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The calculation of motion-induced eddy currents in massive conductors yields a 3-D convection-diffusion problem. Up-winding and
SUPG formulations are well established methods to obtain stable discretizations of the scalar convection-diffusion equations in the case of
singular perturbation, but there is very little reported experience with the stability of convection in the vector case, i.e., electromagnetism.
Numerical experiments with the up-winding method proposed by Xu et al. (Trans. on Mag., 2006; 42:667–670, 2006) has proven it to
be insufficient. Building on the work of Heumann et al. (Research report 2008-30, Seminar für Angewandte Mathematik, Eidgenssische
Technische Hochschule, Oct. 2008), an alternative approach based on a finite-element discretization of the Lie derivative implied by the
convection phenomenon is proposed.

Index Terms—Finite elements, lie derivative, motion-induced eddy currents, upwinding, Whitney elements.

I. WEAK FORMULATION

M AGNETODYNAMICS problems can be solved with the
vector magnetic potential and the electric scalar po-

tential as unknown fields. The weak formulation is obtained
by orthogonalizing the governing equations with the appropriate
test function spaces in accordance with the finite-element theory

(1)

where , and the current density is expressed in
terms of the unknown fields as

(2)

The operator is the co-moving time derivative, which is
also commonly called material derivative or total derivative in
different contexts. The co-moving time derivative of the mag-
netic vector potential writes

(3)

(4)

respectively, terms of vector analysis and differential geometry
quantities and operators (see, e.g., [3] for an expository monog-
raphy and [4] for a reference book). Term by term indentifica-
tions define the vector analysis equivalents of differential ge-
ometry operators that play an important role in this discussion:
namely the exterior derivative , the inner derivative and the
Lie derivative . In particular, given a placement map

, the geometrical interpretation of the co-moving time
derivative is that it is the derivative that fulfills
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which implies, with the pullback of

since

In the stationary case, is zero, and . Substituting
(2) in (1), the weak formulation of the problem is obtained

(5)

, as it is used by Xu et al. with and [1].
Note that they assume , which amounts to
using a modified scalar electric potential .

II. UPWINDING IN 3-D SIMPLICIAL MESHES

A. Continuity

The tangential component of and is continuous across
finite elements surfaces. One has

(6)

where are Whitney edge shape functions, and where the
edge connector can be evaluated by integration of the dis-
cretized field of any tetrahedron adjacent to the edge
with the same result. For , one has on the contrary
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Fig. 1. Edge � � �� � � � and the upwind element � .

but the bracketed coefficient depends now on the chosen element
. There is, however, no indetermination, for the Lie derivative

is by definition a one-sided limit

(7)

involving the upwinded edge . This imposes to evaluate
the circulation in the upwind region relative to the edge under
consideration, Fig. 1. The notion of upwind region, and in par-
ticular the notion of upwind element with respect to a node,
an edge or a facet, is now made precise.

B. Hyperfaces, Orientation and Boundary Operator

All calculations done in the sequel are affine invariant. They
are done in the real finite element with global orientation, i.e.,
the reference element is not used. Let be an arbitrary simpli-
cial element of order in a mesh covering a -dimensional
space. Without loss of generality, we assume that this element
is represented by a set of nodes ,
whose positions in space are given by .
Ordered subsets of cardinality of are called -hyper-
faces. The subsets of cardinality 1 are the vertices (0-hy-
perfaces) of the element, the ordered subsets of cardinality 2 are
the edges (1-hyperfaces), the ordered subsets of cardinality 3 are
the facets (2-hyperfaces), etc. A permutation of two vertices in a

-hyperface amounts to reverting its orientation. The boundary
of a -hyperface is the -hyperface defined as

where denotes the set obtained by removing the nodes of
from , and where denotes

the position of in the ordered set . For instance

and

C. Simplicial Extrusion Basis

Let be an arbitrary -hyperface adjacent to
node . We call simplicial extrusion basis of at node the
set of -hyperfaces obtained by making the substitution

(8)

with , where the double brackets recalls that the result
is a set of hyperfaces. The cardinality of this set is .

D. Simplicial Basis for the Tangent Space

Considering a particular simplicial element , represented
equivalently by its vertice set , the nodal values of the velocity
field are denoted by , and the discretized
velocity field writes

(9)

where the ’s are the nodal barycentric shape functions
of the element and the vectors form a Cartesian global
reference frame for the -dimensional space.

The simplicial extrusion basis of a node is the set

of edges adjacent to node and oriented outwards. This set
is an alternative basis for vectors anchored at . We adopt the
notation

so that the discretized velocity field writes in this basis

(10)

where the edges , which are (straight) curves, are
assimilated with their tangent vector at to form a basis for
vectors in . The coefficients of this expansion are given
by

(11)

Note that this evaluation may occur outside the volume enclosed
by the simplicial element . Barycentric shape functions are
defined over . The superscript recalls throughout which
quantities are simplex-dependent.

E. Implied Orientation

Given an orientation of the -hyperface , the elements of the
simplicial extrusion basis acquire by virtue of the
definition (8) an implied orientation.

