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Abstract—In a previous paper, we have proposed a method, called the eggshell method, to compute electromagnetic forces in a finite
element (FE) context. This method stems from the rigorous application of the virtual work principle in a mathematical setting
where electromagnetic fields are represented by differential forms [6]. The purpose of this paper is to propose an implementation
of the eggshell method. The proposed algorithm not only provides the values of the forces but offers also the user the opportunity
to perform a number of consistency and accuracy checks, and to investigate more in details the structure of the force field.

Index Terms—Electromagnetic forces, Electromechanical coupling, Maxwell stress tensor, Virtual work principle.

I. INTRODUCTION

In a previous work [9], we have proposed a method to com-
pute electromagnetic forces in a finite element (FE) context.
This method, called the eggshell method, allows computing
both local and resultant electromagnetic forces and torques by
applying different kinds of infinitesimal virtual test velocity
fields.

Nodal forces are obtained by means of a virtual test velocity
field leaving all nodes of the mesh but one fixed whereas
resultant forces are obtained by means of a virtual test
velocity field describing an infinitesimal rigid-body motion of
the piece under consideration and leaving all other nodes of
the mesh fixed.

II. ELECTROMECHANICAL STRESS TENSOR

An important mathematical concept behind the theoretical
definition of electromagnetic forces is that of co-moving time
derivative Lv. This operator computes the variation in time
of a quantity α taking into the fact that the underlying domain
of definition is in motion, i.e. it the operator that fulfills

∂t

∫
Ω

α dΩ =

∫
Ω

Lvα dΩ. (1)

where the motion is represented by the velocity field v, which
can be virtual or not. According to the geometrical nature of
the derived quantity, the co-moving time derivative has the
following expression

Lvf = ḟ (2)
Lvh = ḣ + (∇v) · h (3)
Lvb = ḃ− b · (∇v) + b tr(∇v) (4)
Lvρ = ρ̇+ tr(∇v) ρ (5)

where
ż ≡ ∂tz + v · ∇z (6)

denotes the total derivative of z(t, xk), applied component
by component to the vector field z, with respectively (2) for
the 0-forms (e.g. temperature), (3) for the 1-forms (e.g. the

magnetic field, or the vector potential), (4) for the 2-forms
(e.g. the induction field or the current density), (5) for the 3-
forms, which are all volume densities (e.g. the magnetic energy
density). Whereas (2) and (5) are classical in fluid dynamics
with Eulerian coordinates, their counterpart for vector fields,
(3) and (4), which are less often encountered in the literature,
are the ones one needs for the analysis of the electromechan-
ical coupling and the definition of electromagnetic forces and
torques.

The theoretical definition of electromagnetic forces follows
from the evaluation of the co-moving time derivative of the
energy density ρΨ considering only the dependency in b, i.e.

Lv{ρΨ(b)} = ρ̇Ψ(b) + tr(∇v) ρΨ(b)

= ∂bρ
Ψ(b) · ḃ + tr(∇v) ρΨ(b)

= h̃ · Lvb + {b · ∇v · h̃− tr(∇v) {h̃ · b− ρΨ(b)}}. (7)

by applying successively (5), (6) and (4). The first term at the
r.h.s of (7) is the variation of the magnetic energy stored
in the b field. It contains the magnetic field h̃ ≡ ∂bρ

Ψ(b),
defined as the energy dual of the induction b. With no motion,
v = 0⇒ Lv = ∂t, and the usual definition h̃·∂tb is recovered.

By factorizing now ∇v in the second term, (7) can be re-
written

Lv{ρΨ} = h̃ · Lvb− ρẆem (8)

with

ρẆem = −σem : ∇v (9)

the work delivered by the magnetic forces and

σem = b h̃− {h̃ · b− ρΨ(b)}I. (10)

the definition of an electromechanical stress tensor. Note the
use of the dyadic (undotted) vector product (v w)ij = viwj ,
the tensor product a : b = aijbij and the identity matrix I.
The electromechanical stress tensor of empty space (or air) is
called Maxwell stress tensor.



