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A Variational Formulation for Nonconforming Sliding Interfaces
in Finite Element Analysis of Electric Machines

Enno Lange, François Henrotte, and Kay Hameyer

Institute of Electrical Machines-RWTH Aachen University, D-52056 Aachen, Germany

This paper proposes the application of the Lagrange multiplier method to implement the relative motion of stator and rotor in the
finite element (FE) simulations of electric machines. The nonconformity at the interface between stator and rotor regions imposes no
restriction on time or space discretization. This freedom is highly valuable for domain decomposition. Through the choice of particular
dual shape functions for the Lagrange multiplier, the symmetry, sparsity and positive definiteness of the linear system can be preserved.
The method is applied to the 2-D simulation of a permanent magnet excited synchronous machine, and the results are compared with a
conforming moving band approach with re-meshing of the air gap.

Index Terms—Bi-orthogonal shape functions, electric machines, finite element methods, sliding interfaces.

I. INTRODUCTION

S EVERAL approaches to simulate the movement within a fi-
niteelementanalysis(FEA)ofelectricalmachineshavebeen

developed. Static and transient analysis of the machines require
a flexible variation of the rotor position. An obvious and early
adopted approach is the moving band (MB) technique [4] whose
principle is to re-generate at each time step a single layer of con-
forming finite elements in a thin annulus-shaped region of the air
gap. However, in practice, air gap re-meshing can be done auto-
matically for 2-D rotating machines only. For linear motion in
2-D and motion in 3-D models, air gap re-meshing would imply
invoking a full-fledged automatic mesh generator at each time
step, which is impractical. The mortar element method (MEM)
was proposed in [8] and applied to a 2-D machine problem in
[1]. The Lagrange multiplier (LM) method has been extensively
investigated in [2]. Both MEM and LM can be extended to 3-D
problems, but the MEM requires an additional integration mesh
[9], and for the LM the conditioning worsens significantly [6].

The nonconforming approach presented in this paper is based
on the LM method, but instead of using the standard nodal basis
functions for the discrete Lagrange multiplier, the basis func-
tions fulfill the bi-orthogonality relation proposed in [11]. This
makes it possible to eliminate the Lagrange multiplier by a dis-
crete projection operator, and the resulting linear system is sym-
metric positive definite.

II. VARIATIONAL FORMULATION

Let and be the master and the slave domain respec-
tively, e.g., the stator and rotor of an electric machine. The
choice of the domains is arbitrary but fixed. Let
and be the sliding interface between the master and
the slave domain and be a smooth mapping that
may account for a relative motion between the stator and the
rotor, i.e., the master and the slave domain.

Assuming for simplicity reasons homogeneous Dirichlet
boundary conditions on (Neumann
boundary conditions would be treated in the classical way), the
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energy balance of the system reads [7]

(1)

where represents the magnetic energy of the domain
, which is a function of the flux density

with the magnetic vector potential. The second term is the
magnetic work delivered by the current density . The third
term, with the Lagrange multiplier , is a penalty term ensuring
the continuity of the magnetic vector potential across the sliding
interface .

Applying the variation operator, one obtains the weak formu-
lation, i.e., the equation

(2)

which must be verified for arbitrary variations and ful-
filling the boundary conditions.

A. Euler–Lagrange Equations

Before discretizing (2) as described in Section II-B, a closer
look on the continuity of the fields and the physical meaning
of the Lagrange multiplier provides a deeper insight into the
formulation. For the sake of clarity, the sliding interface is as-
sumed not to intersect with a Dirichlet or any other boundary
condition, e.g., (anti-)symmetries, and is assumed being a
simply connected region. Applying Stoke’s theorem

(3)
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leads to

(4)

The variables , and , being linearly independent, their
variations are arbitrary. The Euler–Lagrange equations of the
variational formulation are

in with (5)

on (6)

on (7)

on (8)

Ampere’s law is given by (5). The continuity of the fields
and is ensured by (6)–(8), whereas the physical interpreta-
tion of the Lagrange multiplier is given by (6) and (7), where
the tangential component of the magnetic field on the sliding
interface equals the Lagrange multiplier with re-
spect to the in- and outward direction of the normal vector .

B. Discretization

Following the usual discretization approach, the magnetic
vector potentials for the master and slave domain, and the
Lagrange multiplier are approximated by

(9)

(10)

The field is discretized with nodal shape functions in 2-D and
edge shape functions in 3-D. For is defined on only, the su-
perscript is omitted. In both cases, the functional spaces of the
variations and are spanned by the shape functions of all
nodes, or edges, not subject to a Dirichlet boundary condition.
The choice of the shape functions of the Lagrange multiplier
is discussed in Section III.

In order to establish the FE equations in matrix form, the vec-
tors of the unknown fields are divided into two blocks each.
The first block contains the unknowns lying on the sliding
interface . The second block contains the unknowns lying
in the interior of the domain . The vectors of unknowns then
become

(11)

Equation (2) yields then the saddle-point problem

(12)
with the FE matrices

(13)

(14)

(15)

(16)

i.e., the stiffness matrix with the magnetic reluctivity , the
right hand-side , and the coupling matrices and arising
from the discrete Lagrange multiplier.

