may lead to unsatisfactory results
in terms of acoustic performance.
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Due to the trend of increasing electrification of mechanical systems, the increase of power density
together with the demand for overall acoustic noise reduction, it is essential to put more focus
on acoustic aspects in the development of electrical machines. As the primary force excitation of
electrical machines stems from the magnetic field, the designer is concerned with the variation of
the magnetic circuit, the winding arrangement, the current supply, etc. to achieve an acoustically
optimized design [2]. To assess the effectiveness of a certain electromagnetic design, it is essential
to have representative acoustic parameters.

As the transmission path from the electromagnetic (EM) fields and forces leads through the me-
chanical structure through the surrounding air up to the customer’s ears, it is possible to evaluate
the design at different levels. For example, force excitations can be compared immediately. If in ad-
dition, the structural-dynamic behavior of the machines is analyzed, the vibration in terms of surface
velocity can be used as an indicator. Including the radiation problem into the analysis, it is possible
to assess the machine design by the sound pressure level at a specific point in space, or to evaluate
the total sound power level emitted by the machine. In order not to rely on expensive prototypes
and to include acoustic aspects as early as possible in the design process, the acoustic parameters
have to be simulated, with as little additional computational effort as possible.

In general, it is possible to address the acoustic problem of electrical machines analytically, or by
means of numerical methods. In the first half of the last century, analytical approaches for all three
domains: electromagnetic, structural-dynamic and acoustic, were developed [1]. With the upcoming
of digital computers numerical techniques became available. Soon a coupling between the Finite
Element Method (FEM) and the Boundary Element Method (BEM) became a standard procedure
for acoustic analysis of electrical machines [3].

This paper compares different parameters in two different aspects. On one hand, analyzing their
precision and significance for the design process and on the other hand their computation time.
Based on an exemplarily chosen small electrical machine, the complete simulation chain from EM
calculation, over structural FEM, up to the acoustic radiation is processed. The mean-squared
normal surface velocity (MSNSV), the sound pressure level and the total radiated acoustic power
are calculated. In addition, two different approaches are used to calculate the acoustic field: as
a numerical method, the BEM is applied and an analytical model based on cylindrical harmonics
is considered as an alternative. A modular simulation concept is applied as proposed by FINGER-
HUTH ET AL. [4]. This enables parallelization of independent computation tasks leading to shorter
calculation times that are expected to be suitable for instant auralization applications in future [5].

2 Electromagnetic-field computation

The most significant excitation of audible noise of electrical machines stems from magnetic forces
acting on its stator. Magnetic forces come under volume- and surface-density form. In saturable
non-conducting materials, the volume density is basically related to the gradient of the magnetic
reluctivity, and it is usually negligible with respect to the surface-force density ∆σ. The latter, located
at material discontinuities (e.g. on the stator surface in the air gap), is the divergence in the sense
of distribution of the electromechanical tensor [6].

Regarding the stator of an electrical machine as a cylinder, electromagnetic forces can be split into
two categories: radial and tangential. The radial forces can be evaluated as the surface forces
at the interface between the stator and air. They mainly excite the stator structure and lead to
vibration. The most relevant effect of the remaining tangential forces is the fact that their integral
is the resulting electromagnetic torque, which has a DC component, leading to energy conversion,
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and torque harmonics, which may also provoke vibration. A common method to evaluate torque, e.g.
from numerical simulation, is to integrate the electromechanical stress tensor in the air gap. This
approach is used in this work to obtain the tangential force excitations. For radial-flux rotating field
machines in steady state and with time harmonic supply, the radial magnetic flux density brad(x, t)
at the stator bore can be described by a FOURIER series expansion :

brad(x, t) =
∞∑

ν=−∞

∞∑
µ=0

Bνµ cos(νx− ωµt− ϕνµ) , (1)

where x is the spatial angle in the machine, ν and µ are the spatial and temporal harmonic numbers,
and Bνµ and ϕνµ are amplitude and phase of the flux-density waves in the air gap of the machine,
respectively. The radial surface-force density σrad at the stator bore is approximated as the radial
component of the surface-force density ∆σ

