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1 Abstract

Purpose - In the electromagnetic field simulation of modern servo drives, the
computation of higher time and space harmonics is essential to consider appear-
ing torque pulsations, radial forces and ripple torques.
Design/methodology/approach - Field computation by conformal mapping
techniques is a time-effective method to compute the radial and tangential field
components, but it generally neglects the effect of saturation.
Findings - This paper presents a method to re-parameterize the conformal
mapping approach by single FE computations so as to consider saturation in
the model over a wide operation range of the electrical drive.
Practical implications - The proposed method is applied to a surface perma-
nent magnet synchronous machine, and compared to numerical results obtained
by FEA.
Originality/value - An accuracy similar to that of FE simulations can then
be obtained with still the low computation time that is the characteristic of
analytical models.
Keywords - Conformal Mapping, Air-gap permeance, permanent-magnet mo-
tors, magnetic fields, design methodology, Air-gap field
Paper type - Research paper

2 Introduction

The design of electrical machines is routinely done by means of virtual pro-
totyping nowadays, in order to reduce costs and shorten the time-to-market.
Besides FEA, which is computationally expensive, analytical models are also
used to obtain a quick first approximation of the machine’s behavior. Conven-
tional analytical models usually focus on the determination of the fundamental
air gap flux density. Consequently, the effect of air gap field harmonics on the
main machine characteristics, such as back electromotive force (EMF), cogging-
torque and load torque, as well as the impact of geometry variations on those
quantities, are neglected. In (Hafner, Franck & Hameyer 2009), the analytic
conformal mapping (CM) method in frequency domain for permanent magnet
synchronous machines (PMSM) is proposed and applied. The comparison with
standard nonlinear FEA shows that it gives a good approximation of the air
gap flux distribution, even if minor saturation occurs at local positions. Field
harmonics and torque are in good agreement up to nominal current, but start
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to diverge in current overload situation. In this paper, a method is proposed to
cover the effect of saturation on the armature flux density within CM by a FE
re-parameterization.

3 Standard Conformal Mapping

The air gap field computation by conformal mapping is generally obtained from
the solution of a linear Laplace problem, assuming the magnetic core has an
infinite permeability. Since this system is linear, the field excitation by magnets
and coils, as well the influence of the slotting, can be modeled individually.

Assuming first a slotless stator, the two-dimensional field ~B (Θ) at a certain
coordinate angle Θ in the air gap, Θ ∈ [0, 2π[,consists of a radial flux density
Br (Θ) and a tangential flux density Bϕ (Θ)

~B (Θ) = Br (Θ) · ~er +Bϕ (Θ) · ~eϕ. (1)

The angle dependent quantities Br (Θ) and Bϕ (Θ), can be expanded into a
Fourier Series

~B (Θ) =

∞
∑

n=0

(Br,n · ~er +Bϕ,n · ~eϕ) enpΘ, (2)

where n is the frequency order and p the number of pole pairs. In this rep-
resentation of the air gap field, the Fourier coefficients Br,n and Bϕ,n are the
solution of a linear Laplace problem with magnets and a slotless stator depend-
ing on the magnetization type (Zhu & Howe 1993), (Zhu, Howe & Chan 2002),
(Hanselman 2003). The field at a certain instance of time t due to rotor move-
ment is given by

~B (t) = ~B · eωrt (3)

where ωr is the angular speed of the rotor.
Stator slotting significantly influences the magnetic field distribution. It is

standardly modeled by "permeance functions". These 2D permeance functions
~λ consider the radial and tangential impact of slotting on the slotless field dis-
tribution and can be obtained by Schwarz-Christoffel transformations (Zarko,
Ban & Lipo 2006), (Zarko, Ban & Lipo 2008). Correlating the field distribu-

tion with slotting, s ~B (t), with the field without slotting (3), yields the vectorial

permeance ~λ

s ~B (t) = ~λ∗ · ~B (t) (4)

~λ∗ =

(

λr λϕ

−λϕ λr

)

. (5)

