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Abstract

Purpose – The purpose of this paper is to develop and systemize the 3D finite element (FE)
description of electromagnetic field in electrical machines.

Design/methodology/approach – 3D FE models of electrical machines are considered. The model
consists of FE equations for the magnetic field, equations describing eddy currents and equations,
which describe the currents in the machine windings. The FE equations are further coupled by the
electromagnetic torque to the differential equation of motion. In the presented field-circuit model, the
flux linkages with the windings are expressed by two components. Attention is paid to the description
of machine winding. Both scalar and vector potential formulations are analysed. The FE equations are
derived by using the notation of circuit theory. The methods of movement simulation and torque
calculation in FE models are discussed.

Findings – Proposed circuit description of electromagnetic field in electrical machines conforms to
the applied method of electric and magnetic circuit analysis. The advantage of the presented
description is that the equations of field model can be easy associated with the other equations of the
electric drive system.

Originality/value – The applied analogies between the FE formulation and the equivalent magnetic
and electric network models help formulate efficient field models of electrical machines. The developed
models after coupling to the models of supply and control system can be successfully used in the
analysis and design electric drives.
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Paper type Research paper

I. Introduction
In the paper, we systemize the applied models of electrical machines and actuators.
We consider machine models describing the electromagnetic phenomena and
characteristics for steady state and transients operation.

The models, described by the systems of ordinary differential equations with
inductances, will be considered as the circuit models. In the field models winding
inductances do not exist. Flux linkages and electromagnetic torques and forces are
calculated using field quantities. The field equations are coupled to the equations
describing the winding connections and contain terms defined by field quantities and
lumped parameters (Arkkio, 1988; Demenko, 1994; Piriou and Razek, 1993; Tsukerman
et al., 1993) The models of this type can be considered as field-circuit couplings
(De Gersem et al., 1998, 2000; Lahaye et al., 2002; Sadowski et al., 1993; Strangas, 1985).

In the paper, particular attention is paid to field and field-circuit coupled models of
typical electrical machines and actuators.
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II. Finite element (FE) equations of magnetic field
Two most popular FE formulations are discussed:

(1) a formulation using scalar potential V and nodal elements; and

(2) a formulation using vector potential and edge elements.

In formulation (1), polynomial interpolating functions V(x,y,z) are constructed on the
nodal values of V, i.e. on the nodal potential. Formulation (2) applies edge value of A.
For an oriented edge P1P2, the edge value of A is equal to the line integral of A on P1P2

(Demenko and Sykulski, 2006). The edge value of A for edge P1P2 can be considered as
a loop flux in the loop around P1P2.

The papers (Demenko and Sykulski, 2002; Demenko and Sykulski, 2006) report that
FE equations represent nodal and loop equations of two types of networks: “edge
networks” (EN) where branches are associated with the edges of the elements, and
“facet networks” (FN) with branches connecting the centres of the relevant facets with
the centre of the element volume. The FE model composed of eight-node hexahedrons
is used to illustrate these networks (Figures 1 and 2). The structural matrices of the
networks are the FE representations of differential operators. For example, the
transposed nodal incidence matrix kn of EN represent the “grad” operator and
the transposed loop matrix ke for FN is the network representation of the
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“curl” operator. The nodal equations for EN are equivalent to the nodal FE formulation
using scalar potential V, whereas loop equations for FN refer to the edge element
formulation based on vector potentials A.

Table I summarises the equations for both models and shows:
. equations that describe branch fluxes fb in EN and node-to-node magnetic

“voltages” uVf for FN; and
. FE equations using the notation of equivalent networks.

In the presented equations, the branch mmfs are establish from loop currents
(ampere-turns) in the loops around branches. However, when using the FN, it is not
necessary to know the branch sources, instead, the loop sources are required. The loop
mmfs are represented by the currents passing through the loops of FN. For the scalar
potential formulation, we define the loop currents to determine the right-hand side

Network Branch equation Substitutions FE equations

Edge fb ¼ LðuV þQbeÞ uV ¼ knV kT
n LkT

n V ¼ 2kT
n LQbe

a

Facet uVf ¼ Rmff 2Qbf ff ¼ k efe kT
e Rmk efe ¼ kT

e Qbf
b

Notes: V is the vector of nodal potentials, L is the matrix of branch permeances, Qbe, Qbf are the
vectors of branch mmfs, fe is the vector of loop fluxes; Rm is the matrix of branch reluctances, anodal
equations of the EN, bloop equations of the FN

Table I.
Equations of equivalent
magnetic networks
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(RHS) vector of the FE equations. For the vector potential approach, the RHS vector can
be calculated by using the currents passing through the loops.

