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Overview

2-forms and flux tubes in space S
3-forms and spacetime tubes in spacetime S× T
solenoidal quantities vs conserved quantities
intrinsic speed of conserved quantities in S× T
application to a plane wave
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Equivalence 2-form /vector field in S

3D space S
volume form : ω = dx ∧ dy ∧ dz
equivalence between a 2-form b (2=3-1) and a vector field v

ivω = b ⇒ ivb = 0

the congruency associated with v is a set of curves in S
notion of flux line
Take the vector v at any point P, take any other vector at that point, they
form a facet not crossed by any flux.
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Flux lines
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Flux lines

Problem inherent to the “vector” representation of 2-forms
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Flux tube

ΣA

ΣB

v

Ω

A Flux tube
generated by Lie dragging (with v(b)) the boundary ∂Σ of any surface Σ.
has a tangent space that always contain v such that ivb = 0.
is never crossed by any flux, irrespective of b being solenoidal or not.
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Solenoidality

ΣA

ΣB

v

Ω

b solenoidal ≡ b closed : db = 0
b non solenoidal : db = ρ

Stokes :
∫
Ω

db =
∫
∂Ω

b
∂Ω = ΣA − ΣB + FT
φA − φB =

∫
Ω
ρ (*)

if ρ = 0, φA = φB

Solenoidality implies one has the same flux when sectioning the flux tube
at different position, φA = φB.
For non-solenoidal fields, the flux may be different, but exclusively by the
effect of the sources ρ in Ω (*) . . .
. . . and not because of some flux crossing the flux tube.
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Equivalence 3-form /vector field in S× T

(3+1)D spacetime, S× T (product space)
volume form : ω = dx ∧ dy ∧ dz ∧ dt
equivalence between a 3-form E (3=4-1) and a vector field V

iVω = E ⇒ iVE = 0

the congruency associated with V is now a set of spacetime trajectories
notion of worldline
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Space vs time splitting / Conservation equation

Before generalizing the notion of flux tube, a word about the spacetime
structure of 3-forms.
Any 3-form E in S× T can be written

E = ρ− S ∧ dt

in terms of a 3-form ρ and a 2-form S, both defined on S.
Conservation equation : if E is closed,

dE = 0 ⇔ ∂tρ+ duS = 0

Conserved quantity in S× T↔ solenoidal quantity in S
Neither ρ nor S is a conserved quantity on its own.
Only the compound spacetime 3-form E is a conserved quantity.
E.g. system with only positive charges :
ρ is the charge density and S is the associated current density.
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Spacetime tubes

BA

BB

V

Ω

S

T

A spacetime tube (same picture to highlight analogy)
is generated by Lie dragging (with now V(E)) the boundary ∂B of any
box B ⊂ S.
has a tangent space that always contain V(E).
is never crossed by E irrespective of E being conservative or not.

Nota : In spacetime, the integration of the 3-form E over a 3-dimensional submanifold
has the meaning of a flux crossing the submanifold.
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Spacetime tubes (contd)

BA

BB

V

Ω

S

T

E conserved : dE = 0
E not conserved : dE = Q̇
Stokes :

∫
Ω

dE =
∫
∂Ω

E
∂Ω = BA − BB + ST
ΨA ≡

∫
BA

E , ΨB ≡
∫

BB
E

ΨA −ΨB =
∫
Ω

Q̇

if Q̇ = 0, ΨA = ΨB

Each spacelike section of the spacetime tube, at time t , is the boundary
of a box B ⊂ S : BA and BB at tA and tB resp.
If dE = 0, the boxes BA and BB contain the same amount of the
conserved quantity, ΨA = ΨB (same charges, same photons).
If dE = Q̇, the enclosed quantities ΨA and ΨB may be different, but
exclusively by the effect of the sources Q̇ in Ω.
. . . and not because of some leakage of E through the spacetime tube.
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Spacetime tubes contain velocity information

. . . but remember the vector field V is not an external flow.
It is just another way of looking at E .
A closed 3-form in spacetime contains information about the motion (and
hence the velocity) of boxes that enclosed fixed amounts of the
conserved quantity E .
If

E = ρ− S ∧ dt ,

this (space) velocity v is the one given by

ivρ = S.
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Examples

S = ρv

ρ S
charge density current density
mass density momentum density
electromagnetic energy density Poynting vector

BUT one has
to consider S and ρ as fundamental quantities, and v as a derived
quantity,
to refrain considering S and ρ as independent fields.
In particular, electromagnetic energy density and the Poynting vector
are the two components of one single conserved quantity :

E = ρ− S ∧ dt
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Application to a plane wave in empty space