The magnetic field distribution due to a current in a single slot, assuming
a infinite slot depth and a infinite permeability in a slotless stator, can be ob-
tained analytically by three successive conformal mappings (Binns 1963), named
current ansatz function. According to the stator winding scheme, a flux distri-
bution p ~B, in function of the effective number of winding turns and the coil
current, representing the flux distribution per phase can be found from that.
The overall armature field a ~B (t) is given by

a ~B (t, I) =





p ~B
(√

2Ieωst+0◦
)

p ~B
(√

2Ieωst+120◦
)

p ~B
(√

2Ieωst+240◦
)



 ·





eφq+0◦

eφq+120◦

eφq+240◦



 , (6)
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Table 1: Parameters for Sizing and Electromagnetic Evaluation

p 3 Number of Pole Pairs

Ns 18 Number of Stator Teeth

Pr 1520W Rated Power

nr 3000 rpm Rated Speed

τp 0.73 Pole Pitch Factor

hm 3mm Permanent Magnet Height

rorr 24.5mm Outer Rotor Radius (inc. PM)

hδ 0.8mm Air Gap Height

hstth 0.5mm Stator Tooth Tip Height

hsth 21.7mm Stator Tooth Height

rosr 54.2mm Outer Stator Radius

hstw 5mm Stator Tooth Width

hsow 1.5mm Slot Opening Width

lz 101mm Length

Br 1.244T Remanence Flux Density

kcu 30% Copper Fill Factor

where the angle φq defines the relative phase orientation to the quadrature axis
of the machine and ωs is the stator current angular frequency. Due to the gov-
erning equation of the current ansatz function in (Binns 1963), the impact of ~λ is

already considered in the definition of p ~B. We shall in the sequel systematically
omit the arguments Θ and t and retain only the argument I for all quantities
that are current dependent. We shall also label the quantities obtained by the
conformal mapping approach with a CM exponent. The overall air gap field by
following the procedure explained above is thus defined as

g ~BCM (I) = a ~BCM (I) + s ~BCM . (7)

4 Saturation in Conformal Mapping

The PMSM studied here, is identical to the machine in (Hafner et al. 2009),
where in addition to the construction details the cross section of the motor and
the nonlinear B−H characteristic can be found. All parameters of the geometry
and the electromagnetic evaluation are given in Table 1.

Equation (4) and (6) represent the analytic air gap flux density distribu-
tion for the load and no-load case. Since CM technique assumes an infinite
lamination permeability, a deviation between a field characteristic by CM and
nonlinear FEA is expected in case of saturation in parts of the ferromagnetic
core. Figure 1 shows the absolute deviation in the flux density distribution be-
tween CM and FEA in the air gap over a pole pitch with the current I ranging
from zero to four times nominal current In. The deviation in tangential direc-
tion (Fig. 1(b)), as well as the radial flux density deviation (Fig. 1(a)) both

3



increase as the current I increases. Moreover, the comparison of load and no-
load cases shows that saturation beneath the tooth tips (110◦,130◦) is already
present for a coil current equal to zero, but strongly increases in function of I.
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Figure 1: Absolute radial and tangential flux density deviation between CM
and FEA over PMSM pole pitch for different load situations.

4.1 Methodology

The general idea of this work is to minimize the load dependent deviation shown
in Fig. 1 by adding correction terms obtained from FE computations. The cur-
rent dependent fraction of the saturation is linked with a ~B (I), whereas the

no-load saturation in s ~B arises from ~λ, which does not take into account the
reduction of the permeance due to a finite permeability of the lamination, nor
the local variation of the permeance due to saturation. Here, the flux deviation
due to current dependent saturation should be considered. The computation of
correction terms between CM and FEA is carried out in the two-dimensional fre-
quency domain (2D-FFT) over one electrical period in order to consider also the
quasi-static flux variation caused by the rotor movement. This 2-dimensional
space has the circumferential wave number ν and the frequencies f for coordi-
nates. The radial and tangential components of the air gap flux density at a
certain time step t at the position Θ is reconstructed from the 2D-FFT space
by:

Bx(t,Θ) =
∑

f

∑

ν

Bx(ν, f)e
−2π(f ·t+ν·Θ)

∣

∣

∣

∣

x=r,ϕ

, (8)

where the coefficients Bx(ν, f) are complex.