III. ELECTROMAGNETIC FORCES

In this section, it is shown that the variety of methods and
formulae to calculate the electromagnetic forces can all be
systematically derived from (9) by considering different virtual
velocity fields v.

a) electromechanical stress tensor : We have shown that
electromechanical coupling arises from the power delivered
by a stress tensor σem on the gradient of a (virtual) velocity
field v. Indeed, the material derivatives of the p−forms (2)–
(5) involve ∇v, but not v itself. It is thus correct to consider
the electromechanical tensor σem as a fundamental quantity
and the electromagnetic forces as a derived quantity (See c)
below).

b) energy density : The electromechanical properties of a
given material are completely determined by the expression of
its energy densisty ρΨ as a function of electromagnetic state
variables (the induction b and the displacement current d) and
the strain ε. Each material has thus its own electromechani-
cal stress tensor σem, which is derived from this particular
expression of the energy density functional by the procedure
(7).

Considering for instance a material whose energy density
depends on both b and d (the empty space is already such a
medium), one finds

σem = d ẽ + b h̃− {ẽ · d + h̃ · b− ρΨ(d,b)}I. (11)

The energy density of a magnetostrictive material, on the
other hand, does not depend on d but has a term depending
on both b and ε. The corresponding electromechanical stress
tensor has one extra term

σem = b h̃ + ∂ερ
Ψ(b, ε)− (h̃ · b− ρΨ)I. (12)

Other examples can be found in [7].

c) force density :
The link between the electromechanical stress tensor σem

and the electromagnetic force density ρfem is found by making
an integration by part of (9) over an arbitrary region Ω :∫

Ω

σem : ∇v dΩ = −
∫

Ω

ρfem · v dΩ +

∫
∂Ω

n · σem · v d∂Ω

(13)
with ρfem = div σem by definition and n the exterior normal
to the boundary ∂Ω of the domain Ω. The powered delivered
by the electromechanical stress is thus equivalent to the power
delivered by a volume density of forces plus the power flow
delivered by the electromechanical tensor on the boundary of
the considered domain.

Making use of the Vector analysis formula

−ai ∂b
k

∂xi
+ ai

∂bi

∂xk
= (a× curlb)k, (14)

the force density derived from (11) is

ρfem = curl ẽ× d + curl h̃× b + ẽ divd + h̃ divb, (15)

and substituting Maxwell equations gives

ρfem = −Lv{b× d}+ j× b + ẽ divd + h̃ divb, (16)

Fig. 1. Canonical electromagnetic force problem, where Y is a moving rigid
region (body), Z is a force-free region, X is fixed, S is the eggshell.

where one recognizes the co-moving time variation of the
electromagnetic momentum b × d, the Lorentz force and
the electrostatic force.

d) sign convention : The electromechanical stress tensor σem
is a true mechanical stress, i.e. its work is delivered by the
mechanical compartment and received by the electromagnetic
compartment. On the other hand, ρfem is a magnetic force.
Its work is withdrawn from the electromagnetic compartment
and received by the mechanical compartment. Hence the minus
sign in (9).

e) continuity : The electromechanical stress tensor is in
general discontinuous across material interfaces. The jump
∆σem · nΣ across a surface Σ is a surface force density. It
is easy to check that it is always perpendicular to Σ, so that it
can be called electromagnetic pressure. The jump operator
is also the divergence in the sense of distributions, as can be
seen by applying (13) domain by domain, and then summing
up the surface contribution on all interfaces.

f) structural mechanics : The electromechanical stress tensor
can be used directly as an applied stress in the structural
equations and boundary conditions of the system. One has

div {σ + σem}+ ρf = 0. (17)

When coupling through the forces, on the other hand, div σ+
{ρfem + ρf} = 0 one has to make sure that the additional
condtion ∆σ · n = ∆σem · n is also fulfilled across all
interfaces.

g) force-free region : The velocity field v is clearly identified
with the tangent vector to the trajectories of material particles
at all points in the material regions of the problem. In non-
materials regions however (e.g. air), v is somewhat undeter-
mined. Applying (13) to a force-free region Z, i.e. a region
where ρfem = 0, yields

−
∫
Z

ρẆem dZ =

∫
∂Z

n · σem · v d∂Z. (18)

This shows that the velocity field v is actually arbitrary
on the interior of Z in the sense that it does not affect



the mechanical power exchanged with that region, which is
completely determined by the value of v on the boundary ∂Z.
In all cases, v must however remain continuous everywhere.

h) rigid region : Let the rigid body motion of a region Y be
described by the velocity field v = v0 + w0 × r. Equation
(13) gives∫

