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Modern methods for iron loss computation

François Henrotte, Kay Hameyer

Introduction
⊲ Accurate evaluation of iron losses in electrical machines is for many purposes of

increasing importance (Automotive applications, etc. . . )

⊲ Many approaches rely on very few measurement data (e.g. Iron losses at 50 Hz
for B=1 T and B=1.5 T) and have therefore limited accuracy.

⊲ In this paper, extensive Epstein measurements provided by ArcelorMittal over
a large frequency range are analysed in detail and discussed.

⊲ The aim is to provide an accurate and widely applicable model for iron losses.

Analysis of Measurements
⊲ Induction range : J ≈ B ∈ [1 T, 1.8 T]

⊲ Frequancy range : fmin =2 Hz, fmax = from 700 Hz to 10 kHz

⊲ Plotting W/(B2 f 1.5) is shown below :
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⋄ Measurements = Points

⋄ Identification = Lines

⊲ A term Bα ,α < 2 exists ⇒ the excess losses of Bertotti (α = 1.5).

⊲ A term Bα ,α > 2 exists, due to saturation which is not considered in Bertotti’s
approach.

Parameter Identification
Hence the identification formula (Bertotti’s model + higher order term in B) :

W (B, f ) = B2 f (a2 +a1 f (1+a3Ba4 ))+a5(B f )1.5
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⋄ a1 : classical eddy current
losses

⋄ a2 : hysteresis losses

⋄ a3,a4 : higher order term
in B

⋄ a5 : excess losses

⊲ 5 parameters a1 , . . . ,a5 identified per material

⊲ A large frequency range [CC=2 Hz, 1500 Hz] and the whole induction range B ≡

Bmax ∈ [0 T, 1.8 T] are covered.

⊲ A good match over the whole B and f ranges is obtained.

⊲ BUT : Limited to unidimensional sinusoidal B fields .

⊲ How to go beyond interpolated measurements ? One needs for this a theoreti-
cal ground for extrapolation outside the measurement ranges, i.e. one needs a
physical material model (See next box.)

Physical Material Model
A. Cross lamination eddy current FE model

⊲ The 1D approximation is accurate in thin laminations. It can be used within an
homogenisation process

⊲ Typical results (one half period) are shown below at the same frequency
( f =1000 Hz) and with a) the linear B-H characteristic, b) the anhysteretic cha-
racteristic and c) the virgin (first magnetisation) characteristic.

⊲ One observes in c) that the virgin characteristic (used in most FE simulations
assuming σ = 0) yields here unphysical eddy currents when the field B crosses 0
(presence of a Rayleigh zone in the virgin characteristic). The virgin curve should
not be used when σ 6= 0, and replaced by the anhysteretic characteristic b), or
even better, by a true coupling with the hysteresis model.

⊲ Comparison of a) and b) clearly shows the effect of saturation on the distribution
of eddy currents across laminations. Skin effect dissappears and a saturation
front travels through the lamination. Losses computed in case b) are about 3
times larger as the ones computed by Bertotti’s standard formula. This is the
justification for the higher order term in B.
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b) Anhysteretic
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c) Virgin

B. Vector dynamic hysteresis model

⊲ Based on a mechanical analogy : hysteresis losses = dry friction force, eddy
currents = viscous friction forces

⊲ The model is able to represent vector hysteresis (3D) and higher harmonics
(i.e. arbitrary input H(t) field) on basis of a sound theoretical background.

Match between modeled unidirectional hysteresis

losses and measurements. Rotational losses are

about 1.5 larger than unidirectional losses (as pre-

dicted by the theory) and decrease at high fields.
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namic hysteresis model in the presence of higher
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⊲ Good match between the model and mea-

surements over the whole frequency ran-

ge. The discrepancy at higher fields is due

to the fact that the physical material model

works so far with a sinusoidal H field, whe-

reas Epstein measurements where made

with a sinusoidal B field (to be further inve-

stigated).

Conclusion
⊲ A 5-parameter formula for iron loss identification has been proposed that allows

a sufficient accuracy over large B and f ranges.

⊲ This approach is however limited to unidimensional sinusoidal B fields .

⊲ First results with different physical material models for steel laminations have
been presented that allow going beyond this limitation.