This Fourier representation is applied to the CM air gap field a ~BCM (I)
defined above, as well as to the FE calculated armature air gap field defined as:

a ~BFEA (I) = ~BFEA (I)− ~BFEA (I ≡ 0), (9)

so that the no-load saturation does not contribute to a ~BFEA (I) as postulated
in the considerations of this methodology. All quantities obtained from FE com-
putations are labeled with a FEA exponent. According to (8), the armature

fields a ~BCM (I) and a ~BFEA (I) are transformed to the 2D frequency domain
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to obtain their harmonic representation aBx
CM , aBx

FEA. Comparing the fre-
quency domain of CM and FEA for each 1-D wave (ν, f), two situations can
occur:

1. A complex wave B changes its amplitude or phase, which can be described
by

cx(ν, f) =
aBx

FEA(ν, f)
aBx

CM (ν, f)
, (10)

where cx is a complex correlation factor. A change in ℜ{cx} indicates
a change of the amplitude, whereas ℑ{cx} implies a phase shift between
both waves.

2. Since saturation modes, classically ν = 3p, 5p, 7p, are not present in CM
(Jacob 1998), (10) and can not be applied in this situation (division by
zero). Here, the corresponding wave (ν, f) has to be added in such a way
that

aBx
CM +Bx

Add = aBx
FEA

∣

∣

∣

∣

I=IAdd

, (11)

where the quantity Bx
Add is taken from the FEA computation at one

certain current load situation IAdd. Defining the complex factor cx in the
sense of (10), yields

cx(ν, f) =
aBx

FEA(ν, f)

Bx
Add(ν, f)

. (12)

Assuming now that the Fourier coefficients aBx
FEA(ν, f) and aBx

CM (ν, f) are
scaling linearly with I, the shape of the amplitude of cx in function of the current
I, depends on the calculation rule (10) and (12). In this case, (ν, f)-waves
present in aBx

CM (ν, f) are constant, whereas waves existing in Bx
Add(ν, f)

scale linearly by I, as depicted in Fig. 2. The abscissa of the intersection point
between both lines defines I = IAdd. The field computation by CM including
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Figure 2: Ideal characteristic of the magnitude of cx in function of the normal-
ized phase current I.

saturation follows in 2D FFT space by modifying (7) with the terms (10) and
(12)

gB
MOD−CM
x (I) = sB

CM
x +

(

aB
CM
x (I) +BAdd

x

)

· cx (I) , (13)

where the complex amplification factors of cx can be interpolated by a linear or
cubic spline. In this work, a linear spline interpolation is applied which requires,
besides I = 0, at least one sampling point.
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4.2 Implementation of Methodology

The modeling of saturation within CM bases on adding current dependent phase
and amplitude information from a non-linear FE solution. The concept, given in
section 4.1, is carried out in the two-dimensional frequency domain to treat each
(ν, f)-wave separately. On the one hand, this allows a detailed interpolation of
the air gap flux density, but with a loss of simplicity. Moreover, (10) and
(12) may face mathematical difficulties, e.g. singularities, which can lead to
an instability within the proposed algorithm. Therefore, this section improves
the computation of the complex cx-factor to avoid instability and minimize the
number of non-zero stored correction terms.

The denominator of (10) aBx
CM (ν, f), arises from the Fourier spectrum of

the sampled values of the continuous and ideal armature field distribution. Since
the field revolves by an eωt operator in time, only the fundamental synchronous
frequency f1 is present. The magnitude of the ν-waves decrease by an increasing
value of ν, leading to infinite values of (10). Introducing a threshold filter func-
tion F, measuring and weighting the relative impact of each wave contribution
with respect to the fundamental wave of its operant, defined as

Fth1 =

{

0, if A ≤ th1

B(ν, f), if A > th1
(14)

A =

∣

∣

∣

∣

B(ν, f)

B (ν ≡ p, f ≡ 1)

∣

∣

∣

∣

, (15)

where th1 is the threshold, (10) can be rewritten with the reduces spectrum
Fth1

{

aBCM
x (ν, f)