For low-frequency problems, we consider two categories of currents: conducting
currents and magnetizing currents in regions with permanent magnets. Magnetizing
currents are assumed to be known.

III. FE equations of eddy currents
Eddy currents may be described by using the electric scalar potential V or the electric
vector potential T. The FE equations for the scalar potential formulation and nodal
elements represent the nodal equations of the edge electric network. The FE equations
for the vector potential T and the edge elements are equivalent to the loop equations of
the facet electric network with loops around the element edges. The edges value of T
represents the loop currents determining the eddy currents.

The equations for electric network are shown in Table II. The branch equations
express the branch currents ib in EN and the node to node potentials uVf in FN. In the
electric equivalent networks, inter-branch coupling exists.

When formulating equations presented in Table II, the branch emfs are expressed
by time derivatives of the magnetic fluxes in the loops around the network branches.
Therefore, the branch emfs in the EN are calculated using the loop fluxes in the facet
magnetic network. In the case of the FN analysed using the loop approach, it is not
necessary to establish the branch emfs ebf. The RHS vector emf in the loop equations is
represented by the loop emfs, emf ¼ kT

e e bf . The loop emfs in FN are expressed by the
time derivatives of fluxes passing through the loops, i.e. the fluxes associated with the
branch of the EN.

The disadvantage of the formulation using vector potential T is that the method is
only valid for simply connected conductors. However, the electrical machine windings
must be considered as multiple connected regions. The FE equations for the classical T
formulation refer to loops around the element edges (Figure 3). The loops around the
“holes” do not exist. It is therefore necessary to modify the classical T approach and to
introduce additional equations describing the loop currents flowing around the “holes”
(Demenko et al., 2008). These currents are circuit representation of the edge values of
T0 introduced in (Bouissou and Piriou, 1994; Bui et al., 2006).

IV. Equations of winding currents
In the presented approach, the winding currents represent loop currents (Figures 3
and 4). The winding terminals are considered to be out of the region. It is assumed that
the terminal voltages are given and the loop emfs e produced by external sources are
known.

Network Branch equation Substitutions FE equations

Edge i b ¼ GðuV þ e beÞ uV ¼ knV kT
n GknV ¼ 2kT

n Ge be
a

Facet uVf ¼ Ri f 2 e bf i f ¼ k ei e kT
e Rk ei e ¼ kT

e e bf
b

Notes: V is the vector of nodal potentials, G is the matrix of branch conductances, ebe, ebf are the
vectors of branch emfs, i.e. is the vectors of loop currents; R is the matrix of branch resistances; anodal
equations of the EN; bloop equations of the FN

Table II.
Equations of equivalent

electric networks
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There are two methods for describing winding in the FE space. One method is based on
the definition of intersection points between the winding loops and the FE facets
(Demenko, 2002). The other more general approach relies on the calculation of
intersection points between the FE edges and the surfaces of the winding loops. This
method describes the winding in the edge element space (Demenko, 2002).

In Demenko (2002), the winding loops Li are represented by a set of closed-oriented
plane curves Li, j of parametric equations r¼ ri, j (t ) and by planar-oriented surfaces
S i; j of parametric equations r 5 ri, j(u,v) (Figure 5).

The number of intersection points between the edge Kp,q (going from Pp to Pq) and
surfaces Si,j of Li represents the entry of Ne, i.e. the matrix that describes windings in
the edge element space. The matrix entry NeKp,q,i is the difference between the numbers

Figure 3.
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of intersection point of positive scalar product Si,j Kp,q and numbers intersection point
of negative scalar product (Demenko, 2002). Therefore, in Figure 6, NeK4,5,I ¼ 0.

The ampere-turns around the edges represent the branch mmfs in magnetic EN.
Thus, the vector Qbe can be defined as follows:

Qbe ¼ N ei c: ð1Þ

The vector Qbe can be transformed into the ampere-turns Qbf in the loops around the
branches of FN (Demenko and Sykulski, 2006). Figure 7 shows this transformation.
The transformation matrix K consists of weighted average factors. The product of
matrix K and vector Qbe gives the vector Qbf and the branch mmfs in FN:

Qbf ¼¼ KQbe ¼ KQbe: ð2Þ

In the formulations using potential A, the loop sources should be determined (Table I).
The loop mmfs Qmf are obtained by multiplication of the loop matrix kT

e and the
vector Qbf:

