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Abstract—A comparison of different force calculation methods with practical application to vibro-acoustical problems of electrical
machines is performed. A formula is derived to directly determine force waves from nodal forces and a test case is proposed to
study the convergence behavior of the discretization error. An analytical model is used to determine radial vibration. Torque ripple
is also considered. It is found that nodal forces show an equal convergence rate, when compared to other methods, but give better
performance in terms of discretization noise.

Index Terms—Numerically weak magneto-mechanical coupling, acoustics of electrical machines, noise and vibration

I. INTRODUCTION

The acoustic behavior of electrical machines is of interest.
Using 2D Finite Element analyses, the magnetic field is
determined, from which the magnetic force excitations in
mode/frequency domain are to be determined. Four different
methods to do so are studied in this paper.

Electromagnetic forces are causing an exchange of energy
between the electromagnetic and the mechanical compartment.
Therefore, the energy based formulation, presented in [1], is
used to derive expressions for the calculation of electromag-
netic forces.

The change of magnetic energy that is converted into
mechanical energy can be written as the tensor product (a :
b =

∑
i,j aijbij) of a stress tensor σEM and the gradient of the

velocity field ∇v:

ẆM =
∫

Ω

σM : ∇v dΩ. (1)

The electromechanical stress tensor is identified as:

σM = bh̃− {h̃ · b− ρW
M(b)}I. (2)

Integrating (1) by part gives∫
Ω

σM : ∇vdΩ = −
∫

Ω

ρfM · vdΩ +
∫
∂Ω

n ·σM · vd∂Ω, (3)

where the electromagnetic volume force density ρfM = ∇·σM

is the divergence of the stress tensor. For σM is discontinuous
at material interfaces, distributions theory [2] can be used
to define a surface-force density ∆σM at the interface as
divergence in the sense of distribution (also sometimes referred
to as surface divergence [3]):

∆σM = DivσM = lim
A→0

1
A

∮
A
σM · ndA , (4)

where A is the area of a volume at the surface, which is partly
located in material 1 and partly in material 2. Evaluating the
limit, it can be shown that the surface force density is normal
to the material interface between the material 1 and 2 and that

it is given by [4]

∆σM = (σM2 − σM1) · n12 , (5)

where n12 is the normal vector from material 1 to material 2
and σM1 and σM2 are the stress tensors of material 1 and 2,
respectively.

Regarding the electro-mechanical coupling, the following
assumption is made in this paper: The reaction of mechanical
deformation on the electromagnetic field is negligible. This
implies that the structure can be considered as a rigid body for
the electromagnetic force calculation. In this case, the gradient
of the velocity field ∇v is zero everywhere in the material.
Therefore, the resultant force

∫
Ω
ρfM ·dΩ is equal to the surface

integral of the stress tensor
∫
∂Ω

n · σM · d∂Ω in (3).

The numerical simulation of electrical machines with the
objective of analyzing vibration and acoustic noise involves
the computation of electromagnetic forces as global quantities,
acting on the center of gravity, as well as local distributions
in space. In electrical machines, the former are mainly elec-
tromagnetic torque and global force acting on the shaft, which
is also called unbalanced magnetic pull (UMP). The latter
one are reluctance surface-force distributions at the interface
between the stator iron and the air gap. They are mainly
responsible for the excitation of radial vibration of the stator.
There exist several calculation methods to determine global,
as well as local forces in electrical machines [5], [6], [7].

A general method to electromagnetic force computation,
based on the energy view point, is the so called eggshell
method [7]: To compute the forces on a rigid body Y in the
domain Ω, a virtual velocity field v = γv0+w0 × r is defined,
where v0 and w0 are constant and γ is a smooth function,
with a value of 1 on Y and 0 on ∂Ω. In the velocity field v,
the vectors v0 and w0 are arbitrary and linearly independent.
Choosing them to be the nodal shape functions of one layer
of elements (eggshell) around Y leads to the eggshell method
[7]. It can be shown by choosing the virtual velocity field
appropriately, that the eggshell method is a generalization
of the approach proposed by ARKKIO [5] to calculate the
electromagnetic torque of cylindrical electrical machines in



2D, which gives

TY =
ezlz
δ

∫ D/2

D/2−δ

∫ 2π

0

(σM)rαr drdα , (6)

and in its simpler form, which is commonly referred to the
MAXWELL’S stress tensor method, given by

TY = ezlz

∫ 2π

0

r(σM)rαr dα , (7)

where (σM)rα denotes the radial and azimuthal components
of the stress tensor and D the diameter of the stator bore.