Y

σem : ∇v dY +

∫
Y

ρfem · {v0 + w0 × r} dY

=

∫
∂Y

n · σem · {v0 + w0 × r d∂Y } . (19)

The vectors v0 and w0 being homogeneous over Y , one has
(∇v)ij = εijk(w0)k with εijk is the Levi-Civita symbol.
Identifying the factors of the linearly independent vectors v0

and w0, one defines the resultant electromagnetic force

FY ≡
∫
Y

ρfem dY =

∫
∂Y

n · σem d∂Y (20)

and the resultant electromagnetic torque

TY ≡
∫
Y

{
σ̂em + r× ρfem

}
dY =

∫
∂Y

r× (n · σem) d∂Y

(21)
acting on the rigid region Y . In (21), (σ̂em)k = εijk(σem)ij
is the couple stress, which is zero if σem is symmetric.

Equations (20) and (21) show that the resultant force FY
and the resultant torque TY acting on a rigid region Y can
both be evaluated by means of a surface integral on the
boundary ∂Y . This classical result implies however a surface
integration, which requires a specific implementation in the
context of a finite element discretization. Note that the rigid
region Y need not be identified with a material body. It may be
larger, provided that the extra domain enclosed is force-free.

i) eggshell method : In practice, it is easier to work with
volume integrations which are already implemented in the
finite element programme. In order to get rid of the surface
integration in (20) and (21), one chooses a domain Ω larger
than the rigid region Y , i.e. enclosing as well a part of a force-
free region (generally air). One chooses then a velocity field
that describes a rigid motion of Y , decays smoothly outside
Y and vanishes on ∂Ω, i.e

v = {v0 + w0 × r}γ, (22)

where γ is any smooth function whose value is 1 on Y and 0
on ∂Ω. One defines the eggshell S ≡ Ω− Y associated with
the rigid movement of Y within Ω ; S is a force-free region.
Applying now (18) to S yields successively

−
∫
S

σem : ∇v dS = −
∫
∂Ω−∂Y

n · σem · vd∂S

= −
∫
∂Y

n · σem · {v0 + w0 × r} d∂Y

= FY · v0 + TY ·w0.

On the other hand, subtituting (22) in the l.h.s of the latter
equation yields∫

S

σem : ∇v dS =

∫
S

∇γ · σem · {v0 + w0 × r}dS

+

∫
S

σ̂em ·w0dS.

and, by identification, the resultant force

FY = −
∫
S

∇γ · σem dS, (23)

and the resultant torque

TY = −
∫
S

{r× (∇γ · σem) + σ̂emγ} dS, (24)

now evaluated by means of a volume integral over the eggshell
S, instead of integral over the surface of Y (Compare with (20)
and (21)). The couple stress σ̂em is zero in practice, and will
be disregarded in the following.

The eggshell can be defined explicitly by the user, like in
Fig. 1, and γ is then a user-defined analytic function ; this
is Arkkio’s approach (See j) below). In practice, it is easier
to have the eggshell defined automatically, and to reduce its
support to a minimum. This aspect is discussed in the section
devoted to the implementation of the eggshell method.

j) Arkkio’s method : The torque in 2D electrical rotating
machines models can be calculated by considering the velocity
field

v = γw0 × r =
Ro − r
Ro −Ri

{w0ez} × {rer} (25)

defined in cylindrical coordinates in a cylindrical region S
contained in the airgap. Let Ro and Ri be the outer and inner
radius of S. The function γ is thus 0 on the outer surface and
1 on the inner surface of S, The gradient of the velocity field
is

∇v =

(
∂rv

r 1
r∂θv

r

r∂r(
vθ

r ) ∂θ(
vθ

r )

)
=
−w0r

Ro −Ri
er eθ, (26)

whence by (23), the formula of Arkkio [10] :

TY =
ez

Ro −Ri

∫
S

r(σem)rθ. (27)

k) nodal forces : The virtual displacement of one node Nk of a
mesh leaving all other nodes fixed corresponds to the velocity
field

v = v0γk

with γk the nodal shape function of that node. Substituting
into (13) gives

−
∫

Ω

∇γk : σem dΩ · v0 =

∫
Ω

ρfemγk dΩ · v0 (28)

which allows to define the nodal magnetic force Fk acting
on the node by

Fk ≡
∫

Ω

ρfemγk dΩ = −
∫

Ω

∇γk : σem dΩ. (29)

By comparison with (23), one sees that node forces are
obtained by applying the eggshel approach around every single
node of the FE mesh.