The simplicial extrusion basis of a node , for instance,
is a set of edges adjacent to node and oriented out-
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wards. Hence, because of the natural outwards orientation, the
boundary of those edges contains the initial node with a
negative coefficient. The definition (8) is such that this rule is
generalized towards higher degrees as well. The boundary of
each element of the simplicial extrusion basis
contains with a negative sign, i.e.,

F. Upwind Element

Equation (8) shows that each of the elements of the
simplicial extrusion basis can be associated with
a node and, therefore, with a coefficient
of the local velocity field (10).

The upwind element , or , of a pair , where is a
-hyperface adjacent to the node , is by definition the element

adjacent to , i.e., , for which the conditions

(12)

hold. This is an unambiguous definition; there is exactly one
upwind element for each pair .

There are thus up to upwind elements for a -hyperface,
one for each node of . In particular, there exists exactly one up-
wind element for a node (0-hyperface), but the upwind ele-
ments and of an edge (1-hy-
perface) may differ. There are also, in principle, three different
upwind elements for a facet (2-hyperface), one for each node,
but, for there are at most two elements adjacent to a facet in a
3-D space , the number of upwind elements of a facet
is also at most two in 3-D.

Fig. 2 (top) shows the upwind element a node .
This element, noted , needs have at least node
in common with . It can also share an edge, a facet or even
be identical to according to the direction of the velocity

. Fig. 2 (bottom) shows the upwind elements of an edge
. In this case, the velocity field is such that the

upwind elements and are distinct. This
happens because the upwind extrusion of (backwards pro-
longation of ) is in between the half-planes defined by the
nodes and , whereas the upwind ex-
trusion of (backwards prolongation of ) is in between the
half-planes defined by the nodes and .
The elements and need have at least the
edge in common, but they may share a facet or be identical.

G. Extrusion

The auxiliary notion of simplicial extrusion basis defined
above allows a straightforward expression of the extrusion op-
erator defined by A. Bossavit [5]. Combining both definitions
in (10), the velocity field over reads

Fig. 2. Upwind elements for one node (top) and for one edge (bottom).

i.e., a double sum expansion in terms of simplicial-dependent
scalar coefficients and vector basis functions. Each of these
basis functions

(13)

is a velocity fields defined on , whose value is zero at all nodes
but and whose value at is oriented along one edge adjacent
to . Those basis velocity fields have the remarkable property
that they map by extrusion (with ) the simplicial struc-
ture onto itself (nodes of the mesh are mapped on nodes of the
mesh, edges onto edges, etc.). More precisely, they realize the
vertice operation (8). The extrusion of an hyperface adjacent
to the node by the set of all velocity basis
function associated with that node, is indeed

(14)

For , the result is , which is a set of subsets
of . By construction, the extrusion operator is linear in , for

. One speaks here of linearity in the formal vector space
of chains.

By linearity with respect to the velocity argument now, the
extrusion by the full velocity field on the simplicial element is
expressed in the natural local basis (14) as

(15)

where the upwinding condition (12) holds for the selection of
the upwind element associated with each pair .
The local basis and the coefficients are then eval-
uated in that element. In (15), the sum over all vertices of the
simplex (first sum) can be limited to a sum over the vertices

, because contains the nodal shape function of
node , see (14), which is identically zero on if . On
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TABLE I
NUMERICAL EXPERIMENT WITH THE DISCRETIZED LIE DERIVATIVE OPERATOR

the other hand, the second sum is limited to the nodes not
belonging to , because the extrusion by a vector such that

(which would be the case if ) is zero.
This leads to a discrete version of the extrusion operator, and

in turn of the Lie derivative in closed form. Clearly

so that

because of the linearity of chains. One ends up now with the
summarizing general relation

(16)

H. Discrete Lie Derivative

The discrete Lie derivative

(17)

is thus reduced to the integration of over the 1-chain

or, with

(18)

where the discrete operator is defined by (16). This 1-chain
is a linear combination of edges of the mesh with velocity de-
pendent coefficients. The final result is thus a linear combination
of edge circulation of the vector potential . This can be put into
the matrix form

(19)

where the square sparse tensor represents the discrete Lie
derivative operator. If the velocity field is constant, the matrix

can be computed once for all.

III. NUMERICAL VALIDATION

We consider the following problem:

(20)

on the unit cube , with velocity

(21)

We choose in these experiments the right-hand side and
boundary data such that the exact solution is

(22)

The prescribed extrusion/contraction discretization is imple-
mented within the FEniCS framework [6], and the errors in

-norm and -semi-norm are calculated on a series of
refined meshes. The results in Table I suggest that the error
measured in the -semi-norm converges with rate 1. We
also expect this for the -norm. Unfortunately, the asymptotic
region is not reached in our experiments, which is however not
unusual with 3-D experiments. Only a theoretical proof will be
conclusive about this.

IV. CONCLUSION

This paper has presented a 3-D formulation for motion-in-
duced currents in massive conductors. This formulation is ex-
pressed explicitly in terms of the co-moving time derivative and
the Lie derivative, whose theoretical definitions clearly indicate
the necessity of using an upwind discretization scheme. The
convection operator has been discretized on a simplicial mesh
and an upwind scheme without free parameter is obtained. Nu-
merical experiments have shown that the proposed upwind for-
mulation is a convergent approximation.
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