Another method proposed for electromagnetic force calcula-
tion, which is based on the partial derivative of the JACOBIAN
of the field problem is known as COULOMB’S method or
virtual work method [6]. This method can be obtained taken
v0 as the virtual velocity field of one node k and choosing
γ to be the nodal shape function Nk. Then the nodal force is
given by the definition as

fk =
∫

Ω

ρfMγdΩ =
∫

Ω

∇γσM · dΩ . (8)

Total global forces and torque can then be obtained by
summation over all nodes of the moving part.

It is essential to determine local force quantities to solve a
subsequent structural problem. One method, commonly used
to determine radial force distributions in electrical machines
is derived from (5)

∆σM =
(
bn(hn2 − hn1)− (ρW′

M2 − ρW′

M1)
)
n12, (9)

where material 2 here means stator iron and material 1 has
approximately the permeability of vacuum, i.e. copper or air.
The magnetic co-energy is denoted by ρW′

M . For linear magnetic
material and if the magnetic-field strength in region 2 (iron)
is neglected this reduces to the magnetic pressure

˜∆σM =
1
2

(bnhn) n12. (10)

This is sometimes referred to as the simplified MAXWELL
stress tensor. Since the surface-force density (9) is normal with
respect to the interface, applied to a rotating machine, all force
components in the air gap are radial, only force components on
the tooth flanks are azimuthal and thus contributing to torque.
Therefore, (9) may also be summed up over the stator surface
to compute torque

T =
∫
∂Ω

r×∆σM · d∂Ω . (11)

However, this is not a common way to compute global force
and torque.

The nodal forces, obtained from COULOMB’S method or
from the general eggshell method, can directly used as local
forces for the structural problem. In addition, the electrome-
chanical stress tensor can itself be used as applied mechanical
stress. This states a good starting point for strong magneto-
mechanical coupling, as it can be easily implemented in a
common equation system.

A. Radial force density waves from numerical simulation

To bring the analytical understanding of electromagnetic
force excitations in terms of force waves in conjunction with
the accuracy expected from numerical simulations [8], it is
desirable to find expressions of the surface-force density in
terms of a FOURIER series expansion. Therefore, the force
excitation is projected on to the stator bore. In addition, a
spatial FOURIER decomposition of the radial force allows for
the use of unit-force excitations on a structural mesh [9].

Assuming a 2D model, this gives rise to a 1D interval α ∈
[0, 2π) on which the surface-force density needs to be defined.
For 3D model, this becomes a cylinder, which may be sliced
into multiple rings along the axial direction. Naturally, the
surface force is equal to zero in the slot, which emphasizes
the spatial periodicity of the number of stator slots. If the
surface force is available as a density, e.g. from (9) or (10),
then the FOURIER expansion can be easily found by sampling
it along the stator surface and performing a DFT. If the force
excitation is given in terms of nodal forces fk, the force density
can be defined using the DIRAC-δ function

σrad(α) =
1

Rlz

K∑
k=1

erk · fkδ(α− αk) , (12)

where αk is the angular position of node k and erk the radial
unit-vector at node k. Applying the FOURIER transform and
taking into account the integral

∫∞
−∞ f (x)δ(x− x0)dx = f (x0),

gives

σr =
1

2πRlz

K∑
k=1

erk · fke−jαkr . (13)