Figure 5.
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Qmf ¼ kT
e Qbf ¼ kT

e KN ei c: ð3Þ

The loop mmfs Qmf may be calculated from the currents (ampere-turns) Qme crossing
the element faces, i.e. crossing the loops of the EN and representing the facet values of
the current density. Matrix ke transposes the currents in the loops around the edges
into the currents in the branch of FN, i.e. into the currents Qme. Using equation (1), we
find that the vector Qme is:

Qme ¼ k eQbe ¼ k eN ei c: ð4Þ

The matrix product k eN e is equal to the matrix Nf that describes winding loops in the
facet element space:

N f ¼ k eN e ð5Þ

The transposition matrix Nf can be determined by the calculation of intersection
points between the loops Li,j and element facets Fq. Figure 8 shows the assemblage of
matrix Nf. The winding loop Li intersects two times facet Fq. The scalar products of Fq

and edges of Li,j, Li,k are negative. Therefore, the entry Nfq,i is equal to 22.
When matrix Nf and currents ic are given, it is easy to calculate the vector Qm.

Then, using matrix K, the loop mmfs Qmf in the FN can be found (Demenko and
Sykulski, 2006).

For a given matrix Nf, the vector Qmf may be expressed as follows:

Qmf ¼ K T ume ¼ K TN f i c: ð6Þ

The presented descriptions of a winding can be used for the calculation of flux linkages
with the loops Li. For the EN of the branch fluxes fb the vector C of flux linkages is:

C ¼ N T
e fb: ð7aÞ

The description of winding loops in the edge element space is not unique. Matrix Ne is
not unique either. The set of surfaces Si,j with the total boundary Li is not unique.
However, the results of the calculation of C are independent of the choice of Si,j.

Figure 7.
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In the case of the magnetic vector potential and the facet magnetic network, two
formulas can be applied:

C ¼ N T
e K

Tk efe; ð7bÞ

C ¼ N T
f Kfe: ð7cÞ

A comparison of equation ((7b)-(7c)) with equation (5) yields the identity
K Tk e ¼ KkT

e .
The presented descriptions of the branch and loop mmfs and flux linkages are

summarized in Table III.
The winding equations can be described in the following unified form:

Rmi c þ pC ¼ e; ð8Þ

where Rm is the matrix of loop resistances, p ¼ d/dt and e is the vector of external
emfs (Figure 4). In the equations for the system in Figure 3, the vector e is equal to the
voltages produces by the eddy currents;, i.e. e ¼ 2N T

e k
T
e Rk ei e.

V. Equations of coupled magneto-electric model
In order to form the complete field model of the machine, the link between the magnetic
field and the eddy currents must be considered. It has been shown (Demenko and
Sykulski, 2006) that branch sources in the FN are established from loop quantities in

Network Branch mmfs Loop mmfs Flux linkages

Edge Qbe ¼ N ei c Qme ¼ N f i c C ¼ N T
e fb

Facet Qbf ¼ KN ei c Qmf ¼ K TN f i c C ¼ N T
f Kfe

Notes: The matrix Ne describes windings in the edge element space, the matrix Nf describes windings
in the edge element space ic is the vector of currents in winding loops K Tk e ¼ KkT

e , N f ¼ k eN e

Table III.
Descriptions of mmfs and

flux linkages electric
networks

Figure 8.
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the EN, and – by symmetry – branch sources in the EN are found from loop quantities
in the FN. The branch mmfs Qbe in the EN correspond to loop currents. Branch emfs
ebe in the EN are found as time derivatives of loop fluxes fe in the FN. Using the
symbols in Tables I and II, the branch sources of EN can be written as:

Qbe ¼ i e; e be ¼ 2
dfe

dt
: ð9Þ

The loop mmf is equivalent to the current passing through the loop of the magnetic
network, thus the loop mmfs Qmf in the FN correspond to the branch currents ib in the
EN (Table II). In the FN models of the eddy current regions, the loop emfs may be
found by taking time derivatives of the branch fluxes in the magnetic network passing
through the loops of the electric network. The loop sources in FN can be expressed by:

Qmf ¼ i b ¼ GðknV 2 pfeÞ; ð10aÞ

emf ¼ 2pfb ¼ 2pðLðknVþQbeÞÞ: ð10bÞ

The field sources in the FN can be also calculated using the relations presented in
section IV. The winding loops should be considered as eddy current loops:

Qmf ¼ kT
e Ki e; emf ¼ 2pK Tk efe: ð11Þ

Based on the above-presented equations, the field model of the electrical machine is
constructed.