σrad = −b
2
rad

2µ0
. (2)

Inserting Eq. (1) into Eq. (2) leads to the expression of harmonic radial-force waves

σrad(x, t) =
∞∑

r=−∞

∞∑
m=0

σrm cos(rx− ωmt− ϕrm) , (3)

where the amplitudes σrm and phases ϕrm of a specific force-wave with spatial order r and temporal
order m are determined by

σrm =
1
2
·Bν1µ1Bν2µ2 ; ϕrm = π + ϕν1µ1 ± ϕν2µ2 ; r = ν1 ± ν2; ωm = ωµ1 ± ωµ2 . (4)

Since the force excitations occur with these distinct ordinal numbers in space and in time, the vibra-
tion spectrum contains only those frequencies. The spatial ordinal numbers are also called mode
numbers, since a force of mode r excites ideally only a vibration mode m = r. Low mode numbers
are considered critically, because the stator system reacts comparatively soft for low mode numbers
leading to larger deformations and thus acoustic radiation. Hence, most analytical models are based
on the evaluation of such mode numbers. Force amplitudes can also be calculated analytically. For
higher accuracy, the FEM is typically applied in 2D to solve MAXWELL’s equations [3].

The 2p = 6-pole induction machine under investigation has a rated mechanical power of 500 W. It
has N1 = 36 stator slots and N2 = 28 rotor slots. The machine is operated at a constant 50 Hz
grid as pump drive. The electromagnetic simulation and force calculation is performed using the
IEM-inhouse software package iMOOSE.

3 Structural-dynamic simulation

After the electromagnetic simulation of the induction machine a structural-dynamic simulation is per-
formed to determine the vibration. The surface-force density on the stator teeth obtained from the
electromagnetic simulation is used as excitation. The vibration problem is formulated using HAMIL-
TON’s principle. After discretizing, the general vibration equation in frequency domain is obtained
by

(K + jωC− ω2M) · d(ω) = f(ω) , (5)
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where K, C and M are the global stiffness, damping and mass matrix, respectively. The imaginary
number is denoted by j and ω describes the angular frequency of the problem. d(ω) is the vector
of the complex nodal deformation, and f(ω) is the complex excitation force vector. As electrical
machines can typically be considered as low damped systems [7], the term jωC is disregarded in
this work.

The complex radial surface-force density σ(ω = mω0) = σrm · ejϕrm is to be transformed from the
electromagnetic simulation to a nodal force f(ω) on the mechanical model for each frequency, where
ω0 is the base frequency. Therefore, a unit force and a unit torque

ξ
nr

=
∫

Ω
er(x) · ejrxNn dΩ , τn =

2
πD2lz

∫
Ω

eϕ(x)Nn dΩ (6)

are defined, respectively. The diameter of the stator bore is D and length of the active part of the
machine is lz. The nodal shape function of the FEM formulation is denoted Nn, and Ω is the stator
inner surface domain at r = D/2 . Then, the harmonic nodal force is determined by

fn(ω) =
R∑

r=−R
σrm · ξnr + Tm · τn , (7)

where Tm is the complex amplitude of the m-th temporal order of the torque ripple. Force modes up
to R = 8 are considered.

After a modal analysis using the software Ansys, the deformation is calculated applying a modal
superposition

d(ω) =
N∑
i=1

ΦT
i · f(ω) ·Φi

ω2
i − ω2

, (8)

where N is the number of eigenvalues and Φi is the i-th mass-normalized eigenvector. The me-
chanical model of the induction machine under investigation is shown in Figure 1 together with the
squared normal surface velocity on the housing simulated at 533 Hz. Since the machine is flange
mounted, the boundary condition of the structural dynamic simulation is set, such that the displace-
ment of the nodes around the mounting holes is zero.

4 Acoustic parameters of electrical machines

In order to analyze the acoustic performance and the noise emitted by electrical machines several
acoustic parameters can be examined. During the design process reliable acoustic parameters
that can be obtained in negligible additional time are required. This allows to seamlessly integrate
acoustic aspects into the simulation process in the early design phase.