II. APPLICATION EXAMPLE

A simulation study case is proposed. It is based on the
electromagnetically effective parts of a PM synchronous ma-
chine: A stator considered as laminated sheet stack (M250-AP)
with slots, a rotor of the same material, with surface mounted
permanent magnets (µr ≈ 1, Brem = 1.17 T). The study case
geometry definition is shown in Figure 1 and Table I. The
number of stator slots is chosen to be N1 = 6 and the number
of magnets is 2p = 4. The analysis of this geometry as fictive
machine has several advantages: First, it is defined by only
seven geometrical and two topological parameters. Together
with the simple geometry, this reduces the influence of the
FE modeling and allows for easy numerical reproduction by
other researchers. Second, the fact that radial oriented tooth
facets are used, offers an exact separation between radial
and azimuthal force components. Though the air gap field
contains a lot of harmonics, which is favorable in this case,
because force harmonics are of interest here, this design is
practically relevant, since a symmetrical three phase winding
can be placed into the slots, leading to a tooth-coil winding
as described in [10].

III. COMPARISON OF FORCE CALCULATION METHODS AND
SENSITIVITY TO SAMPLING LOCATION

The 2D electromagnetic simulation gives the field distri-
bution (Figure 2), which is the basis for all tested force



Fig. 1: Geometry of the proposed study case.

TABLE I: Parameters of the proposed study case.

Parameter Symbol Value

Number of stator slots N1 6
Number of magnets 2p 4
Stator outer Diameter Do 300 mm
Stator inner Diameter Di 170 mm
Air gap δ 1 mm
Height of yoke hy 28 mm
Height of magnets hpm 10 mm
Width of the slot opening bN

2π
15

rad
Active length lz 400 mm

calculation approaches. The simulation is performed without
taking any eddy currents into account. The rotation of the
rotor is regarded by means of a moving band width (δ/3) re-
meshed at each time step. A total of 400 steps per revolution
are to be computed. Due to symmetry and due to the quadratic
nature of the electromagnetic forces it suffices to compute
only the duration of one pole passing by, i.e. a quarter of a
revolution, or 100 steps in this case. Therewith, it is possible
to determine forces up to the 200th higher time harmonic of
the fundamental mechanical rotation speed.

To compare the performance of the force calculation ap-
proaches, global forces are evaluated as electromagnetic torque
and local forces are used to compute the radial force excitation
of the stator.

Torque is observed at no-load, which is the cogging torque
of the machine, measured as peak-to-peak quantity and as load
torque, measured as mean value over one period.

Three different force calculation approaches for the radial
force and four approaches for the electromagnetic torque as
listed in Table II and III are compared: Nodal forces, surface-
force density, MAXWELL’S stress tensor (magnetic pressure)
and ARKKIO’S approach [5], where the latter only applies to
torque calculation.

To investigate the convergence behavior and to assess the
quality of the individual force calculation approaches, force
and torque are calculated on meshes with different mesh sizes.
The number of degrees-of-freedom (DOF) is increased almost
uniformly, and the air gap is always meshed with a higher
element density than the rest of the model. Figure 2 shows
the surface-force density and the nodal forces on two different
meshes. From Figure 2c it can be seen that the surface-
force density varies significantly along the tooth edge. There

TABLE II: Global force calculation approaches.
Approach Global torque
Nodal forces

∑K
k=1 rk × fk

Surface-force density
∫
∂Ω

r×∆σM · d∂Ω
MAXWELL’S stress tensor ezlz

∫ 2π

0
(σM)rαrdα

ARKKIO’S approach [5] ezlz
δ

∫ D/2
D/2−δ

∫ 2π

0
(σM)rαrdrdα

TABLE III: Local force calculation approaches.
Approach Local force
Nodal forces

∫
Ω
∇γσM · dΩ

Surface-force density (σM2 − σM1) · n12

Magnetic pressure ≈ 1
2 (bnhn) n12

are force peaks at the edges and there is a variation of the
cones from one edge to the other. Note that the surface-
forces are densities, whereas the nodal forces are net forces
(in NEWTON), i.e. the amplitude of the nodal force decreases
as the mesh is refined and the amount of nodes increases.