}

, yielding

cx =
aBFEA

x (ν, f)

Fth1

{

aBCM
x (ν, f)

} . (16)

The FE electromagnetic governing equations use usually first-order vector
potential formulations, leading to zero-order magnetic flux density solutions.
This discontinuity in the FE flux density distribution involves that almost all
wave components of aBFEA

x in (11) are present, giving a dense add-term matrix
with many entries of roundabout zero. To avoid a singularity in (12), these
add-term entries have to be weighted with respect to their origin in aBFEA

x .
Applying the preprocessor F to (12) requires a modification in (11) to

BAdd
x = Fth1

{

aB
FEA
x − aB

CM
x

}

∣

∣

∣

∣

I=IAdd

. (17)

5 Application

The concept presented in section 4 is used to re-parameterize CM by FEA.
In minimum, one single FE current-load solution, e.g. for nominal current, is
required. To study the behavior of the extracted correction terms representing
the saturation of the steel lamination, the presented methodology is carried out
for a phase current I in range from one to four times nominal current In. The
crosssection of the motor is pictured in Fig. 1(a) of (Hafner et al. 2009), all
parameters of the dimension and the electromagnetic evaluation are in listed in
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Table 1. The add-term extraction is carried out for nominal current In. The
threshold th1 is set to 1%.

Initially, the occurring additional waves are computed by (17). Figure 3(a)
shows the radial amplitude spectrum of the FE-simulation for nominal current
in function of the wave coefficient ν and f . Its separation into the fraction
aBCM

r obtained by (17) and the resulting add-term fraction BAdd
r is depicted

in Fig. 3(b).
The evaluation of (17) leads to 23 coefficients in radial and 39 entries in

tangential direction. The computation of the correction factors c by (12) and
(16) gives 10 additional terms for radial and 15 terms for tangential direction.
Table 2 lists all c terms for the radial component with its space and frequency
harmonic and their affectation to aBCM

r (CM) or BAdd
r (Add).

According to (Seinsch 1992), the modes of the winding field of the funda-
mental frequency f1 are given in this example by

ν = p · (1 + 6 · g) , g = 0,±1,±2, .. (18)

and the occurring saturation wave mode follow:

ν = p ·
(

6 · g
Nq

+3
−1

)

, for
f = 3 · f1
f = f1

(19)

The column "origin" in Table 2 categorizes the wave modes by (18) represented
by (w), (19) identified with (Sat) and the unknown groups Gr1, Gr2 and Gr3.
All saturation terms for the analytic armature field are, as expected, linked with
(18). For the fundamental frequency f1 as well as for the third harmonic f3 6
wave modes can be identified with (19). Since space harmonics with a rational
number of p are implausible in this machine example, group Gr3 has to be
considered as numeric noise within the sampled FE field. Group Gr2 with a time
frequency of five may be identified as second time-harmonic of the lamination
permeance with generally occur as even time frequency multipliers. The modes
of Gr1 have a high ν order and can not be correlated with a standard field
harmonic from literature. Figure 4 shows the quantitative change of magnitude
and phase of some wave modes of the winding field (w) in function of the load
current. As expected when saturation is present, these waves are damped as
the load current I increases. The saturation wave modes (3p, 3f) and (5p, 5f)
present in the add-term (extracted for nominal current) exhibit a strong linear
increase in the magnitude and in case of (5p, 5f) a significant angular phase
shift in function of the current, as depicted in Fig. 5.

To demonstrate the effectivity of this method to minimize the current de-
pendent mismatch between FEA and CM, Fig. 6 shows the same deviation as
Fig. 1 without the flux density of the permanent magnets. Figure 7 illustrates
the field difference in radial and tangential direction after applying the satura-
tion correction to the CM method. It can be observed, that the maximal peak
deviation in radial direction beneath the teeth tips (110◦and 130◦) is reduced
from 0.25 T to below 0.08 T, cf. Fig. 6(a) and Fig. 7(a). In tangential direction
the minimization of the percentage deviation exhibits to be even stronger from
at least 0.2 T to 0.02 T, cmp. Fig. 7(a) and Fig. 7(b).