4.1 Mean-squared normal surface velocity

If the acoustic performance is to be directly evaluated by a vibrational analysis, the surface velocity
is typically used as a parameter. It can be determined either at a fixed location, e.g. where an
accelerometer may be placed, or as an integral quantity. Therefore, the mean-squared normal
surface velocity is defined as

|vn|2 =
1
Γ

∫
Γ

||vn||2 dΓ =
1
Γ

∫
Γ

vn v∗n dΓ, (9)
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Figure 1: Mechanical model of the induction machine together with normal surface velocity on the
housing at 533 Hz.

where the v∗n denotes the complex conjugate function of vn and Γ is the outer surface of the ma-
chine. The advantage of this parameter is that it can be determined immediately from the structural-
dynamic simulation. In connection with a radiation model of a pulsating sphere it can be considered
as an estimate for the radiated acoustic power, using the following equations

P =
1
2
|vn|2Ws, Ws =

ρ0cS

1 + 1
k2a2

. (10)

Ws is the radiation impedance for a pulsating sphere of radius a and surface S, k is the wavenumber
and ρ0 and c are the density and speed of sound in air, respectively. The radius is chosen in such
a way that the surface of the sphere is approximately equal to the radiating surface of the machine.
In the presented case, this leads to a ≈ 8 cm. This model was used to determine the sound power
level for the mean-squared velocity and the maximum squared velocity in Fig. 6.

4.2 Sound power

The sound power P and its level LP are physical source parameters describing the acoustical be-
havior over frequency [8]. They are independent of the final scenario an object is used in. Together
with the radiation pattern they build a source descriptor used e.g. for the prediction of sound prop-
agation in complex acoustic scenarios. The sound power is defined as the surface integral over the
normal component of the sound intensity vector Iw as follows,

P =
∫
S

IwdS =
∫
S

p2

ρ0c
dS (11)

where p is the sound pressure.
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(a) Structural Mesh (b) Acoustic Mesh

Figure 2: Structural and acoustic mesh of the machine.

5 Acoustic Radiation

The sound radiation into the acoustic free-field can be calculated, for example by means of BEM
simulation. In general, numeric simulations for detailed models and up to higher frequencies of
approx. 5 kHz lead to intense and time-consuming calculations. A new approach is also used to
shorten calculation times by using a trade-off between calculation time and precision.

5.1 BEM Simulation

The BEM is based on the numerical solution of the Helmholtz integral equation on the boundary sur-
face of the investigated object [9]. While this computation is fairly complex and time-consuming, the
precision that can be achieved is relatively high as effects of diffraction and reflection are included.
The software used for all BEM simulations is Virtual.Lab Acoustics by LMS.

Often it is desirable to determine the sound radiation independently of the actual velocity distribution
on the test object so that the result can be obtained quickly for many different load cases or – in the
case of electrical machines – operating conditions. In Virtual.Lab, this is achieved by computing the
so-called Acoustic Transfer Vectors (ATV) [10] that relate the volume velocity at each mesh node
to the sound pressure at a specified set of field points. The post-processing step is then a simple
vector multiplication with the surface velocity distribution and the superposition of the contribution of
all nodes.

Since the computational cost rises with the element size, the very detailed model mesh that is
used in the structural-dynamic analysis (Fig. 2a) has to be converted into a mesh for the acoustic
radiation with the well-known six-elements-per-wavelength rule (Fig. 2b). For a maximum frequency
of 5 kHz the average element size is chosen to be roughly 10 mm which results in a total number of
4257 nodes. Compared to the structural mesh with about 210000 nodes this is a factor 50 in size
reduction. As the results for the surface velocity from the structural calculations are only available on
the very fine mesh, a mapping of the data onto the acoustic mesh has to be performed. This is done
using the mesh mapping function in Virtual.Lab which handles the connection between structural
and acoustical nodes and applies a linear weighted sum in the case that multiple structural nodes
affect the velocity at a single acoustic node.