In all cases, it is obvious that the strongest force components
occur locally around the singularities at the tooth edge and
that the surface-force densities are either radial or azimuthal
according to whether they are applied to a facet whose normal
is radial or azimuthal, the nodal forces can have azimuthal and
radial components at the corner nodes.

Figure 3 shows the convergence behavior of the different
global force calculation approaches, in terms of the cogging
torque, torque without current on the one hand, and the
load torque as mean value in steady-state operation on the
other hand. It can be taken that the nodal forces, ARKKIO’s
approach and the magnetic pressure give approximately the
same convergence rate. The only approach, which is con-
verging much slower is the summation of the surface-force
density contributions. This can be understood from the fact that
only azimuthal components contribute to the electromagnetic
torque and the surface-force density is inherently normal to
the surface. Therefore, torque contributions only occur at the
tooth flanks, where the FE mesh provides a much coarser
discretization compared to the air gap.

Since the surface-force density is a local quantity, a norm
has to be used to assess the result of the computation as a
single value parameter. A natural choice is the stator vibration.
At this stage, only the numerical error due to the force
calculation is analyzed. Therefore, the force-density waves are
weighted by analytical expressions, which are chosen to be the
mechanical amplification factors derived by JORDAN [11]. In
addition, the frequencies of excitations are proportional to the
rotational speed of the machine, which is chosen low enough
here to allow disregarding stator resonances and consider only
static amplification factors, because the analysis is intended to
focus on the force excitation only and the mechanical transfer
function is only used inasmuch it is needed to assess the forces.
Due to symmetry, no resultant force acting on the rotor occurs
in the model. Therefore, the deformation can be described by

ur(ω) = −RN
Eh

σr(ω) ·

{
1
i2

(r2−1)2
for

r = 0
r ≥ 2

, (14)



(a) Surface-force density on a coarse mesh.

(b) Nodal forces on a coarse mesh.

(c) Surface-force density on a fine mesh.

(d) Nodal forces on a fine mesh.

Fig. 2: Comparison between surface force density and nodal
forces on different meshes both indicated by cones. Scale is
kept constant between different meshes. The color scale and
color in the background imitates the flux density amplitude.
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(b) Load (J =6 A/mm2, copper fill factor 0.4).

Fig. 3: Convergence behavior of torque calculation.

where R = Di
2 , N = Do−hy

2 , E = 210 GPa, h = hy,
i = 1

2
√

3
· h

N and all geometrical data of the machine are
given in Figure 1. The advantage of this simple approach to
assessing the extracted force density waves is that it can be
used to calculate the mean-squared normal surface velocity of
the stator by

|vn|2(ω) = ω2
R∑

r=−R

|ur(ω)|2 . (15)

A question that sometimes arises, is where to sample the
radial magnetic-flux density distribution to obtain radial mag-
netic pressure [12]. Two natural choices are: in the middle of
the air gap, or exactly at the stator bore. If the latter is chosen,
it is now possible to assume the field, and hence the force, to be
zero between the teeth, since there is no steel, on which to act.
Figure 4a visualizes this by means of the absolute value of the
flux density in the air gap. It can be seen that the flux density in
the middle does not have as high peaks as at the stator bore.
The curve labeled “On the teeth” refers to the situation, in
which the flux density is set to zero in the slot opening. Small
values larger than zero in Figure 4a stem from the FOURIER
decomposition. The corresponding result for forces is shown in
Figure 4b. Keeping in mind that the magnetic pressure is only
an approximation of the true electromagnetic force, the nodal



force approach can here be considered as a reference. For
the small harmonic orders with large amplitudes the sampling
location has no significant influence. Only for the higher time
harmonics, which are lower in amplitude and are most like also
stemming from higher space harmonics, the deviation becomes
larger. In general, the evaluation in the middle of the air gap is
the best option, although it might seem to be more natural to
evaluate forces where they truly occur, i.e. at the stator surface.
This can be explained by the fact that the magnetic pressure
neglects the contribution of the electromechanical stress tensor
of iron, which is larger at the saturated tooth tips. Therefore,
the magnetic stress tensor, which includes the magnetic field,
is lower. The physical reduction at the tooth edges is initiated
by choosing the middle of the air gap, which gives less flux
density although for a different reason (smoothing of the field
with more distance from the singularity).