The FE equations for V–T–T0 formulation are represented by nodal equations of
the edge magnetic network coupled with the loop equations that describe eddy currents
in the electric FN and currents in winding loops. These equations can be written in the
following matrix form:

kT
n Lkn kT

n L kT
n LN e

pLkn R e þ pL ðR e þ pLÞN e

pN T
e Lkn N T

e ðpLþR eÞ Rm þ N T
e pLN e

2
6664

3
7775

V

i e

i c

2
664

3
775 ¼

kT
n Lub

0

e

2
664

3
775: ð12Þ

Here, Re is the matrix of loop resistances for loops with eddy currents, R e ¼ kT
e Rk e,

and ub is the vector of additional branch mmfs in the permanent magnet region. These
mmfs represent the edge values of magnetization vector. In the above equations, vector
ic describes the winding currents and the currents in the loops around the “holes” in the
region with eddy currents.

It seems that for the eddy-current calculation the most convenient is the A–V–T0

formulation. This formulation is equivalent to the loop analysis of the facet magnetic
network, coupled with nodal analysis of the EN for eddy currents and with the loop
description of winding with stranded conductors. The FE equations for the A–V–T0

formulation are:
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kT
e Rmk e þ Gp 2Gkn 2K TN f

2pkT
n G kT

n Gkn 0

pN T
f K 0 Rm

2
6664

3
7775

fe

V

i c

2
664

3
775 ¼

um

0

e

2
664

3
775; ð13Þ

where um is the vector of loop mmfs in the regions with permanent magnets;

um ¼ kT
e Kub.

If the A–T–T0 formulation is applied, the FE equations represent the loop
equations for the magnetic and electric FNs. These equations can be expressed by:

kT
e Rmk e 2kT

e K 2K TN f

pK Tk e R e kT
e RN f

pN T
f K N T

f Rk e Rm

2
6664

3
7775

fe

i e

i c

2
664

3
775 ¼

um

0

e

2
664

3
775: ð14Þ

VI. Rotor motion simulation
The FE methods considering rotor motion can be divided into two categories:

(1) techniques with the fixed grid independent of the moving region position; and

(2) the techniques with the moving grid (Sadowski et al., 1992; Trowbridge and
Sykulski, 2006; Williamson, 1994).

The fixed grid methods have been successfully applied in the analysis of the systems
with homogenous moving part and constant speed.

The moving grid methods are more general. In these techniques, the grid is divided
into two parts: the moving part associated with the rotor and fixed part associated with
the stator. Between these parts, an interconnecting band or slip surface is created. The
most popular methods for coupling the fixed and moving part through the band or the
slip surface can be easily understood by using the notation of equivalent networks.

In the scalar potential method, the changes of the rotor position are modelled by
the changes of the nodal permeance matrix kT

n LkT
n . For the vector potential method

corresponding to the loop analysis of the FN, the changes of rotor position a are
represented by the changes of the loop reluctance matrix kT

e Rmk e. At first, we will
study the moving grid method for the formulation using the magnetic vector
potential A. In this formulation, the changes can be related to the factors of the
product kT

e Rmk e:
. the structural matrix ke;
. the matrix Rm of branch reluctances; or
. both the matrix ke and Rm.

In the method (1), we represent the discrete position of rotor by the distribution of
nonzero elements of the loop matrix ke. As a result, we obtain a set of matrices ke for
successive rotor positions. This set represents the data points for interpolation
functions expressing the dependence of ke on the angle a which describes the rotor
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position (Demenko, 1996). It can be proven that the use trigonometric interpolation is
equivalent to the application of harmonic weighting functions (De Gersem et al., 2006).
When a suitable interpolation of matrix ke is applied the method of category (1)
guarantees high accuracy. However, due to the increase of the density of the matrix
{k eðaÞ}

TRmk eðaÞ, the procedure of solving the FE equations becomes complicated
and time-consuming. Also, in the case of methods of category (2) with Rm ¼ Rm(a), the
matrix of loop reluctances is dense which results in an increase of computation time.
The most representative method of category (2) is the air-gap element method.

Owing to its simplicity, the methods of category (3), i.e. the moving band approach
with remeshing of the FE network, belong to the most popular methods (Davat et al.,
1985; Tsukerman, 1992).

The presented method for movement simulation in combination with vector
potential formulation can be easy adopted for scalar potential method. Changes of
matrices Rm, ke are represented by changes of the matrices L, kn in the scalar potential
methods.