The evaluation of the sound pressure is carried out at 38 field points of the ISO Power Field Point
Mesh in Virtual.Lab. The field points are distributed on a unit sphere in such a way that it is divided
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into equally-sized elements. From the simulated pressure at the field points the sound power can
be calculated according to Eq. (11).

In terms of calculation times, the first step of processing the ATV, which only needs to be done once,
is the more time-consuming part. For the model used in this study and the power field point mesh the
processing time per frequency was roughly 4 minutes on a modern standard single-core computer.
The post-processing that has to be performed for each load case takes less than a second per
frequency, resulting in a total post-processing calculation time of 8 seconds for the 14 frequencies
from the velocity input data.

5.2 Analytic solution for cylindrical geometry

The geometrical shape of the electrical machine can often be approximated by a cylinder, as it is
the case for the given machine. Thus the far-field sound pressure can be estimated by an analytical
cylinder radiation model from the surface velocity [11]. This model which has been applied frequently
in research employs a finite cylinder with infinitely long stiffening baffles at each end and hence
restricts vibrations to the dimensions of the machine [12, 13, 14]. As a consequence of the restricted
velocity, end effects and the size of the machine can be taken into account.

Solving the wave equation in cylindrical coordinates and using EULER’s equation one arrives at the
following relation that describes the sound pressure in frequency domain as a function of the spatial
velocity spectrum for exterior radiation problems:

p(r, φ, z, ω) =
1

2π

∞∑
n=−∞

ejnφ
∫ ∞
−∞

Vn(a, kz)
Hn(krr)
H ′
n(kra)

ejkzd kz. (12)

Here, p is the sound pressure and Vn is the spatial radial velocity spectrum obtained from a double
FOURIER transform of the velocity distribution. The index n donates the circumferential mode order
of the velocity. Hn and H ′n are the HANKEL functions of n-th order and the derivation with regards
to its argument, respectively. kr and kz are the wave numbers in radial and axial direction, a is the
radius of the cylindrical machine. Due to the fact that the integration over kz in Eq. (12) cannot be
carried out and numerical solving methods have negative impact on the otherwise very fast calcula-
tion time (the main advantage of this approach), a technique called stationary phase approximation
is used. It is explained in detail e.g. by WILLIAMS [11] and JUNGER [15] and is applicable for the
far-field only. The result obtained from this method after a transform into spherical coordinates is
the stationary phase point kz = k cos(θ) which eliminates the integral with regards to kz and can be
inserted into Eq. (12) yielding the following approximation for the sound pressure:

p(r, φ, z) ≈ ρ0 c

π
· e

jkR

R

∞∑
n=−∞

(−j)n ejnφ Vn(a, k cos(θ))
sin(θ)H ′

n(ka sin(θ))
. (13)

Here the relation kr =
√
k2 − k2

z and the addition theorem sin(x)2 +cos(x)2 = 1 are applied. Eq. (13)
allows to estimate the far-field sound pressure very quickly for a given velocity spectrum. This is the
result from a two dimensional FOURIER transform of the velocity distribution on an ideal cylindrical
surface.

The analytic model has been implemented in MATLAB by Mathworks. The surface velocity data has
to be mapped to an equivalent perfect cylinder surface. Only the radial component of the surface
velocity is significant for sound radiation. Mapping is done analogue to the procedure explained in
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section 5.1. The mesh of the analytic cylinder is coarser than the acoustic mesh used in the BEM
since no six-elements-per-wavelength rule has to be met. In the case of the machine examined
it has 568 nodes which are equally spaced on the surface. Hence, there are 18 nodes in axial
direction for a given angular φ and 32 nodes around the circumference for a given axial position.