The next step is to evaluate the convergence behavior of
the local force computation approaches. The mean value of
surface-force density and nodal forces are taken as reference,
because they are theoretically consistent and converge cor-
rectly, Figure 5a. On the other hand, the magnetic pressure
gives clearly better results when evaluated in the middle of the
air gap. Though an indefinite drop occurs at approx. 2 · 105

DOFs, the middle of the air gap variant gives significantly
less error. If one wishes to develop a force calculation method
aiming at analysing the acoustic radiation of the machine and
how it is perceived by the human ear, it makes sense to apply
an A-weighting to the results. These results are shown in
Figure 5b. The picture does not change by much, except for
that the total relative error becomes larger, when compared to
the unweighted case. This is due to the larger uncertainties in
the very small amplitudes.

To give an impression of the influence of the electromag-
netic discretization on the acoustic behavior, although the
structural dynamic response and acoustic radiation character-
istic is not yet included, the total velocity level is calculated in
dB(A). Variations with a few dB can be seen for discretizations
larger than 104 DOFs. Considering that 1 dB is what can
be considered the smallest noticeable change that can be
noticed, electromagnetic force calculation with medium large
discretization levels should suffice for acoustical purposes.

Another aspect, that may be important in the calculation
of electromagnetic excited audible noise becomes visible,
when observing the spectra of the force-density waves in
time and space obtained from nodal force calculation and
from surface force-density. There are harmonics that are not
supposed to occur in this study case configuration, which
can be derived from analytical considerations [11]. Their
amplitude, so called spurious ordinal numbers, are observed
to be significantly lower in the case of nodal forces, when
compared to the surface-force density approach. Summing up
the squared amplitude of all spurious harmonics, gives rise to
the definition of the averaged squared noise terms as depicted
in Figure 7. It can be seen that the nodal force approach
shows the lowest averaged sqaured noise terms for reasonable
discretizaiton levels. This is practically relevant, especially if
comparatively small force excitations are analyzed and its is
not clear if a certain force order is real or spurious. This may
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Fig. 4: Comparison of different sampling locations with the
nodal force as reference.

be the case in a six-pole machine with squared outer stator
surface. Naturally, in a six-pole machine only multiples of six
(i.e. r = 0, 6, 12, . . .) may occure in a centric model. Due to
the squared outer boundary, local saturation may induce force
orders of mode four and multiples thereof.

The difference in terms of numerical noise performance is
also observed, even if the surface-force density is not sampled
equidistantly, but a full analytical FOURIER transformation
analogous to (13) is performed. It is sufficient to perform the
summation of (13) only for the nodes at the interface between
stator iron and air and not in the complete stator volume
to obtain such a good signal-to-noise ratio. Therefore, the
advantage in terms of numerical noise can solely be attributed
to the nodal force approach itself, which outperforms all other
methods in terms of low discretization noise.

IV. SUMMARY AND CONCLUSIONS

Four different force calculation approaches are compared
in this paper: Nodal forces, surface-force density, ARKKIO’S
approach and the magnetic pressure, also called MAXWELL’S
stress tensor. The comparison is performed on a well de-
fined study case geometry, based on a permanent-magnet
excited synchronous machine. An evaluation parameter, the
electromagnetic torque and the analytically weighted force
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Fig. 5: Convergence behavior of local force computation.
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Fig. 7: Discretization noise.

amplitudes are chosen. It is found that the surface-force density
is inappropriate for the calculation of torque, where it gives
good results for the radial force excitation. In terms of signal-
to-noise ratio, the nodal force based approach is superior.
The issue of sampling location is also addressed in this
paper. Sampling in the middle of the air gap is confirmed
to give the best results, if the magnetic pressure is used as an
approximation for the radial forces.
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