The analytic field computation by standard conformal mapping, the extrac-
tion of the complex corrector factors by already present FEA computation, as
well as the modeling of saturation into the armature field, last on a Quad-Core
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(a) Radial FEA winding field a
B

FEA
r .

(b) Radial flux density a
B

FEA
r separated in the a

B
CM
r (Blue) and B

Add
r

(Red)

Figure 3: Amplitude spectrum of add-term fraction BAdd
r for nominal current

computed by (17).
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Figure 4: Amplitude and phase of the complex correction factors for armature
field (w) in function of load current.
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Figure 5: Amplitude and phase of the complex correction factors for armature
field (w) in function of load current.
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tween the CM and FEA over PMSM pole pitch for different load situations.
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Table 2: Complex Saturation Factor for Radial Field Correction

Nr. f ν Affectation Origin

1 1 -5p CM w

2 1 -11p CM w

3 1 -17p CM w

4 1 -23p CM w

5 1 43p CM w

6 1 37p CM w

7 1 19p CM w

8 1 13p CM w

9 1 7p CM w

10 1 1p CM w

11 1 -119p Add Sat

12 1 -115 Add Sat

13 1 -121p Add Sat

14 1 -127p Add Sat

15 1 -145p Add Sat

16 1 149p Add Sat

17 1 147p Add Gr1

18 1 141p Add Gr1

19 1 135p Add Gr1

20 1 117p Add Gr1

21 1 111p Add Gr1

22 3 -3p Add Sat

23 3 -9p Add Sat

24 3 -15p Add Sat

25 3 15p Add Sat

26 3 9p Add Sat

27 3 3p Add Sat

28 5 11p Add Gr2

29 5 5p Add Gr2

30 12 -89,6p Add Gr3

31 12 -95,6p Add Gr3

32 14 -101,6p Add Gr3

33 14 -99,6p Add Gr3
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Figure 7: Absolute radial and tangential armature flux density deviation be-
tween the modified CM and FEA over PMSM pole pitch for different load sit-
uations.

AMD Opteron Processor with 2,200 MHz in single core usage a few seconds,
which is in any case much less than the complete FE computations would re-
quire.

6 Evaluation and Further Prospects

The method proposed in 4 aims on adopting the phenomena of saturation in
the current dependent armature field of CM. The application of the computed
correction factors c leads to a significant reduction of the mismatch in case of
high saturated operation points, cmp. Fig. 6 and Fig. 7. Since the equation of
the analytic armature field implicitly models the complex permeance function
λ, the correction terms remodulate the time and local dependent variation of λ
over one electrical period in this quantity. In order to set up a correction of the
allover air gap flux density field the presented method, can be applied to the
explicitly determined permeance λ in (4) and on the armature field separately.
This straight forward approach would indeed lead to sufficient result, but reflects
a physically wrong identification of the saturation since both field fraction would
be treated differently. Since the described extraction procedure has shown to
be target oriented, in a further research the implicit λ formulation of (6) can
be neutralized to end up with one physical modulation of the permeance state
description of the machine.

Since the occurring wave modes obtained from FEA have to be evaluated
with respect to their physical feasibility, cmp. Table 2, further investigations
are necessary to find a better appropriate filter replacing the threshold filter
mechanism. In present state the applied saturation model does not consider a
change in the phase orientation of the applied current to represent the operation
in the field weakening range. To gain insight into the spectral decomposition
of radial and tangential forces which can be determined from the CM field
combination, the method proposed here can be combined with space vector
representations to analyze the participating flux density waves for certain force
harmonics, (Rothe, van der Giet & Hameyer 2009), (van der Giet, Rothe &
Hameyer 2009).
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7 Conclusion

In this paper, CM harmonics are re-parameterized by FEA and afterwards scaled
by the phase current to artificially adopt the phenomena of saturation in the
armature field within this practical approach. A demonstration on a PMSM
shows, that this yields a flux density distribution which is in good agreement to
FEA even in saturated and high saturated operation points.
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