Let M = S× T, with coordinates {u, v ,w , τ}, and the plane wave

e = E0 cos(kw − ωτ) du

Calculating

a = −
∫

e dτ → b = curl a→ h = ∗µ−1
0 b → d = −

∫
curl h dτ → e = ∗ε−1

0 d

one obtains by identification

ε0µ0
ω2

k2 = 1

and one defines the phase velocity of the wave

c =
ω

k
=

1
√
ε0µ0

.
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Plane wave in M

One calculates also the energy density :

ρ = ε0E2
0 cos2(kw − ωτ) du ∧ dv ∧ dw

and the Poynting vector :

S ≡ e ∧ h = cε0E2
0 cos2(kw − ωτ) du ∧ dv

showing that
S = ivρ

with
v = c∂w

the wave’s velocity.
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Galilean transformation : p : M 7→ N

p : M 7→ N,p{u, v ,w , τ} = {x , y , z + Wt , t}

p−∗ du = dx
p−∗ dv = dy
p−∗ dw = dz −W dt
p−∗ dτ = dt

M

Np

p−∗e = E0 cos(k(z + Wt)− ωt) dx = E0 cos(kz − (ω − kW )t) dx

according to which the new phase velocity of the wave is

ω − kW
k

= c −W .
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Galilean transformation : p : M 7→ N
Transformed energy density :

p−∗ρM =ε0E2
0 cos2(kz − (ω − kW )t) dx ∧ dy ∧ ( dz −W dt)

=ε0E2
0 cos2(kz − (ω − kW )t) dx ∧ dy ∧ dz

−
[
Wε0E2

0 cos2(kz − (ω − kW )t) dx ∧ dy
]
∧ dt

Transformed Poynting vector :

p−∗SM = (c −W )ε0E2
0 cos2(kz − (ω − kW )t) dx ∧ dy

The transformed energy density contains Poynting vector part
. . . that cancels the second term in p−∗SM .

One has thus : p−∗(ρM − SM ∧ dτ) = ρN − SN ∧ dt

ρN =ε0E2
0 cos2(kz − (ω − kW )t) dx ∧ dy ∧ dz

SN =cε0E2
0 cos2(kz − (ω − kW )t) dx ∧ dy
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Invariance of velocity

One has finally

ρN =ε0E2
0 cos2(kz − (ω − kW )t) dx ∧ dy ∧ dz

SN =cε0E2
0 cos2(kz − (ω − kW )t) dx ∧ dy

so that
SN = ivNρN

with
vN = c∂z

exactly like one had
SM = ivMρM

with
vN = c∂w
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Conclusion
Energy density, as any complete 3-form in spacetime, contains
information about the velocity at which energy propagates.
This velocity is invariant, contrary to the phase velocity, which is not.
A diffeomorphism invariant formulation of electromagnetism (used in
the derivation above) follows from the definition of two operators :

Lp = p−∗∂τp∗ , dp = p−∗ duI ∧ ∂uI p∗

that are the mapping of the partial time derivative ∂τ and of the space
exterior derivative duI ∧ ∂uI .
It is formulation in the spirit of Hertz.
It contains the Lorentz invariant formulation as a particular case.
In particular, Lp is a kind of Lie derivative.
It allows working with non-inertial frames in electromagnetism, which
makes electromechanical coupling (nearly) trivial, by factorizing grad v.
Applications : Maxwell stress tensor, electromagnetic forces, upwind
operator, . . .
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Air gap power, Poynting vector
Assuming an absolute time

Lp = ∂t + LW

∫
Ω

LW ρ−
∫
∂Ω

Sconv =∫
Ω

LW
b · h

2
−
∫
∂Ω

h× LW a =∫
Ω

div (
b · h

2
W)−

∫
∂Ω

h× (grad (a ·W)−W× b) =∫
∂Ω

{b · h
2

W− b · h W + b h ·W} =∫
∂Ω

(
b h− b · h

2
I
)

: W

In empty space, the Lie derivative of the magnetic energy and the
convective part of the Poynting vector form together the mechanical
work delivered to solid objects by the Maxwell stress tensor.
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Co-moving time (or convective) derivative Dt

Interpretation

p−∗
t ∂tp∗

t = Dt , ∂t

∫
Ω

α =

∫
Ω

Dtα

Lie derivative
Dta = ∂ta + Lv a

Cartan’s magic formula
Lv a = diva + iv da

Expression for differential forms of degree 0-3 :

Lv f = v · (grad f )

Lv a = grad (a · v)− v× curl a
Lv b = curl (b× v) + v div b
Lv ρ = div (ρv)
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