This is Coulomb’s formula (See [13] for linear materials
and [11], [14] for non-linear materials), which is also identical
to the formula proposed in [12]. Equation (29) is however
more general, as it does not assume any particular form of
σem. In each element in the support ωk of the shape function



γk, the appropriate expression of the electromechanical stress
tensor must be used, according to the local material properties.

It is important to note at this stage that the nodal electro-
magnetic forces Fk are physical quantities if Ω ⊃ ωk, i.e. if
the integration domain contains the whole support of the shape
function γk. In this case, the nodal forces are physical forces,
and they can be used directly as a source term in the structural
problem. If the support of Ω 6⊃ ωk, the nodal force is not
physical. Such partial nodal forces will however be used below
for the computation of resultant forces and torques on rgid
bodies. To avoid confusion, they are noted FSk , with S 6⊃ ωk.

IV. IMPLEMENTATION

In this section, a finite element implementation of the
eggshell method is proposed. Having a FE mesh, the virtual
velocity field (22) is the sum

v =
∑
Nk∈Y

γk(v0 + wo × rk).

Substituting in (23) and (24), yields

FY = −
∑
Nk∈Y

∫
S

∇γk · σem dS =
∑
Nk∈Y

FSk (30)

and the resultant torque

TY = −
∑
Nk∈Y

∫
S

rk×(∇γk ·σem) dS =
∑
Nk∈Y

rk×FSk , (31)

where the nodal forces FSk are complete (physical) if S ⊃ ωk.
Only the finite elements of the eggshell S bring a contribu-

tion contribute to the resultant force/torque on Y , which is the
sum of The nodal forces FSk can therefore be evaluated on S
only, with a significant gain in computational time. A natural
choice for an automatically generated eggshell region S is to
take one layer of finite elements around the rigid region, i.e. all
elements outside Y having at least one node on the boundary
∂Y . This alternative method to compute the resultant force on
rigid bodies has been proposed in [8] and [9].

TABLE I
CALCULATION OF THE TORQUE WITH VARIOUS CHOICES OF THE

EVALUATION DOMAIN S AND THE SUMMATION DOMAIN Y .

S (EVAL) #EVAL Y (SUM) Force [N] Err.[%]
1 all 19973 R+M+r 76.78813 0.
2 g 3032 r -76.78813 0.
3 g 3032 s 76.78813 0.
4 r 2952 g 76.812705 0.032
5 r 2952 R -76.812705 0.032
6 s 3085 g -76.8802675 0.120
7 s 3085 S+C 76.1677025 0.808

V. APPLICATION 2D

The flexibility of the eggshell approach relies also on the
fact that there exist several equivalent choices for S (EVAL)
and Y (SUM) that lead in theory to the same result, which
allows comparing accuracies and checking consistency. Fig. 2
shows the cross section of a typical 2D Permanent Magnet

Fig. 2. Cross section of a typical 2D PMSM FE model.

Fig. 3. Nodal magnetic forces computed with S the whole domain occupied
by a PMSM machine.

synchronous Machine (PMSM) FE model. The different re-
gions are the stator core S, the rotor core R, the stator coils C
and the magnets M. The airgap is divided into three concentric
regions, respectively noted s, g and r, from the outermost one
(adjacent to the stator) to the innermost one (adjacent to the
rotor). The annulus-shaped middle region g, represented in red
color, is remeshed at each time step, when using the moving
band method.

Table I shows the average torque computed with various
choices of the evaluation domain S (EVAL) and the sum-
mation domain Y (SUM). Line 1 corresponds to the case
where the nodal forces have been evaluated at all nodes of
the mesh, (S is the whole domain occupied by the machine)
and the summation has been done on all rotor nodes (Y is
the domain occupied by the rotor as well the airgap region r
adjacent to it). The nodal forces are thus physical, and one
can see in Fig. 3 that they are, as expected, significant at
material discontinuities. There are no forces on the nodes in
the air gap. This means that a large number of negligible nodal
forces have been uselessly computed in this case. Since nodal
forces are net forces (in Newton), and not force densities,
larger vectors at the bottom side of the magnets are due to
the coarser discretization. This does not necessarily mean that
the force density is larger in that region.