The spatial velocity spectrum is obtained by means of a two-dimensional discrete FOURIER trans-
form in z and φ direction. Since the velocity distribution is periodic in φ no error is induced through
the spatial sampling as long as the highest circumferential mode order does not exceed half of the
node number on a circumference of the cylinder (NYQUIST theorem). In axial direction zeros are
added to the velocity distribution firstly to ensure a spatial restricted non-zero velocity and secondly
to increase the resolution in the spectrum. The latter is necessary to reduce rounding error since
the values of the velocity spectrum need to be found in Eq. (13) for certain values of kz. As a conse-
quence of the sampling in axial direction in combination with the spatially restricted velocity, aliasing
will occur and hence induce some error. The number of samples in axial direction is determined
by the highest axial vibration mode order that is expected to occur as well as by the maximum fre-
quency that is of interest. The latter is a consequence of the stationary phase point which defines
the highest spatial frequency in axial direction to be equal to the highest frequency of sound.

The main advantage of the analytic approach is the small requirements on computation power. For
a given surface velocity the resulting sound radiation can be calculated more than 1000 times faster
in comparison to the BEM, allowing convenient virtual prototyping within seconds of calculation
including detailed radiation pattern not sound power only. Analytic calculation thus offers a fast
method for predicting the sound radiation of a machine, even though it is an approximation due to
the finite length of the cylinder and deviations from the perfectly cylindrical shape.

6 Results

The performance and applicability of the analytic cylinder model is evaluated by using BEM simula-
tions for a perfect cylinder with the same geometry in both calculations and depicted in Figure 6. A
random surface velocity distribution is used. Receiver points in 5 m distance are used to calculate
the sound pressure. With the assumption of a far field, the sound power is calculated according to
Eq. (11). As can be seen, the model performs well with only small deviations in sound power levels
of approx. 1 dB.
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Figure 3: Comparison of analytical cylinder model and BEM simulation on perfect cylinder.

The comparison of the radiation pattern for the electrical machine for four different frequencies is
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Figure 4: Comparison of radiation pattern for different frequencies obtained by BEM (top) and cylin-
drical harmonics (bottom).

shown in Figure 4. In the top row precise results from BEM simulations and in the bottom row the
prediction by cylindrical harmonics calculation is shown, respectively. As can be seen, the shape
of the radiation pattern can be fairly approximated by the analytical cylinder model. In z-direction
differences occur due to the contribution in radiation of the end faces. As the machine is not a perfect
cylinder errors in φ-direction are reasonable but not troublesome for the application. As a side effect
of this calculation method radiation pattern analysis could also be integrated in the workflow for the
machine design with only little more computational effort. The cylinder model is therefore applicable
at least for the given machine.
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Figure 5: Comparison of acoustic scalar parameters for the induction machine.

In order to compare the performance of the acoustic design parameters, the estimated sound pow-
ers are plotted in Figure 6. As the machine only radiates at distinct frequencies only these frequen-
cies are considered, e.g. at the calculated operation point, the machine vibrates at 533 Hz in a r = 2
mode, due to the first stator slot harmonic. The sound power is therefore not analyzed in fractional
octave bands.
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7 Conclusions and Future Work

The simulation procedure and basic calculus for the calculation of electrical machines up to their
acoustic radiation based on CAD models have been introduced. Based on calculations for an ex-
emplarily chosen machine, the parameters and different calculation models have been analyzed.
The formerly used mean-squared surface velocity is directly accessible from electro-magnetic force
calculation in conjunction with structural FEM simulations. The calculation time for this parameter
is very short but it lacks of precise correlation to the actual acoustic performance. Nevertheless, it
is a suitable parameter for a first prediction. The sound power level is a parameter directly related
to the radiation of the machine and therefore preferable. As time consuming BEM simulations are
commonly used to calculate the sound radiation, a different method using cylindrical decomposition
has been proposed. This approach yields the sound pressure at arbitrary field points and sound
power, being in good correlation with the precise results from BEM simulations. Hence, calculation
times for the acoustic radiation can be significantly reduced. As the sound pressure is also in good
agreement with the BEM results this clears the way for auralization applications.

As machines are generally designed to operate in different conditions, all conditions have to be
simulated leading to long calculation times. In a future step, it will be tried to reduce calculations to a
minimal set of significant simulation tasks in order to auralize electrical machines in computing time
suitable for the design process. The results calculated and shown in this paper are already sufficient
to auralize the airborne contribution of this machine for a specific load condition (torque/speed) e.g.
inside a factory hall.
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