VII. Electromagnetic torque
The electromagnetic torque is determined by the virtual work principle. The formulas
can be divided into two categories:

(1) the force density formulas, e.g. Lorenz formula, the method of magnetizing
currents; and

(2) stress tensor formulas, e.g. the Maxwell stress tensor formula (Ren, 1994;
Sadowski et al., 1992).

Of course, for the exact solution of Maxwell’s equations, the formulas of both
categories give identical results. The position of integration surface has an effect on the
result of the Maxwell stress tensor. Very often, in the FE models, the electromagnetic
torque is calculated by the virtual work principle (Coulomb and Meunier, 1984;
Demenko, 1996; Demenko and Stachowiak, 2008).

In accordance with the virtual work principle, for scalar potential method, the
torque is equal to the magnetic coenergy derivative versus the virtual displacement.
An interpolation function can be applied to describe this derivative:

TðaÞ ¼
›Wcðaþ DaÞ

›ðDaÞ

����
Da¼0

¼
Wcðaþ bÞ2 Wcðaþ bÞ

2b
; ð15Þ

where Wc(a ^ b) is the magnetic coenergy for the rotor position a ^ b (Figure 9).
From equation (17), using symbols in Table I, we obtain:

TðaÞ ¼
1

4b
VT kT

n Lkn

�� ���
aþb

2 kT
n Lkn

�� ���
a2b

� �
V: ð16Þ

For the vector potential formulation, the magnetic energy derivative versus the virtual
displacement is considered (Demenko, 1998) and:

TðaÞ ¼ 2
1

4b
fT

e kT
e Rmk e

�� ���
aþb

2 kT
e Rmk e

�� ���
a2b

� �
fe: ð17Þ
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Particularly noteworthy are the methods adapted to the applied techniques of motion
simulation (Coulomb and Meunier, 1984; Demenko, 1996). For example, if in the
procedure of motion simulation, Rm ¼ Rm(a) then:

TðaÞ ¼ 20:5fT
e kT

e

dRm

da

� �
k e

� 	
fe: ð18Þ

This formula and equations (16) and (17) can be considered as the FE representation of
Maxwell stress formula with integration surface related to the band between the stator
and rotor.

VIII. Field-circuit model
In this paper, the term field-circuit model of electrical machine is related to the
approaches expressing the flux linkages C with the windings by two components:

(1) components defined by field quantities; and

(2) component represented by inductances (Demenko and Hameyer, 2008; Lange
et al., 2008).

Figure 9.
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positions
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Source: Demenko and Stachowiak (2008)
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The expressions in Table III become:

C ¼ N T
f Kfe þ Lei c ð19aÞ

C ¼ N T
e fb þ Lei c; ð19bÞ

where Le is the matrix of equivalent inductances.
The field-circuit coupled model is applied when the magnetic field is assumed to be

2D. In this model, the matrix Le describes the inductances of the end-winding.
To obtain the equations of the field-circuit coupled model, the matrix Rm in

equations (12)-(14) should be replaced by the sum Rm þ p Le.
Usually, in the modelling of electrical machines equivalent circuits are applied. The

equivalent circuits are formed by the application of current transformations;, e.g.
Clarke and Park transformation (Jones, 1967). The inductances of equivalent
transformed system can be directly calculated using the field model. For elementary
values of currents iT, the currents ic in winding loops are calculated, ic ¼ k TiT, where
k is the transformation matrix. Then, for the currents ic the FE equations are solved
and the vectors CT of flux linkages for transformed system are determined,
CT ¼ kC. These vectors represent the inductances of the transformed circuit model.

IX. Conclusions
The paper presents the field and the field-circuit models of electrical machines. The
studied approaches have been elaborated to simulate the machine’s behaviour with the
presented models (De Gersem et al., 1998, 2000; Lahaye et al., 2002). The developments
of these approaches and in the methods to solve large systems of equations enable the
application of the presented models to many practical applications of technical
significances.

Field simulations are applied for the machine’s diagnostic (Weili et al., 2007).
However, in diagnostics the field models are not as popular as for machine design.
Recently, field models become more and more popular in the analysis and synthesis of
electrical machine control, even though the control methods are based on the classical
circuit approaches. Mostly, the field methods are used to calculate the parameters of
the equivalent circuit of considered control system (Brulé and Tounzi, 2000: Di Napoli
and Santini, 2000). The field methods can be especially helpful in the case of sensorless
control when an accurate description of the machine parameters is required.
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