Line 2 and Line 3 correspond to the case where nodal forces
have been evaluated over the middle airgap region g, i.e. for
3032 nodes instead of 19973 for Line 1. Fig. 4 shows the



Fig. 4. Nodal forces FS
k obtained with S ≡ g a thin annulus-shaped layer

of finite elements in the middle of the airgap.

corresponding nodal forces Fgk. The computed nodal forces act
in opposing direction over the inner and the outer boundaries
of the region g. Thay are not physical, they act at nodes
located in air ! Only makes sense their algebraic sum to build a
resultant force, or the algebraic sum of their respective torque
rk × Fk to build the resultant torque. At Line 2 of the table,
the sum is done on the nodes of the region r, i.e. on the nodes
of the inner boundary of g, whereas at Line 3 the sum is done
on the nodes of s, i.e. on the nodes of the outer boundary of
g.

Fig. 5. Convergence analysis of the average torque and the cogging torque.

In the 3 cases so far, the computed torques are identical up
to machine precision. Calculation with the surface integration
of the Maxwell stress tensor (SIMST [15]) on a surface
cylindrical surface in the middle of g, and with Arkkio’s
method also in the region g give the same value for the

computed torque within a precision of 10−3%. The eggshell
method is thus able to reproduce the results of those standard
methods, with more efficiency than the SIMST (one does not
need to slice the mesh) and more generality that Arkkio’s
method (which is limited to annular regions). The equivalence
of the methods applied in the middle of the air gap is confirmed
by the convergence analysis of the average torque and the
cogging torque in Fig. 5.

The next 4 lines in Table I correspond to other choices of
S and Y that should in theory equivalently deliver the same
value of the torque. At Line 4 and Line 5, the nodal forces
are evaluated in the region r adjacent to the highly saturated
bridges over permanent magnets, which yields a decrease of
the accuracy. At Line 6 and Line 7, nodal forces are evaluated
in regions s with material singularities, with a larger reduction
of the accuracy. One sees that the optimal position for an
accurate evaluation of the torque is indeed in the middle of
the air gap.

Fig. 6. qq

The eggshell method can be used also to extract additional
information about the structure of the force field. Machine
designers are interested in the calculation of the efforts on
stator teeth for instance. Often, the Maxwell stress tensor
(of empty space), or even the magnetic pressure (b2/(2µ0))
are taken as approximation of the electromagnetic forces,
disregarding thus the contribution of the electromechanical
stress tensor of the steel. Fig. 6 shows the nodal forces FSk with
S a stator tooth compared to the nodal forces Fr+g+sk which
represent respectively the internal and the external contribution
to the true nodal forces acting on the surface of the tooth. One



can indeed check that the internal contribution is smaller than
the external one. It is however far from being negligible in
saturated regions.

VI. APPLICATION 3D

Fig. 7. Geometry of a 30◦ sector of a clawpole generator, and different
views of the nodal forces at the claw surface.

The eggshell method can be applied for the computation of
electromagnetic forces and torques in 3D problems as well.
Fig. 7 shows the geometry of a 30◦ sector of a clawpole
generator, and different views of the nodal forces at the claw
surface.
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Fig. 8. A comparison between the surface integration of the Maxwell stress
tensor, with sectioning of the airgap tetrahedrons, and the eggshell method.

Fig. 8 shows the comparison between the surface integration
of the Maxwell stress tensor, with sectioning of the airgap

tetrahedrons, and the eggshell method. For no slicing of the
3D tetrahedral mesh is required, the computation time of the
eggshell method is much smaller.

VII. CONCLUSION

This eggshell method allows computing both local and re-
sultant electromagnetic forces and torques by applying differ-
ent kinds of infinitesimal virtual test velocity fields. Although
the eggshell method can be shown to be equivalent with
the Maxwell stress tensor method and with the virtual work
principle, it has however a number of practical and conceptual
advantages. Contrary to Coulomb’s approach, the eggshell
method is established at the continuous level, i.e. the theory
does not rely on a FE mesh and on discretized fields.

The continuous medium theory behind the eggshell method
shows how an electromechanical stress tensor can be uniquely
associated with each material, and how this tensor completely
represents the electromechanical coupling in that material. The
electromechanical stress tensor of empty space is the well-
known Maxwell stress tensor. The electromechanical stress
tensor of other materials (nonlinear, anisotropic, . . . ) might
however be quite more involved.
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