In order to obtain a symmetric positive definite system, the
degrees of freedom associated to the slave side of the
sliding interface are eliminated thanks to the last block-line of
the saddle-point system (12) and expressed by a linear combi-
nation of

(17)

(18)

Now

(19)

can be identified as a discrete projection operator. From the third
line of (12) the Lagrange multiplier can be extracted

(20)

Inserting (18) and (20) in (12) one yields the reduced equation
system with the projection operator (19)

(21)
The equation system (21) is symmetric positive definite and
may be treated by standard Krylov subspace methods. However,
to obtain (21) one is required to calculate , which can be
seen in (19). As (15) shows, the structure of depends on the
choice of the shape functions of the Lagrange multiplier , and
thus, either must be calculated explicitly in a step prior to
solving (21) or an appropriate choice of the function space of

in (10) allows for an implicit inversion during the assembly
of (19). Note that up to this point no restrictions regarding the
dimension of the domains have been made.
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Fig. 1. Standard nodal shape function, discontinuous and continuous bi-orthog-
onal dual shape function for a 1-D interface in �.

III. BI-ORTHOGONAL SHAPE FUNCTIONS

From the practical point of view, the inversion of must
be carried out each time the mapping changes. Thus, unless
the number of degrees of freedom associated with is con-
siderably smaller than the total number of DoFs, or unless
is a diagonal matrix, this inversion is rather expensive in terms
of computation time. Since the number of degrees of freedom
on is problem-dependent, one could advantageously seek a
way to diagonalize . The diagonalization can be achieved be
choosing the basis functions for in a dual function space, as
proposed in [3], [11] and successfully applied in [5], so that the
bi-orthogonality relation

with
if
if

(22)
is fulfilled. Thanks to (22), the inversion of is trivial and the
discrete projection operator can be applied implicitly during
the standard element-wise assembly of (21).

For a 1-D interface , two possible choices of dual basis func-
tions are depicted in Fig. 1. The discontinuous shape function
(first polynomial order) might result in a loss of accuracy if the
numerical integration is not adapted to the discontinuities. Since
the discretizations of the master and the slave meshes are in-
dependent, the discontinuities of the Lagrange multiplier shape
functions are not taken into account by numerical integration
on the master side. Therefore, [12] proposes continuous La-
grange multiplier basis functions as shown in Fig. 1. The con-
tinuous shape functions are of third polynomial order. Their nu-
merical integration, compared to the discontinuous shape func-
tions of first order, require a slightly higher computational effort.
Anyhow, numerical experiments have not revealed any disad-
vantages in using the discontinuous basis functions.

IV. IMPLEMENTATION ASPECTS

The described approach has been implemented within the
FEM-package MOOSE [10]. In rotational motion problems,
discretization inevitably polygonizes the interfaces and ,
Fig. 2.

The simple rotation mapping

(23)

Fig. 2. Simplified intersection of master � and slave � domain and inte-
gration points �� on � and �� �� � ��� � on � .

is, therefore, in general, not a mapping as it should be,
i.e., the image of the integration Gauss point is
not found on . A straightforward solution is to define
as the orthogonal projection of on . This mini-
mizes the distance between and . The required
mapping is thus the composition of this pro-
jection with . The shape function can then be evaluated at

. Since the integrand in (16) is no longer
-continuity, it is advisable to use more integration points than

for -continuity.

V. APPLICATION

As an application example, the 2-D quasi-static field problem
of a permanent magnet excited synchronous machine has been
examined. The sliding interface is located on an annulus-shaped
cylinder around the rotation axis in the air gap. Equal mesh sizes
on the sliding interface between stator and rotor domain as
well as different mesh sizes have been analyzed, as shown in
Fig. 3, where the size of the elements on is about one fourth
of the size of the elements on . One can clearly see that both
the normal and the tangential component of the induction field
are continuous across , as expected in the case of an identical
reluctivity on both sides of the interface. Indeed, the vector
potential is continuous, i.e., the field lines match (continuity of

), and the tangents of the field lines also match at the interface
(continuity of ).

A closer look at the tangential component of the magnetic
field is depicted in Fig. 4. Herein, the absolute value of the
tangential component on the moving band interface of a
conformal discretization is compared to the tangential compo-
nent and on and . A good agreement between
the conformal and the presented nonconforming approach is ob-
served.

VI. CONCLUSION

In this work, a Lagrange multiplier is applied to ensure the
continuity of the magnetic vector potential and the tangential
component of the magnetic field on a nonconforming interface
between two separated domains. The degrees of freedom on the
slave side of the interface are replaced by a motion-dependent
linear combination of degrees of freedom of the master side.
Then, by choice of the function space of the discrete Lagrange
multiplier dual to the discrete function space of the field ful-
filling the bi-orthogonality relation, the Lagrange multiplier is



2758 IEEE TRANSACTIONS ON MAGNETICS, VOL. 46, NO. 8, AUGUST 2010

Fig. 3. Simulation results of a PMSM: Coarse mesh size on � and a finer mesh size on � and the calculated magnetic vector potential with flux lines.

Fig. 4. Tangential component �� � of the magnetic field of a conforming and the presented nonconforming approach versus the circumferential angle �.

eliminated, and the resulting equation system becomes sym-
metric positive definite. The presented approach has been suc-
cessfully applied to a PMSM and the results are compared to a
conformal discretization approach.

It should be noted that the mapping function may account for
translational as well as rotational motions easing the burden of
implementing different problem solvers for each type of motion.
Furthermore, this work is a promising step towards a consistent
3-D formulation allowing for an easy to use implementation,
avoiding, e.g., a time consuming re-meshing processes or the
tedious handling of a lock-step method. The research now fo-
cuses on defining the dual function space of discrete Lagrange
multiplier for 3-D tetrahedral edge elements.
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